Objective The purpose of this study was to compare computed tomography(CT) and magnetic resonance imaging(MRI) for the detection of mandibular condylar osteochondroma.Methods Preoperative CT and MRI of 33 patients wit...Objective The purpose of this study was to compare computed tomography(CT) and magnetic resonance imaging(MRI) for the detection of mandibular condylar osteochondroma.Methods Preoperative CT and MRI of 33 patients with unilateral condylar osteochondroma were reviewed. The morphology, location, continuity with the parent bone, cartilage cap, perichondrium of tumors, and changes in soft and hard tissues adjacent to the lesions were investigated by two reviewers. Data were analyzed using Mc Nemar test. A P value < 0.05 was considered significant.Results Among the 33 condylar osteochondromas, 11 were of the diffuse type, 10 were of the sessile type, and 12 were of the pedunculated type. Continuity with the cortex and marrow of the host condyle was observed on both CT and MRI. Both modalities had identical detection rates of surface reconstruction of the temporal bone joint, condylar dislocation, and pseudarthrosis formation. However, MRI showed significantly higher detection rates of the cartilage cap and perichondrium than CT(P < 0.05). Furthermore, MRI showed ipsilateral and contralateral temporo-mandibular joint(TMJ) disc displacement in 4 cases and 6 cases, respectively, and ipsilateral and contralateral TMJ effusion in 20 cases and 14 cases, respectively.Conclusion CT can intuitively display the morphology and spatial location of condylar osteochondromas through three-dimensional reconstruction. MRI may be superior to CT in the detection of cartilage cap, perichondrium of the condylar osteochondroma, and changes in the TMJ and adjacent soft tissues.展开更多
Stability and accuracy of the imaging results are still unmet practical demands for ultrasonic computed tomography(CT)of concrete material.To address these issues,a CT technique based on simulated annealing genetic al...Stability and accuracy of the imaging results are still unmet practical demands for ultrasonic computed tomography(CT)of concrete material.To address these issues,a CT technique based on simulated annealing genetic algorithm(SAGA)is presented in this work.Firstly,a natural weight matrix with clear physical meaning is introduced in the inverse algorithm and then a quadric broadening objective function is formed according to the propagation characteristics of ultrasound in concrete.After that,the simulated annealing(SA)searching is added to speed up the inverse process and to improve the convergence and stability of the algorithm.Finally,the optimal inverse imaging results have been achieved by variable ectopic adaptive genetic algorithm.The numerical simulation experiments have shown that the usage of the correct priori information and the excellent characteristic of SAGA in searching the global minimum value of the function have produced accurate and effective results with stable numerical values.The imaging resolution is improved and the imagining results reflecting the inner defections of the tested objects are more reliable and accurate.展开更多
From the point of view of design requirements, influence of the width of the output image of an imaging subsystem in a tomographic imaging spectrometer, namely width of the slit, the grating and the size of the CCD pi...From the point of view of design requirements, influence of the width of the output image of an imaging subsystem in a tomographic imaging spectrometer, namely width of the slit, the grating and the size of the CCD pixel are analyzed. For the tomographic imaging spectrometry, if the amplification ratio of the imaging subsystem is not high enough to make the whole object to be compressed within the slit, then either the slit width should be increased or the slit width kept unchanged but scanned to receive information of the object. While the width-increase method reduces the spectral resolving power and the SNR; the scanning method reduces the SNR. Analysis of the two cases and computer simulation results are given.展开更多
