The perturbation in the magnetic field generated by the rotation or oscillation of magnetic domains in magnetic materials can emit low-frequency electromagnetic waves,which are expected to be used in low-frequency com...The perturbation in the magnetic field generated by the rotation or oscillation of magnetic domains in magnetic materials can emit low-frequency electromagnetic waves,which are expected to be used in low-frequency communications.However,the magnetic emission intensity,defined by the perturbation ability,of current commercially applied amorphous alloys,such as Metglas,cannot meet the application requirements for low-frequency antennas due to the domain motion energy loss.Herein,a multi-phase Metglas amorphous alloy was constructed by incorporatingα-Fe nanocrystals using rapid annealing to manipulate the domain movement.It was found that 3.89 times higher magnetic emission intensity is obtained compared to the pristine due to the synergism of the deformation and displacement mechanisms.Moreover,the low-frequency magnetic emission performance verification was carried out by preparing magnetoelectric composites as the antenna vibrator by assembling the alloy and macro piezoelectric fiber composites(MFC).Enhancements of magnetic emission intensity are found at 93.3%and 49.2%at the first and second harmonic frequencies compared with the unmodified alloy vibrator.Therefore,the approach leads to the development of high-performance communication with a novel standard for evaluation.展开更多
A total of 80 weathering pits (gnammas), located on granite surfaces of Qing Mountain (青山), Hexigten (克什克腾) Global Geopark, Inner Mongolia, were identified and measured in terms of dimensional and orientat...A total of 80 weathering pits (gnammas), located on granite surfaces of Qing Mountain (青山), Hexigten (克什克腾) Global Geopark, Inner Mongolia, were identified and measured in terms of dimensional and orientational features. This article attempts to extract characteristics of the weathering pits by descriptive statistics and orientation rose diagrams, investigate the multi-phase evolution by the modified gnamma morphological analysis (GMA) method, and shed new light on the possible genesis and the influencing factors. Following the modified GMA method, weathering pits in Qing Mountain have been divided into six groups and compared with analogous sites to deduce their approximate age, which might be no older than 30 ka B.P., and explore the possibility that the multi-phase evolution of weathering pits may arise from responses to climate change. In consequence, we suggest that the combination of weathering, especially salt weathering, and wind erosion, both of which are closely related to climatic variation, take the main responsibility for the formation and development of weathering pits in Qing Mountain.展开更多
基金supported by the Key Research and Development Program of Hubei Province(No.2021BAA214)the Open Fund of Sanya Science and Education Innovation Park of Wuhan University of Technology(Nos.2021KF0022,2021KF0013,and 2020KF0026)+2 种基金Independent Innovation Projects of the Hubei Longzhong Laboratory(Nos.2022ZZ-34 and 2022ZZ-35)the National Science Fund for Distinguished Young Scholars of Hubei Province(No.201CFA067)the National innovation and entrepreneurship training program for college students(Nos.202310497010 and S202310497026).
文摘The perturbation in the magnetic field generated by the rotation or oscillation of magnetic domains in magnetic materials can emit low-frequency electromagnetic waves,which are expected to be used in low-frequency communications.However,the magnetic emission intensity,defined by the perturbation ability,of current commercially applied amorphous alloys,such as Metglas,cannot meet the application requirements for low-frequency antennas due to the domain motion energy loss.Herein,a multi-phase Metglas amorphous alloy was constructed by incorporatingα-Fe nanocrystals using rapid annealing to manipulate the domain movement.It was found that 3.89 times higher magnetic emission intensity is obtained compared to the pristine due to the synergism of the deformation and displacement mechanisms.Moreover,the low-frequency magnetic emission performance verification was carried out by preparing magnetoelectric composites as the antenna vibrator by assembling the alloy and macro piezoelectric fiber composites(MFC).Enhancements of magnetic emission intensity are found at 93.3%and 49.2%at the first and second harmonic frequencies compared with the unmodified alloy vibrator.Therefore,the approach leads to the development of high-performance communication with a novel standard for evaluation.
基金supported by China Geological Survey(No.11212011120118)the Fundamental Research Projects of China University of Geosciences,Beijing,China(No.2011YYL016)
文摘A total of 80 weathering pits (gnammas), located on granite surfaces of Qing Mountain (青山), Hexigten (克什克腾) Global Geopark, Inner Mongolia, were identified and measured in terms of dimensional and orientational features. This article attempts to extract characteristics of the weathering pits by descriptive statistics and orientation rose diagrams, investigate the multi-phase evolution by the modified gnamma morphological analysis (GMA) method, and shed new light on the possible genesis and the influencing factors. Following the modified GMA method, weathering pits in Qing Mountain have been divided into six groups and compared with analogous sites to deduce their approximate age, which might be no older than 30 ka B.P., and explore the possibility that the multi-phase evolution of weathering pits may arise from responses to climate change. In consequence, we suggest that the combination of weathering, especially salt weathering, and wind erosion, both of which are closely related to climatic variation, take the main responsibility for the formation and development of weathering pits in Qing Mountain.