Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough ...Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough investigation into the behavior of crack propagation contributes to a better understanding and control of the properties of brittle materials,thereby enhancing the reliability and safety of both materials and structures.As an implicit discrete elementmethod,the Discontinuous Deformation Analysis(DDA)has gained significant attention for its developments and applications in recent years.Among these developments,the particle DDA equipped with the bonded particle model is a powerful tool for predicting the whole process of material from continuity to failure.The primary objective of this research is to develop and utilize the particle DDAtomodel and understand the complex behavior of cracks in brittle materials under both static and dynamic loadings.The particle DDA is applied to several classical crack propagation problems,including the crack branching,compact tensile test,Kalthoff impact experiment,and tensile test of a rectangular plate with a hole.The evolutions of cracks under various stress or geometrical conditions are carefully investigated.The simulated results are compared with the experiments and other numerical results.It is found that the crack propagation patterns,including crack branching and the formation of secondary cracks,can be well reproduced.The results show that the particle DDA is a qualified method for crack propagation problems,providing valuable insights into the fracture mechanism of brittle materials.展开更多
The particle size ratio(PSR)is an important parameter for binary granular materials,which may aect the microstructure and macro behaviors of granular materials.However,the eect of particle ratio on granular assembli...The particle size ratio(PSR)is an important parameter for binary granular materials,which may aect the microstructure and macro behaviors of granular materials.However,the eect of particle ratio on granular assemblies with dierent arrangements is still unclear.To explore and further clarify the eect of PSR in dierent packing structures,three types of numerical samples with regular,layered,and random packing are designed.Numerical results show that PSR has signicant eects on binary granular samples with regular packing.The larger the PSR,the stronger the strength,the larger the modulus,and the smaller the angle between the shear band and the load direction.And a theoretical solution of the peak stress ratio vs.PSR is obtained for regular packing,and the results by DEM are in good agreement with the theoretical solution.Under layered packing,PSR has little eect on peak stress ratio due to similar microstructure obtained with the changing of PSR.The modulus slightly increased with the increase of PSR.Under random packing with small grain content of 50%,PSR has little eect in the range of 0.5–0.9,but in a larger range,larger PSR leads to greater modulus.展开更多
To clarify the effect of SnO2 particle size on the arc erosion behavior of AgSnO2 contact material, Ag?4%SnO2 (mass fraction) contact materials with different sizes of SnO2 particles were fabricated by powder metallur...To clarify the effect of SnO2 particle size on the arc erosion behavior of AgSnO2 contact material, Ag?4%SnO2 (mass fraction) contact materials with different sizes of SnO2 particles were fabricated by powder metallurgy. The microstructure of Ag?4%SnO2 contact materials was characterized, and the relative density, hardness and electrical conductivity were measured. The arc erosion of Ag?4%SnO2 contact materials was tested, the arc duration and mass loss before and after arc erosion were determined, the surface morphologies and compositions of Ag?4%SnO2 contact materials after arc erosion were characterized, and the arc erosion mechanism of AgSnO2 contact materials was discussed. The results show that fine SnO2 particle is beneficial for the improvement of the relative density and hardness, but decreases the electrical conductivity. With the decrease of SnO2 particle size, Ag?4%SnO2contact material presents shorter arc duration, less mass loss, larger erosion area and shallower arc erosion pits.展开更多
The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research...The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research focus in this technology.They are usually in the form of particles that fill the space between the cathode and anode,and the selection of materials used is important.Carbon-based materials are widely used because of their large specific surface area,good adsorption performance,high chemical stability and low cost.The principles of 3D electrode technology are introduced and recent research on its use for degrading organic pollutants using carbon-based particle electrodes is summarized.The classification of particle electrodes is introduced and the challenges for the future development of carbon-based particle electrodes in wastewater treatment are discussed.展开更多