Objective: To explore whether single and fused monochromatic images can improve liver tumor detection and delineation by single source dual energy CT (ssDECT) in patients with hepatocellular carcinoma (HCC) durin...Objective: To explore whether single and fused monochromatic images can improve liver tumor detection and delineation by single source dual energy CT (ssDECT) in patients with hepatocellular carcinoma (HCC) during arterial phase. Methods: Fifty-seven patients with HCC who underwent ssDECT scanning at Beijing Cancer Hospital were enrolled retrospectively. Twenty-one sets of monochromatic images from 40 to 140 keV were reconstructed at 5 keV intervals in arterial phase. The optimal contrast-noise ratio (CNR) monochromatic images of the liver tumor and the lowest-noise monochromatic images were selected for image fusion. We evaluated the image quality of the optimal-CNR monochromatic images, the lowest-noise monochromatic images and the fused monochromatic images, respectively. The evaluation indicators included the spatial resolution of the anatomical structure, the noise level, the contrast and CNR of the tumor. Results: In arterial phase, the anatomical structure of the liver can be displayed most clearly in the 65-keV monochromatic images, with the lowest image noise. The optimal-CNR monochromatic images of HCC tumor were 50-keV monochromatic images in which the internal structural features of the liver tumors were displayed most clearly and meticulously. For tumor detection, the fused monochromatic images and the 50-keV monochromatic images had similar performances, and were more sensitive than 65-keV monochromatic images. Conclusions: We achieved good arterial phase images by fusing the optimal-CNR monochromatic images of the HCC tumor and the lowest-noise monochromatic images. The fused images displayed liver tumors and anatomical structures more clearly, which is potentially helpful for identifying more and smaller HCC tumors.展开更多
In order to solve the problem of internal defect detection in industry, an intelligent detection method for workpiece defect based on industrial computed tomography (CT) images is proposed. The industrial CT slice ima...In order to solve the problem of internal defect detection in industry, an intelligent detection method for workpiece defect based on industrial computed tomography (CT) images is proposed. The industrial CT slice image is preprocessed first with the combination of adaptive median filtering and adaptive weighted average filtering by analyzing the characteristics of the industrial CT slice images. Then an image segmentation algorithm based on gray change rate is used to segment low contrast information in industrial CT images, and the feature of workpiece defect is extracted by using Hu invariant moment. On this basis, the radial basis function (RBF) neural network model is established and the firefly algorithm is used for optimization, and the intelligent identification of the internal defects of the workpiece is completed. Simulation results show that this method can effectively improve the accuracy of defect identification and provide a theoretical basis for the detection of internal defects in industry.展开更多
The relationship between noise variance and spatial resolution in grating-based x-ray phase computed tomography(PCT) imaging is investigated with reverse projection extraction method, and the noise variances of the ...The relationship between noise variance and spatial resolution in grating-based x-ray phase computed tomography(PCT) imaging is investigated with reverse projection extraction method, and the noise variances of the reconstructed absorption coefficient and refractive index decrement are compared. For the differential phase contrast method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both theoretical analysis and simulations demonstrate that in PCT the noise variance of the reconstructed refractive index decrement scales with spatial resolution follows an inverse linear relationship at fixed slice thickness, while the noise variance of the reconstructed absorption coefficient conforms with the inverse cubic law. The results indicate that, for the same noise variance level, PCT imaging may enable higher spatial resolution than conventional absorption computed tomography(ACT), while ACT benefits more from degraded spatial resolution. This could be a useful guidance in imaging the inner structure of the sample in higher spatial resolution.展开更多
