This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa...This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.展开更多
The artificial neural networks (ANN) which have broad application were proposed to develop multiphase ceramie cutting tool materials. Based on the back propagation algorithm of the forward multilayer perceptron, the m...The artificial neural networks (ANN) which have broad application were proposed to develop multiphase ceramie cutting tool materials. Based on the back propagation algorithm of the forward multilayer perceptron, the models to predict volume content of composition in particie reinforced ceramies are established. The Al2O3/TiN ceramie cutting tool material was developed by ANN, whose mechanicai properties fully satisfy the cutting requirements.展开更多
An artificial neural network (ANN) short term forecasting model of consumption per hour was built based on seasonality,trend and randomness of a city period of time water consumption series.Different hidden layer no...An artificial neural network (ANN) short term forecasting model of consumption per hour was built based on seasonality,trend and randomness of a city period of time water consumption series.Different hidden layer nodes,same inputs and forecasting data were selected to train and forecast and then the relative errors were compared so as to confirm the NN structure.A model was set up and used to forecast concretely by Matlab.It is tested by examples and compared with the result of time series trigonometric function analytical method.The result indicates that the prediction errors of NN are small and the velocity of forecasting is fast.It can completely meet the actual needs of the control and run of the water supply system.展开更多
To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are anal...To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are analyzed, and artificial neural networks based PEMFC modeling is advanced. The structure, algorithm, training and simulation of PEMFC modeling based on improved BP networks are given out in detail. The computer simulation and conducted experiment verify that this model is fast and accurate, and can be used as a suitable operational model for PEMFC real-time control.展开更多
A soft sensing method of burning through point (BTP) was described and a new predictive parameter—the mathematics inflexion point of waste gas temperature curve in the middle of the strand was proposed. The artificia...A soft sensing method of burning through point (BTP) was described and a new predictive parameter—the mathematics inflexion point of waste gas temperature curve in the middle of the strand was proposed. The artificial neural network was used in predicting BTP, modification on backpropagation algorithm was made in order to improve the convergence and self organize the hidden layer neurons. The adaptive prediction system developed on these techniques shows its characters such as fast, accuracy, less dependence on production data. The prediction of BTP can be used as operation guidance or control parameter.[展开更多
Artificial neural network is a new approach to pattern recognition and classification. The model of multilayer perceptron (MLP) and back-propagation (BP) is used to train the algorithm in the artificial neural net...Artificial neural network is a new approach to pattern recognition and classification. The model of multilayer perceptron (MLP) and back-propagation (BP) is used to train the algorithm in the artificial neural network. An improved fast algorithm of the BP network was presented, which adopts a singular value decomposition (SVD) and a generalized inverse matrix. It not only increases the speed of network learning but also achieves a satisfying precision. The simulation and experiment results show the effect of improvement of BP algorithm on the classification of the surface defects of steel plate.展开更多
Artificial neural networks have been widely used to predict the mechanical properties of alloys in material research. This study aims to investigate the implicit relationship between the compositions and mechanical pr...Artificial neural networks have been widely used to predict the mechanical properties of alloys in material research. This study aims to investigate the implicit relationship between the compositions and mechanical properties of as-cast Mg-Li-AI alloys. Based on the experimental collection of the tensile strength and the elongation of representative Mg-Li-AI alloys, a momentum back-propagation (BP) neural network with a single hidden layer was established. Particle swarm optimization (PSO) was applied to optimize the BP model. In the neural network, the input variables were the contents of Mg, Li and AI, and the output variables were the tensile strength and the elongation. The results show that the proposed PSO-BP model can describe the quantitative relationship between the Mg-Li-AI alloy's composition and its mechanical properties. It is possible that the mechanical properties to be predicted without experiment by inputting the alloy composition into the trained network model. The prediction of the influence of AI addition on the mechanical properties of as-cast Mg-Li-AI alloys is consistent with the related research results.展开更多
This paper is about the application of ANN (artificial neural networks) theory in evaluation of mine design schemes and a quantified evaluation method based on a three\|layer neural network is given. It studies the st...This paper is about the application of ANN (artificial neural networks) theory in evaluation of mine design schemes and a quantified evaluation method based on a three\|layer neural network is given. It studies the structure of the three\|layer neural network, its learning process, its operating algorithm to realize the evaluation of mine design schemes in a computer and a practical example is also involved in it.展开更多
Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. Th...Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. The neural network nodes of the input layer can be calculated and simplified through rough sets theory; The neural network nodes of the middle layer are designed through genetic algorithms training; the neural network bottom-up weights and bias are obtained finally through the combination of genetic algorithms and BP algorithms. The analysis in this paper illustrates that the optimization method can improve the performance of the neural network fault diagnosis method greatly.展开更多
In this paper, an artificial neural network method that can predict the chemical composition of deposited weld metal by CO 2 Shielded Flux Cored Wire Surfacing was studied. It is found that artificial neural networ...In this paper, an artificial neural network method that can predict the chemical composition of deposited weld metal by CO 2 Shielded Flux Cored Wire Surfacing was studied. It is found that artificial neural network is a good approach on studying welding metallurgy processes that cannot be described by conventional mathematical methods. In the same time we explored a new way to study the no equilibrium welding metallurgy processes.展开更多
We developed a GA-BP algorithm by combining the genetic algorithm (GA) with the back propagation (BP) algorithm and established a genetic BP neural network. We also applied the BP neural network based on the BP algori...We developed a GA-BP algorithm by combining the genetic algorithm (GA) with the back propagation (BP) algorithm and established a genetic BP neural network. We also applied the BP neural network based on the BP algorithm and the genetic BP neural network based on the GA-BP algorithm to discriminate earthquakes and explosions. The obtained result shows that the discriminating performance of the genetic BP network is slightly better than that of the BP network.展开更多
A novel Bacterial Foraging Algorithm (BFA) based neural network is presented for image compression. To improve the quality of the decompressed images, the concepts of reproduction, elimination and dispersal in BFA are...A novel Bacterial Foraging Algorithm (BFA) based neural network is presented for image compression. To improve the quality of the decompressed images, the concepts of reproduction, elimination and dispersal in BFA are firstly introduced into neural network in the proposed algorithm. Extensive experiments are conducted on standard testing images and the results show that the pro- posed method can improve the quality of the reconstructed images significantly.展开更多
The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network st...The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network structure optimization were presented for training this model ANN(artificial neural network)fault diagnosis model for the robot in FMS was made by the new algorithm The result is superior to the rtaditional algorithm展开更多
In this paper, the Artificial Neural Network (ANN) is used to study the wave forces on a semi-circular breakwater. The process of establishing the network model for a specific physical problem is presented. Networks w...In this paper, the Artificial Neural Network (ANN) is used to study the wave forces on a semi-circular breakwater. The process of establishing the network model for a specific physical problem is presented. Networks with double implicit layers have been studied by numerical experiments. 117 sets of experimental data are used to train and test the ANN. According to the results of ANN simulation, this method is proved to have good precision compared with experimental and numerical results.展开更多
基金This paper is supported by the Nature Science Foundation of Heilongjiang Province.
文摘This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.
文摘The artificial neural networks (ANN) which have broad application were proposed to develop multiphase ceramie cutting tool materials. Based on the back propagation algorithm of the forward multilayer perceptron, the models to predict volume content of composition in particie reinforced ceramies are established. The Al2O3/TiN ceramie cutting tool material was developed by ANN, whose mechanicai properties fully satisfy the cutting requirements.
基金Supported by Foundation for University Key Teacher by Ministryof Education.
文摘An artificial neural network (ANN) short term forecasting model of consumption per hour was built based on seasonality,trend and randomness of a city period of time water consumption series.Different hidden layer nodes,same inputs and forecasting data were selected to train and forecast and then the relative errors were compared so as to confirm the NN structure.A model was set up and used to forecast concretely by Matlab.It is tested by examples and compared with the result of time series trigonometric function analytical method.The result indicates that the prediction errors of NN are small and the velocity of forecasting is fast.It can completely meet the actual needs of the control and run of the water supply system.
文摘To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are analyzed, and artificial neural networks based PEMFC modeling is advanced. The structure, algorithm, training and simulation of PEMFC modeling based on improved BP networks are given out in detail. The computer simulation and conducted experiment verify that this model is fast and accurate, and can be used as a suitable operational model for PEMFC real-time control.