This study proposed three types of Al—Hf reactive materials with particle size ratios(a),which were almost completely dense(porosity of<5.40%)owing to their preparation using hot-pressing technology.Microstructure...This study proposed three types of Al—Hf reactive materials with particle size ratios(a),which were almost completely dense(porosity of<5.40%)owing to their preparation using hot-pressing technology.Microstructure characteristics and phase composition were analyzed,and the influence of particle size ratios on dynamic mechanical behavior and damage mechanism were investigated.The prepared sample with a=0.1 exhibited continuous wrapping of the Hf phase by the Al phase.Hf—Hf contact(continuous Hf phase)within the sample gradually increased with increasing a,and a small amount of fine Hf appeared for the sample with a=1.The reactive materials exhibited clear strain-rate sensitivity,with flow stressσ0.05and failure strainεfincreasing approximately linearly with increasing strain rate.ε.It is found that the plastic deformation of the material increased with increasing strain rate.As a increased from 0.1 to 1,the flow stress gradually increased.Impact failure of the material was dominated by ductile fracture with a large Al phase plastic deformation band for lower a,while brittle fracture with crushed Hf particles occurred at higher a.Finally,a constitutive model based on BP neural network was proposed to describe the stress-strain relationships of the materials,with an average relative error of 2.22%.展开更多
This study tackles current environmental challenges by developing innovative and eco-friendly particle boards utilizing sorghum husk, combined with recycled expanded polystyrene (EPS). This dual eco-responsible approa...This study tackles current environmental challenges by developing innovative and eco-friendly particle boards utilizing sorghum husk, combined with recycled expanded polystyrene (EPS). This dual eco-responsible approach valorizes sorghum husk, often deemed agricultural waste, and repurposes EPS, a plastic waste, thus contributing to CO2 emission reduction and effective waste management. The manufacturing process involves dissolving recycled polystyrene within a solvent to create a binder, which is then mixed with sorghum husk and cold-pressed into composite boards. The study explores the impact of two particle sizes (fine and coarse) and two different concentrations of the recycled EPS binder. Results demonstrate significant variations in the boards’ mechanical properties, displaying a range of Modulus of Rupture (MOR) from 0.84 MPa to 3.85 MPa, and Modulus of Elasticity (MOE) spanning from 658.13 MPa to 1313.25 MPa, influenced by the binder concentration and particle size. These characteristics suggest that the boards can be effectively used in various construction applications, including interior decoration, false ceilings, and potentially for furniture and door manufacturing when combined with appropriate coatings. This study not only exemplifies the valorization of plastic and agricultural wastes but also offers a practical, localized solution to global climate change challenges by promoting sustainable construction materials.展开更多
In this paper we develop and study, as the second part of one more general development, the energy transmutation equation for the material singularity, previously obtained through the symmetrisation of a wave packet, ...In this paper we develop and study, as the second part of one more general development, the energy transmutation equation for the material singularity, previously obtained through the symmetrisation of a wave packet, that is, we develop the correlation between the terms of this equation, which accounts for the formation of matter from a previous vibrational state, and the different possible energy species. These energetic species are ascribed, in a simplified form, to the equation E¯ω=E¯k+E¯f, which allows us, through its associated phase factor, to gain an insight into the wave character of the kinetic energy and thus to attain the basis of the matter-wave, and all sorts of related phenomenologies, including that concerning quantum entanglement. The formation of the matter was previously identified as an energetic process, analogous to the kinetic one, in which finally the inertial mass is consolidated as a mass in a different phase, now, in addition, the mass of the material singularity is identified as a volumetric density of waves of toroidal geometry created in the process of singularisation or energy transfer between species, which makes it possible to establish the real relation or correspondence between the corpuscular and photonic energy equation (E=mc2=hν), i.e. to explain through m the intimate sense of the first equivalence, which explains what νis in the second one.展开更多
mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface mo...mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface morphologies of the sintered samples were examined by optical microscope (OM), and the fracture morphologies were observed by scanning electron microscopy (SEM). The physical and mechanical properties such as density, electrical resistivity, microhardness, and tensile strength were also tested. The results show that the silver powder particle size has evident effects on the sintered materials. Comparing with coarse silver powder (5 ktm), homogeneous and fme microstmcture was obtained by fine silver powder (_〈0.5-1am). At the same time, the electrical conductivity, microhardness, and tensile strength of the sin- tered samples with fine silver powder were higher than those of the samples with coarse silver powder. However, silver powder particle size has little influence on the relative densities, which of all samples (both by free and coarse silver powders) is more than 95%. The fracture characteristics are ductile.展开更多