Purpose: To explore the significance of dual-source computed tomography (DECT) virtual monoenergetic reconstructions technology in improving image quality for portal vein system of pancreatic cancer patients. Material...Purpose: To explore the significance of dual-source computed tomography (DECT) virtual monoenergetic reconstructions technology in improving image quality for portal vein system of pancreatic cancer patients. Materials and methods: 47 patients with clinically suspected pancreatic cancer (all confirmed by pathology) were collected. Routine plain scan was performed with Siemens Force dual-source dual-energy CT followed by 3 scans respectively carried out in arterial phase, portal phase and delayed phase. Traditional virtual monoenergetic reconstructions (Mono_E) and new generation of virtual monoenergetic reconstructions (Mono+) were respectively performed on portal vein images to obtain virtual single energy images including Mono_ E70 keV, Mono_E 55 keV and Mono+ 70 keV and Mono+ 55 keV. The signal-to-noise ratio (SNR) and noise of portal vein, normal pancreatic tissues and pancreatic lesions of 100 kV, Mono_E and Mono+ images were compared. In addition, the contrast noise ratio of portal vein and lesions as well as pancreatic tissues and lesions (CNR PV, CNRtumor) were also compared. At the same time, two imaging physicians with rich clinical experiences read the films and scored the images of each group by using the 5-point scoring method. Results: Mono+ 55 keV images including SNRpv, SNRpanc, SNRtumor, Noise, CNRpv, CNRtumor were statistically different from 100 KV images and Mono_E images (P < 0.05). As for the subjective score, Mono+ 55 keV image score also had the highest score, which had statistical significance (P < 0.05). The results showed that Mono+ 55 keV images had the best quality. Conclusion: The new generation of virtual Mono+ post-treatment can reduce image noise. Low energy Mono+ images can improve the contrast between pancreatic cancer lesions and portal of pancreatic cancer patients.展开更多
Objective:To investigate the CT and MRI features of salivary ductal carcinoma(SDC).Method:The imaging,clinical and pathological data of 32 patients with SDC confirmed by histomathology and operation were retrospective...Objective:To investigate the CT and MRI features of salivary ductal carcinoma(SDC).Method:The imaging,clinical and pathological data of 32 patients with SDC confirmed by histomathology and operation were retrospectively analyzed.The location,size,shape,boundary,relationship with surrounding tissues,density,signal,enhancement mode,calcification,cystic degeneration and metastasis were observed.Result:Of the 32 patients with SDC,31 cases were isolated,17 were located in the parotid gland,8 in the submandibular gland,2 in the sinuses,2 in the orbit,1 in the part of the eye,and 1 in the sublingual gland.One case had multiple lesions located in the parotid gland.The maximum diameter of tumor was 1.5-7.2cm,and the median diameter was 3.0cm.The tumor showed diffuse growth in 11 cases and focal growth in 21 cases.The boundary was clear in 24 cases and unclear in 8 cases.The lesion may invade parapharyngeal space,soft palate,facial nerve,auditory nerve,skin,surrounding muscle and bone;There were 15 cases(47%)with lymph node metastasis and 1 case with lung metastasis.MRI showed that the solid part of the tumor was dominated by isointensity and low intensity on T1 WI,mixed high intensity on T2 WI,low intensity on T1 WI and high intensity on T2 WI.CT showed uneven tumor density,with equal or low density in 15 cases,high density in 4 cases,and calcification in 7 cases.Contrast-enhanced scan showed moderate to significant enhancement of the solid part.Conclusion:SDC is mostly single,prone to cystic necrosis and calcification,with strong aggressiveness and frequent lymph node metastasis.Understanding the imaging findings of SDC is helpful to improve the accuracy of preoperative diagnosis.展开更多
This paper tries to address the problem of binary CT image reconstruction in non-destructive detection with an algorithm based on compressed sensing(CS) and Otsu's method, which could reconstruct binary CT image o...This paper tries to address the problem of binary CT image reconstruction in non-destructive detection with an algorithm based on compressed sensing(CS) and Otsu's method, which could reconstruct binary CT image of test object from incomplete detection data. According to binary CT image characteristics, we employ Splitbregman method based on L1/2regularization to solve piecewise constant region reconstruction. To improve the reconstructed image quality from incomplete detection data, we utilize a priori knowledge and Otsu's method as the optimization constraint. In our study, we make numerical simulation to investigate our proposed method,and compare reconstructed results from different reconstruction methods. Finally, the experimental results demonstrate that the proposed method could effectively reduce noise and suppress artifacts, and reconstruct high-quality binary image from incomplete detection data.展开更多