文摘A soft sensing method of burning through point (BTP) was described and a new predictive parameter—the mathematics inflexion point of waste gas temperature curve in the middle of the strand was proposed. The artificial neural network was used in predicting BTP, modification on backpropagation algorithm was made in order to improve the convergence and self organize the hidden layer neurons. The adaptive prediction system developed on these techniques shows its characters such as fast, accuracy, less dependence on production data. The prediction of BTP can be used as operation guidance or control parameter.[
基金Item Sponsored by National Natural Science Foundation of China (60277029)
文摘Artificial neural network is a new approach to pattern recognition and classification. The model of multilayer perceptron (MLP) and back-propagation (BP) is used to train the algorithm in the artificial neural network. An improved fast algorithm of the BP network was presented, which adopts a singular value decomposition (SVD) and a generalized inverse matrix. It not only increases the speed of network learning but also achieves a satisfying precision. The simulation and experiment results show the effect of improvement of BP algorithm on the classification of the surface defects of steel plate.
基金supported by the Program of New Century Excellent Talents of the Ministry of Education of China(NCET-08-0080)the National High Technology Research and Development Program("863"Program)of China(2009AA03Z525)+1 种基金the Fundamental Research Funds for the Central Universities(DUT11ZD115)the Science and Technology Fund of Dalian City(2009J21DW003)
文摘Artificial neural networks have been widely used to predict the mechanical properties of alloys in material research. This study aims to investigate the implicit relationship between the compositions and mechanical properties of as-cast Mg-Li-AI alloys. Based on the experimental collection of the tensile strength and the elongation of representative Mg-Li-AI alloys, a momentum back-propagation (BP) neural network with a single hidden layer was established. Particle swarm optimization (PSO) was applied to optimize the BP model. In the neural network, the input variables were the contents of Mg, Li and AI, and the output variables were the tensile strength and the elongation. The results show that the proposed PSO-BP model can describe the quantitative relationship between the Mg-Li-AI alloy's composition and its mechanical properties. It is possible that the mechanical properties to be predicted without experiment by inputting the alloy composition into the trained network model. The prediction of the influence of AI addition on the mechanical properties of as-cast Mg-Li-AI alloys is consistent with the related research results.
文摘This paper is about the application of ANN (artificial neural networks) theory in evaluation of mine design schemes and a quantified evaluation method based on a three\|layer neural network is given. It studies the structure of the three\|layer neural network, its learning process, its operating algorithm to realize the evaluation of mine design schemes in a computer and a practical example is also involved in it.
文摘Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. The neural network nodes of the input layer can be calculated and simplified through rough sets theory; The neural network nodes of the middle layer are designed through genetic algorithms training; the neural network bottom-up weights and bias are obtained finally through the combination of genetic algorithms and BP algorithms. The analysis in this paper illustrates that the optimization method can improve the performance of the neural network fault diagnosis method greatly.
文摘In this paper, an artificial neural network method that can predict the chemical composition of deposited weld metal by CO 2 Shielded Flux Cored Wire Surfacing was studied. It is found that artificial neural network is a good approach on studying welding metallurgy processes that cannot be described by conventional mathematical methods. In the same time we explored a new way to study the no equilibrium welding metallurgy processes.
文摘We developed a GA-BP algorithm by combining the genetic algorithm (GA) with the back propagation (BP) algorithm and established a genetic BP neural network. We also applied the BP neural network based on the BP algorithm and the genetic BP neural network based on the GA-BP algorithm to discriminate earthquakes and explosions. The obtained result shows that the discriminating performance of the genetic BP network is slightly better than that of the BP network.
基金Supported by the National Natural Science Foundation of China (No.60572100)by the Royal Society (U.K.) International Joint Projects 2006/R3-Cost Share with NSFC (No.60711130233)
文摘A novel Bacterial Foraging Algorithm (BFA) based neural network is presented for image compression. To improve the quality of the decompressed images, the concepts of reproduction, elimination and dispersal in BFA are firstly introduced into neural network in the proposed algorithm. Extensive experiments are conducted on standard testing images and the results show that the pro- posed method can improve the quality of the reconstructed images significantly.
文摘The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network structure optimization were presented for training this model ANN(artificial neural network)fault diagnosis model for the robot in FMS was made by the new algorithm The result is superior to the rtaditional algorithm
文摘In this paper, the Artificial Neural Network (ANN) is used to study the wave forces on a semi-circular breakwater. The process of establishing the network model for a specific physical problem is presented. Networks with double implicit layers have been studied by numerical experiments. 117 sets of experimental data are used to train and test the ANN. According to the results of ANN simulation, this method is proved to have good precision compared with experimental and numerical results.