Calcined kaolin/TiO2 composite particle material (CK/TCPM) was prepared with TiO2 coating on the surfaces of calcined kaolin particles by the mechano-chemical method. X-ray diffraction (XRD) and scanning electron ...Calcined kaolin/TiO2 composite particle material (CK/TCPM) was prepared with TiO2 coating on the surfaces of calcined kaolin particles by the mechano-chemical method. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to investigate the microstructures and morphologies, respectively. The mechanism of the mechano-chemical reaction between calcined kaolin and TiO2 was studied by infrared spectra (IR). The results show that TiO2 coats evenly on the surfaces of calcined kaolin particles by Si-O-Ti and Al-O-Ti bonds on their interfaces. The hiding power and whiteness of CK/TCPM are 17.12 g/m^2 and 95.7%, respectively, presenting its similarity to TiO2 in pigment properties.展开更多
In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by appl...In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by applying the theory of artificial neural net- works. Based on cases related to our test data of filling material, the predicted results of the model and measured values are com- pared and analyzed. The results show that the model is feasible and scientifically justified to predict the strength of filling material, which provides a new method for forecasting the strength of filling material for paste filling in coal mines.展开更多
Particle breakage is commonly observed in granular materials when subjected to external loads. It was found that particle breakage would occur during both sample preparation and loading stages. However,main attention ...Particle breakage is commonly observed in granular materials when subjected to external loads. It was found that particle breakage would occur during both sample preparation and loading stages. However,main attention was usually paid to the particle breakage behaviour of samples during loading stage. This study attempts to explore the breakage behaviour of granular materials during sample preparation.Triaxial samples of rockfill aggregates are prepared by layered compaction method to achieve different relative densities. Extents of particle breakage based on the gradings before and after test are presented and analysed. It is found that particle breakage during sample preparation cannot be ignored. Gradings after test are observed to shift away from the initial grading. Aggregates with larger size that appear to break are more than the smaller-sized ones. Irrespective of the initial gradings, an increase in the extent of particle breakage with the increasing relative density is observed during sample preparation.展开更多
Based on the fundamental equations of the mechanics of solid continuum, the paper employs an analytical model for determination of elastic thermal stresses in isotropic continuum represented by periodically distribute...Based on the fundamental equations of the mechanics of solid continuum, the paper employs an analytical model for determination of elastic thermal stresses in isotropic continuum represented by periodically distributed spherical particles with different distributions in an infinite matrix, imaginarily divided into identical cells with dimensions equal to inter-particle distances, containing a central spherical particle with or without a spherical envelope on the particle surface. Consequently, the multi-particle-(envelope)- matrix system, as a model system regarding the analytical modelling, is applicable to four types of multi-phase materials. As functions of the particle volume fraction v, the inter-particle distances dl, d2, d3 along three mutually per- pendicular axes, and the particle and envelope radii, R1 and R2, respectively, the thermal stresses within the cell, are originated during a cooling process as a consequence of the difference in thermal expansion coefficients of phases rep- resented by the matrix, envelope and particle. Analytical-(experimental)-computational lifetime prediction methods for multi-phase materials are proposed, which can be used in engineering with appropriate values of parameters of real multi-phase materials.展开更多
Solid particle erosion is a common phenomenon in engineering fields,such as manufacturing,energy,military and aviation.However,with the rising industrial requirements,the development of anti-solid particle erosion mat...Solid particle erosion is a common phenomenon in engineering fields,such as manufacturing,energy,military and aviation.However,with the rising industrial requirements,the development of anti-solid particle erosion materials remains a great challenge.After billions of years of evolution,several natural materials exhibit unique and exceptional solid particle erosion resistance.These materials achieved the same excellent solid particle erosion resistance performance through diversified strategies.This resistance arises from their micro/nanoscale surface structure and interface material properties,which provide inspiration for novel multiple solutions to solid particle erosion.Here,this review first summarizes the recent significant process in the research of natural anti-solid particle erosion materials and their general design principles.According to these principles,several erosion-resistant structures are available.Combined with advanced micro/nanomanufacturing technologies,several artificial anti-solid particle erosion materials have been obtained.Then,the potential applications of anti-solid particle erosion materials are prospected.Finally,the remaining challenges and promising breakthroughs regarding anti-solid particle erosion materials are briefly discussed.展开更多