基金Supported by Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant(No.20152225)Shanghai Hospital Development Center Research Grant(No.SHDC12013103)
文摘Objective The purpose of this study was to compare computed tomography(CT) and magnetic resonance imaging(MRI) for the detection of mandibular condylar osteochondroma.Methods Preoperative CT and MRI of 33 patients with unilateral condylar osteochondroma were reviewed. The morphology, location, continuity with the parent bone, cartilage cap, perichondrium of tumors, and changes in soft and hard tissues adjacent to the lesions were investigated by two reviewers. Data were analyzed using Mc Nemar test. A P value < 0.05 was considered significant.Results Among the 33 condylar osteochondromas, 11 were of the diffuse type, 10 were of the sessile type, and 12 were of the pedunculated type. Continuity with the cortex and marrow of the host condyle was observed on both CT and MRI. Both modalities had identical detection rates of surface reconstruction of the temporal bone joint, condylar dislocation, and pseudarthrosis formation. However, MRI showed significantly higher detection rates of the cartilage cap and perichondrium than CT(P < 0.05). Furthermore, MRI showed ipsilateral and contralateral temporo-mandibular joint(TMJ) disc displacement in 4 cases and 6 cases, respectively, and ipsilateral and contralateral TMJ effusion in 20 cases and 14 cases, respectively.Conclusion CT can intuitively display the morphology and spatial location of condylar osteochondromas through three-dimensional reconstruction. MRI may be superior to CT in the detection of cartilage cap, perichondrium of the condylar osteochondroma, and changes in the TMJ and adjacent soft tissues.
基金supported by the National Natural Science Foundation of China (No.11264032)the Aeronautical Science Foundation of China (No.2014ZD56007)+4 种基金the Science and Technology Project of General Administration of Quality Supervision,Inspection and Quarantine of China (No.2013zjjz180)the Natural Science Foundation of Jiangxi Province (No.20122BAB201024)the Science and Technology Project of the Education Department of Jiangxi Province (No.GJJ14530)the Innovation Foundation of Shanghai Aerospace(SAST201364)the Graduate Innovation Foundation of Nanchang Hangkong University (No.YC2013010)
文摘Stability and accuracy of the imaging results are still unmet practical demands for ultrasonic computed tomography(CT)of concrete material.To address these issues,a CT technique based on simulated annealing genetic algorithm(SAGA)is presented in this work.Firstly,a natural weight matrix with clear physical meaning is introduced in the inverse algorithm and then a quadric broadening objective function is formed according to the propagation characteristics of ultrasound in concrete.After that,the simulated annealing(SA)searching is added to speed up the inverse process and to improve the convergence and stability of the algorithm.Finally,the optimal inverse imaging results have been achieved by variable ectopic adaptive genetic algorithm.The numerical simulation experiments have shown that the usage of the correct priori information and the excellent characteristic of SAGA in searching the global minimum value of the function have produced accurate and effective results with stable numerical values.The imaging resolution is improved and the imagining results reflecting the inner defections of the tested objects are more reliable and accurate.
文摘From the point of view of design requirements, influence of the width of the output image of an imaging subsystem in a tomographic imaging spectrometer, namely width of the slit, the grating and the size of the CCD pixel are analyzed. For the tomographic imaging spectrometry, if the amplification ratio of the imaging subsystem is not high enough to make the whole object to be compressed within the slit, then either the slit width should be increased or the slit width kept unchanged but scanned to receive information of the object. While the width-increase method reduces the spectral resolving power and the SNR; the scanning method reduces the SNR. Analysis of the two cases and computer simulation results are given.