Discrete element method(DEM)has been intensively used to study the constitutive behaviour of granular materials.However,to what extent a real granular material can be reproduced by virtual DEM simulations remains uncl...Discrete element method(DEM)has been intensively used to study the constitutive behaviour of granular materials.However,to what extent a real granular material can be reproduced by virtual DEM simulations remains unclear.This study attempts to answer this question by comparing DEM simulations with typical features of experimental granular materials.Three groups of models with spherical and clumped particles are investigated from four perspectives:(i)deviatoric stress and volumetric behaviour;(ii)critical state behaviour;(iii)stress-dilatancy relationship;and(iv)the evolution of principal stress ratio against axial strain.The results demonstrate that DEM with spherical or clumped particles is capable of qualitatively describing macroscopic deviatoric stress responses,volumetric behaviour,and critical state behaviour observed in experiments for granular materials.On the other hand,some qualitative deviations between experiments and the investigated DEM simulations are also observed,in terms of the stress-dilatancy behaviour and principal stress ratio against axial strain,which are proven to be critical for constitutive modelling.The results demonstrate that DEM with spherical or clumped particles may not necessarily fully capture experimental features of granular materials even from a qualitative perspective.It is thus encouraged to thoroughly validate DEM with experiments when developing constitutive models based on DEM observations.展开更多
This article studies the influences of particle morphology on the behaviors of granular materials at both macroscopic and microscopic levels based on the discrete element method(DEM).A set of numerical tests under dra...This article studies the influences of particle morphology on the behaviors of granular materials at both macroscopic and microscopic levels based on the discrete element method(DEM).A set of numerical tests under drained triaxial compression was performed by controlling two morphological descriptors,i.e.ratio of the smallest to the largest pebble diameter,x,and the maximum pebbleepebble intersection angle,b.These descriptors are vital in generating particle geometry and surface textures.It was found that the stress responses of all assemblies exhibited similar behavior and showed post-peak strainsoftening.The normalized stress ratio and volumetric strains flatten off and tended to reach a steady value after an axial strain of 40%.While the friction angles at peak state varied with different morphological descriptors,the friction angles at critical state showed no significant variation.Moreover,evolution of the average coordination numbers showed a dramatic exponential decay until an axial strain of about 15%after which it stabilized and was unaffected by further increase of axial strain.In addition,stress ratio q/p and strong fabric parameter fs d=fs m were found to follow an approximately linear relationship for each assembly.These findings emphasized the significance of the influences of particle morphology on the macroscopic and microscopic responses of granular materials.展开更多
In order to select a suitable material for the rolling mill guide application, the dry sliding friction and wear resistance of a tungsten carbide combining cobalt (WC-Co) particle reinforced chromium cast iron composi...In order to select a suitable material for the rolling mill guide application, the dry sliding friction and wear resistance of a tungsten carbide combining cobalt (WC-Co) particle reinforced chromium cast iron composite material were studied. In particular, the wear resistance was discussed in detail. The results showed that the composite material demonstrates 25 times the wear resistance of high Cr cast iron, and 9 times the wear resistance of heat resistant steel. However, the average friction factor in the stable friction stage showed a relationship of μComposites/45#steel>μHigh chromium cast iron/45#steel>μHeat resistant steel/45 # steel. The wear resistance mechanism of the composite material was associated with the reinforcing particles, which protruded from the worn surface to bear the friction load when the matrix material surface was worn, thereby reducing the abrasive and adhesive wear. In addition, the matrix material possessed suitable hardness and toughness, providing a support to the reinforcements.展开更多
To determine the time-independent constitutive modeling for porous and multi- phase nanocrystalline materials and understand the effects of grain size and porosity on their mechanical behavior, each phase was treated ...To determine the time-independent constitutive modeling for porous and multi- phase nanocrystalline materials and understand the effects of grain size and porosity on their mechanical behavior, each phase was treated as a mixture of grain interior and grain bound- ary, and pores were taken as a single phase, then Budiansky's self-consistent method was used to calculate the Young's modulus of porous, possible multi-phase, nanocrystalline materials, the prediction being in good agreement with the results in the literature. Further, the established method is extended to simulate the constitutive relations of porous and possible multi-phase nanocrystalline materials with small plastic deformation in conjunction with the secant-moduli approach and iso-strain assumption. Comparisons between the experimental grain size and porosity dependent mechanical data and the corresponding predictions using the established model show that it appears to be capable of describing the time-independent mechanical behaviors for porous and multi-phase nanocrystalline materials in a small plastic strain range. Further discussion on the modification factor, the advantages and limitations of the model developed were present.展开更多
In rockfill dam engineering,particle breakage of rockfill materials is one of the major factors resulting in dam settlement.In this study,one-dimensional compression tests on a series of coarse granular materials with...In rockfill dam engineering,particle breakage of rockfill materials is one of the major factors resulting in dam settlement.In this study,one-dimensional compression tests on a series of coarse granular materials with artificially-graded particle size distributions(PSDs)were carried out.The tests focused on understanding the role of initial PSDs in the dense packing density,compressibility and crushability of coarse granular materials.The effects of fractal dimension(D)and size polydispersity(θ)of PSDs were quantitatively analyzed.Two different loading stages were identified from the logarithms of the stress-strain relationships,with the turning point marked as the yield stress.A similar effect of initial PSDs was observed on the packing density and low-pressure modulus of coarse granular materials.The packing density and low-pressure modulus increased monotonically withθ,and their peak values were attained at a D value of approximately 2.2.However,there was no unique correspondence between the dense packing density and low-pressure modulus.The particle breakage was influenced differently by the initial PSDs,and it decreased with the values of D andθ.The emergence of the unique ultimate state was also identified from both the compression curves and PSDs of the samples after the tests.The potential implications of the test results in the design of both low and high rockfill dams were also demonstrated.展开更多
Strength and deformation behaviors of rockfill materials,key factors for determining the stability of dams,pertain strongly to the grain crushing characteristics.In this study,single-particle crushing tests were carri...Strength and deformation behaviors of rockfill materials,key factors for determining the stability of dams,pertain strongly to the grain crushing characteristics.In this study,single-particle crushing tests were carried out on rockfill materials with nominal particle diameters of 2.5 mm,5 mm and 10 mm to investigate the particle size effect on the single-particle strength and the relationship between the characteristic stress and probability of non-failure.Test data were found to be described by the Weibull distribution with the Weibull modulus of 3.24.Assemblies with uniform nominal grains were then subjected to one-dimensional compression tests at eight levels of vertical stress with a maximum of 100 MPa.The yield stress in one-dimensional compression tests increased with decreasing the particle size,which could be estimated from the single-particle crushing tests.The void ratio-vertical stress curve could be predicted by an exponential function.The particle size distribution curve increased obviously with applied stresses less than 16 MPa and gradually reached the ultimate fractal grading.The relative breakage index became constant with stress up to 64 MPa and was obtained from the ultimate grading at the fractal dimension(a?2:7).A hyperbolical function was also found useful for describing the relationship between the relative breakage index and input work during one-dimensional compression tests.展开更多
Assisted by graphene oxide(GO),nano-sized LiMn0.6Fe0.4PO4 with excellent electrochemical performance was prepared by a facile hydrothermal method as cathode material for lithium ion battery.SEM and TEM images indica...Assisted by graphene oxide(GO),nano-sized LiMn0.6Fe0.4PO4 with excellent electrochemical performance was prepared by a facile hydrothermal method as cathode material for lithium ion battery.SEM and TEM images indicate that the particle size of LiMn0.6Fe0.4PO4(S2)was about 80 nm in diameter.The discharge capacity of LiMn0.6Fe0.4PO4 nanoparticles was 140.3 mAh-g^1 in the first cycle.It showed that graphene oxide was able to restrict the growth of LiMn0.6Fe0.4PO4 and it in situ reduction of GO could improve the electrical conductivity of LiMn0.6Fe0.4PO4 material.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42372310).