基金supported by the National Basic Research Program of China (973 Program) (Grant No. 2011CB707705)National Natural Science Foundation of China (Grant No. 81371715+1 种基金 81201215)the Capital Characteristic Clinical Application Research (Grant No. Z121107001012115)
文摘Objective: To explore whether single and fused monochromatic images can improve liver tumor detection and delineation by single source dual energy CT (ssDECT) in patients with hepatocellular carcinoma (HCC) during arterial phase. Methods: Fifty-seven patients with HCC who underwent ssDECT scanning at Beijing Cancer Hospital were enrolled retrospectively. Twenty-one sets of monochromatic images from 40 to 140 keV were reconstructed at 5 keV intervals in arterial phase. The optimal contrast-noise ratio (CNR) monochromatic images of the liver tumor and the lowest-noise monochromatic images were selected for image fusion. We evaluated the image quality of the optimal-CNR monochromatic images, the lowest-noise monochromatic images and the fused monochromatic images, respectively. The evaluation indicators included the spatial resolution of the anatomical structure, the noise level, the contrast and CNR of the tumor. Results: In arterial phase, the anatomical structure of the liver can be displayed most clearly in the 65-keV monochromatic images, with the lowest image noise. The optimal-CNR monochromatic images of HCC tumor were 50-keV monochromatic images in which the internal structural features of the liver tumors were displayed most clearly and meticulously. For tumor detection, the fused monochromatic images and the 50-keV monochromatic images had similar performances, and were more sensitive than 65-keV monochromatic images. Conclusions: We achieved good arterial phase images by fusing the optimal-CNR monochromatic images of the HCC tumor and the lowest-noise monochromatic images. The fused images displayed liver tumors and anatomical structures more clearly, which is potentially helpful for identifying more and smaller HCC tumors.
基金Science and Technology Plan Project of Lanzhou City(No.2014-2-7)
文摘In order to solve the problem of internal defect detection in industry, an intelligent detection method for workpiece defect based on industrial computed tomography (CT) images is proposed. The industrial CT slice image is preprocessed first with the combination of adaptive median filtering and adaptive weighted average filtering by analyzing the characteristics of the industrial CT slice images. Then an image segmentation algorithm based on gray change rate is used to segment low contrast information in industrial CT images, and the feature of workpiece defect is extracted by using Hu invariant moment. On this basis, the radial basis function (RBF) neural network model is established and the firefly algorithm is used for optimization, and the intelligent identification of the internal defects of the workpiece is completed. Simulation results show that this method can effectively improve the accuracy of defect identification and provide a theoretical basis for the detection of internal defects in industry.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB825800)the Science Fund for Creative Research Groups,the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant Nos.KJCX2-YW-N42 and Y4545320Y2)the National Natural Science Foundation of China(Grant Nos.11475170,11205157,11305173,11205189,11375225,11321503,11179004,and U1332109)
文摘The relationship between noise variance and spatial resolution in grating-based x-ray phase computed tomography(PCT) imaging is investigated with reverse projection extraction method, and the noise variances of the reconstructed absorption coefficient and refractive index decrement are compared. For the differential phase contrast method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both theoretical analysis and simulations demonstrate that in PCT the noise variance of the reconstructed refractive index decrement scales with spatial resolution follows an inverse linear relationship at fixed slice thickness, while the noise variance of the reconstructed absorption coefficient conforms with the inverse cubic law. The results indicate that, for the same noise variance level, PCT imaging may enable higher spatial resolution than conventional absorption computed tomography(ACT), while ACT benefits more from degraded spatial resolution. This could be a useful guidance in imaging the inner structure of the sample in higher spatial resolution.