文摘Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough investigation into the behavior of crack propagation contributes to a better understanding and control of the properties of brittle materials,thereby enhancing the reliability and safety of both materials and structures.As an implicit discrete elementmethod,the Discontinuous Deformation Analysis(DDA)has gained significant attention for its developments and applications in recent years.Among these developments,the particle DDA equipped with the bonded particle model is a powerful tool for predicting the whole process of material from continuity to failure.The primary objective of this research is to develop and utilize the particle DDAtomodel and understand the complex behavior of cracks in brittle materials under both static and dynamic loadings.The particle DDA is applied to several classical crack propagation problems,including the crack branching,compact tensile test,Kalthoff impact experiment,and tensile test of a rectangular plate with a hole.The evolutions of cracks under various stress or geometrical conditions are carefully investigated.The simulated results are compared with the experiments and other numerical results.It is found that the crack propagation patterns,including crack branching and the formation of secondary cracks,can be well reproduced.The results show that the particle DDA is a qualified method for crack propagation problems,providing valuable insights into the fracture mechanism of brittle materials.
基金supported by the National Natural Science Foundation of China (Nos.12172263,11772237).
文摘The particle size ratio(PSR)is an important parameter for binary granular materials,which may aect the microstructure and macro behaviors of granular materials.However,the eect of particle ratio on granular assemblies with dierent arrangements is still unclear.To explore and further clarify the eect of PSR in dierent packing structures,three types of numerical samples with regular,layered,and random packing are designed.Numerical results show that PSR has signicant eects on binary granular samples with regular packing.The larger the PSR,the stronger the strength,the larger the modulus,and the smaller the angle between the shear band and the load direction.And a theoretical solution of the peak stress ratio vs.PSR is obtained for regular packing,and the results by DEM are in good agreement with the theoretical solution.Under layered packing,PSR has little eect on peak stress ratio due to similar microstructure obtained with the changing of PSR.The modulus slightly increased with the increase of PSR.Under random packing with small grain content of 50%,PSR has little eect in the range of 0.5–0.9,but in a larger range,larger PSR leads to greater modulus.
基金Project(51274163)supported by the National Natural Science Foundation of ChinaProject(13JS076)supported by the Key Laboratory Research Program of Shaanxi Province,China+1 种基金Project(2012KCT-25)supported by the Pivot Innovation Team of Shaanxi Electrical Materials and Infiltration Technique,ChinaProject(2011HBSZS009)supported by the Special Foundation of Key Disciplines,China
文摘To clarify the effect of SnO2 particle size on the arc erosion behavior of AgSnO2 contact material, Ag?4%SnO2 (mass fraction) contact materials with different sizes of SnO2 particles were fabricated by powder metallurgy. The microstructure of Ag?4%SnO2 contact materials was characterized, and the relative density, hardness and electrical conductivity were measured. The arc erosion of Ag?4%SnO2 contact materials was tested, the arc duration and mass loss before and after arc erosion were determined, the surface morphologies and compositions of Ag?4%SnO2 contact materials after arc erosion were characterized, and the arc erosion mechanism of AgSnO2 contact materials was discussed. The results show that fine SnO2 particle is beneficial for the improvement of the relative density and hardness, but decreases the electrical conductivity. With the decrease of SnO2 particle size, Ag?4%SnO2contact material presents shorter arc duration, less mass loss, larger erosion area and shallower arc erosion pits.
文摘The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research focus in this technology.They are usually in the form of particles that fill the space between the cathode and anode,and the selection of materials used is important.Carbon-based materials are widely used because of their large specific surface area,good adsorption performance,high chemical stability and low cost.The principles of 3D electrode technology are introduced and recent research on its use for degrading organic pollutants using carbon-based particle electrodes is summarized.The classification of particle electrodes is introduced and the challenges for the future development of carbon-based particle electrodes in wastewater treatment are discussed.
基金funded by the National Natural Science Foundation of China(Grant No.12302437)China Postdoctoral Science Foundation(Grant No.2021M701710)。
文摘This study proposed three types of Al—Hf reactive materials with particle size ratios(a),which were almost completely dense(porosity of<5.40%)owing to their preparation using hot-pressing technology.Microstructure characteristics and phase composition were analyzed,and the influence of particle size ratios on dynamic mechanical behavior and damage mechanism were investigated.The prepared sample with a=0.1 exhibited continuous wrapping of the Hf phase by the Al phase.Hf—Hf contact(continuous Hf phase)within the sample gradually increased with increasing a,and a small amount of fine Hf appeared for the sample with a=1.The reactive materials exhibited clear strain-rate sensitivity,with flow stressσ0.05and failure strainεfincreasing approximately linearly with increasing strain rate.ε.It is found that the plastic deformation of the material increased with increasing strain rate.As a increased from 0.1 to 1,the flow stress gradually increased.Impact failure of the material was dominated by ductile fracture with a large Al phase plastic deformation band for lower a,while brittle fracture with crushed Hf particles occurred at higher a.Finally,a constitutive model based on BP neural network was proposed to describe the stress-strain relationships of the materials,with an average relative error of 2.22%.
文摘This study tackles current environmental challenges by developing innovative and eco-friendly particle boards utilizing sorghum husk, combined with recycled expanded polystyrene (EPS). This dual eco-responsible approach valorizes sorghum husk, often deemed agricultural waste, and repurposes EPS, a plastic waste, thus contributing to CO2 emission reduction and effective waste management. The manufacturing process involves dissolving recycled polystyrene within a solvent to create a binder, which is then mixed with sorghum husk and cold-pressed into composite boards. The study explores the impact of two particle sizes (fine and coarse) and two different concentrations of the recycled EPS binder. Results demonstrate significant variations in the boards’ mechanical properties, displaying a range of Modulus of Rupture (MOR) from 0.84 MPa to 3.85 MPa, and Modulus of Elasticity (MOE) spanning from 658.13 MPa to 1313.25 MPa, influenced by the binder concentration and particle size. These characteristics suggest that the boards can be effectively used in various construction applications, including interior decoration, false ceilings, and potentially for furniture and door manufacturing when combined with appropriate coatings. This study not only exemplifies the valorization of plastic and agricultural wastes but also offers a practical, localized solution to global climate change challenges by promoting sustainable construction materials.
文摘In this paper we develop and study, as the second part of one more general development, the energy transmutation equation for the material singularity, previously obtained through the symmetrisation of a wave packet, that is, we develop the correlation between the terms of this equation, which accounts for the formation of matter from a previous vibrational state, and the different possible energy species. These energetic species are ascribed, in a simplified form, to the equation E¯ω=E¯k+E¯f, which allows us, through its associated phase factor, to gain an insight into the wave character of the kinetic energy and thus to attain the basis of the matter-wave, and all sorts of related phenomenologies, including that concerning quantum entanglement. The formation of the matter was previously identified as an energetic process, analogous to the kinetic one, in which finally the inertial mass is consolidated as a mass in a different phase, now, in addition, the mass of the material singularity is identified as a volumetric density of waves of toroidal geometry created in the process of singularisation or energy transfer between species, which makes it possible to establish the real relation or correspondence between the corpuscular and photonic energy equation (E=mc2=hν), i.e. to explain through m the intimate sense of the first equivalence, which explains what νis in the second one.
文摘mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface morphologies of the sintered samples were examined by optical microscope (OM), and the fracture morphologies were observed by scanning electron microscopy (SEM). The physical and mechanical properties such as density, electrical resistivity, microhardness, and tensile strength were also tested. The results show that the silver powder particle size has evident effects on the sintered materials. Comparing with coarse silver powder (5 ktm), homogeneous and fme microstmcture was obtained by fine silver powder (_〈0.5-1am). At the same time, the electrical conductivity, microhardness, and tensile strength of the sin- tered samples with fine silver powder were higher than those of the samples with coarse silver powder. However, silver powder particle size has little influence on the relative densities, which of all samples (both by free and coarse silver powders) is more than 95%. The fracture characteristics are ductile.