文摘Purpose: To explore the significance of dual-source computed tomography (DECT) virtual monoenergetic reconstructions technology in improving image quality for portal vein system of pancreatic cancer patients. Materials and methods: 47 patients with clinically suspected pancreatic cancer (all confirmed by pathology) were collected. Routine plain scan was performed with Siemens Force dual-source dual-energy CT followed by 3 scans respectively carried out in arterial phase, portal phase and delayed phase. Traditional virtual monoenergetic reconstructions (Mono_E) and new generation of virtual monoenergetic reconstructions (Mono+) were respectively performed on portal vein images to obtain virtual single energy images including Mono_ E70 keV, Mono_E 55 keV and Mono+ 70 keV and Mono+ 55 keV. The signal-to-noise ratio (SNR) and noise of portal vein, normal pancreatic tissues and pancreatic lesions of 100 kV, Mono_E and Mono+ images were compared. In addition, the contrast noise ratio of portal vein and lesions as well as pancreatic tissues and lesions (CNR PV, CNRtumor) were also compared. At the same time, two imaging physicians with rich clinical experiences read the films and scored the images of each group by using the 5-point scoring method. Results: Mono+ 55 keV images including SNRpv, SNRpanc, SNRtumor, Noise, CNRpv, CNRtumor were statistically different from 100 KV images and Mono_E images (P < 0.05). As for the subjective score, Mono+ 55 keV image score also had the highest score, which had statistical significance (P < 0.05). The results showed that Mono+ 55 keV images had the best quality. Conclusion: The new generation of virtual Mono+ post-treatment can reduce image noise. Low energy Mono+ images can improve the contrast between pancreatic cancer lesions and portal of pancreatic cancer patients.
文摘Objective:To investigate the CT and MRI features of salivary ductal carcinoma(SDC).Method:The imaging,clinical and pathological data of 32 patients with SDC confirmed by histomathology and operation were retrospectively analyzed.The location,size,shape,boundary,relationship with surrounding tissues,density,signal,enhancement mode,calcification,cystic degeneration and metastasis were observed.Result:Of the 32 patients with SDC,31 cases were isolated,17 were located in the parotid gland,8 in the submandibular gland,2 in the sinuses,2 in the orbit,1 in the part of the eye,and 1 in the sublingual gland.One case had multiple lesions located in the parotid gland.The maximum diameter of tumor was 1.5-7.2cm,and the median diameter was 3.0cm.The tumor showed diffuse growth in 11 cases and focal growth in 21 cases.The boundary was clear in 24 cases and unclear in 8 cases.The lesion may invade parapharyngeal space,soft palate,facial nerve,auditory nerve,skin,surrounding muscle and bone;There were 15 cases(47%)with lymph node metastasis and 1 case with lung metastasis.MRI showed that the solid part of the tumor was dominated by isointensity and low intensity on T1 WI,mixed high intensity on T2 WI,low intensity on T1 WI and high intensity on T2 WI.CT showed uneven tumor density,with equal or low density in 15 cases,high density in 4 cases,and calcification in 7 cases.Contrast-enhanced scan showed moderate to significant enhancement of the solid part.Conclusion:SDC is mostly single,prone to cystic necrosis and calcification,with strong aggressiveness and frequent lymph node metastasis.Understanding the imaging findings of SDC is helpful to improve the accuracy of preoperative diagnosis.
基金Supported by the National Natural Science Foundation of China(Nos.61401049 and 61201346)Postdoctoral Science Foundation of China(No.2014M560703)+1 种基金Chongqing Postdoctoral Science Foundation(No.Xm2014105)the Fundamental Research Funds for the Central Universities(Nos.CDJZR14125501 and 106112015CDJRC121103)
文摘This paper tries to address the problem of binary CT image reconstruction in non-destructive detection with an algorithm based on compressed sensing(CS) and Otsu's method, which could reconstruct binary CT image of test object from incomplete detection data. According to binary CT image characteristics, we employ Splitbregman method based on L1/2regularization to solve piecewise constant region reconstruction. To improve the reconstructed image quality from incomplete detection data, we utilize a priori knowledge and Otsu's method as the optimization constraint. In our study, we make numerical simulation to investigate our proposed method,and compare reconstructed results from different reconstruction methods. Finally, the experimental results demonstrate that the proposed method could effectively reduce noise and suppress artifacts, and reconstruct high-quality binary image from incomplete detection data.