基金Funded by the National Key Technology R&D Program of China(No.2008BAE60B06)Beijing Municipal Science&Technology Commission (No.Z080003032208015)
文摘Calcined kaolin/TiO2 composite particle material (CK/TCPM) was prepared with TiO2 coating on the surfaces of calcined kaolin particles by the mechano-chemical method. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to investigate the microstructures and morphologies, respectively. The mechanism of the mechano-chemical reaction between calcined kaolin and TiO2 was studied by infrared spectra (IR). The results show that TiO2 coats evenly on the surfaces of calcined kaolin particles by Si-O-Ti and Al-O-Ti bonds on their interfaces. The hiding power and whiteness of CK/TCPM are 17.12 g/m^2 and 95.7%, respectively, presenting its similarity to TiO2 in pigment properties.
基金supported by the National Natural Science Foundation of China (No. 50490270, 50774077, 50574089, 50490273)the New Century Excellent Personnel Training Program of the Ministry of Education of China (No. NCET-06-0475)+1 种基金the Special Funds of Universities outstanding doctoral dissertation (No. 200760) the Basic Research Program of China (No. 2006CB202204-3)
文摘In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by applying the theory of artificial neural net- works. Based on cases related to our test data of filling material, the predicted results of the model and measured values are com- pared and analyzed. The results show that the model is feasible and scientifically justified to predict the strength of filling material, which provides a new method for forecasting the strength of filling material for paste filling in coal mines.
基金supports provided by the Fundamental Research Funds for the Central Universities (Grant No. 2017B05214)
文摘Particle breakage is commonly observed in granular materials when subjected to external loads. It was found that particle breakage would occur during both sample preparation and loading stages. However,main attention was usually paid to the particle breakage behaviour of samples during loading stage. This study attempts to explore the breakage behaviour of granular materials during sample preparation.Triaxial samples of rockfill aggregates are prepared by layered compaction method to achieve different relative densities. Extents of particle breakage based on the gradings before and after test are presented and analysed. It is found that particle breakage during sample preparation cannot be ignored. Gradings after test are observed to shift away from the initial grading. Aggregates with larger size that appear to break are more than the smaller-sized ones. Irrespective of the initial gradings, an increase in the extent of particle breakage with the increasing relative density is observed during sample preparation.
基金the Slovak Research and Development Agency under the contract No.COST-0022-06,APVV-51-061505the 6th FP EU NESPA+5 种基金the Slovak Grant Agency VEGA (2/7197/27,2/7194/27,2/7195/27)NANOSMART,Centre of Excellence (1/1/2007-31/12/2010)Slovak Academy of Sciences,by KMM-NoE 502243-2 (10/2004-9/2008)NENAMAT INCO-CT-2003-510363COST Action 536 and COST Action 538János Bolyai Research Grant NSF-MTA-OTKA grant-MTA:96/OTKA:049953,OTKA 63609
文摘Based on the fundamental equations of the mechanics of solid continuum, the paper employs an analytical model for determination of elastic thermal stresses in isotropic continuum represented by periodically distributed spherical particles with different distributions in an infinite matrix, imaginarily divided into identical cells with dimensions equal to inter-particle distances, containing a central spherical particle with or without a spherical envelope on the particle surface. Consequently, the multi-particle-(envelope)- matrix system, as a model system regarding the analytical modelling, is applicable to four types of multi-phase materials. As functions of the particle volume fraction v, the inter-particle distances dl, d2, d3 along three mutually per- pendicular axes, and the particle and envelope radii, R1 and R2, respectively, the thermal stresses within the cell, are originated during a cooling process as a consequence of the difference in thermal expansion coefficients of phases rep- resented by the matrix, envelope and particle. Analytical-(experimental)-computational lifetime prediction methods for multi-phase materials are proposed, which can be used in engineering with appropriate values of parameters of real multi-phase materials.
基金Supported by National Key Research and Development Program of China(Grant No.2018YFA0703300)National Natural Science Foundation of China(Grant Nos.51835006,51875244,51675220,U19A20103)+9 种基金JLU Science and Technology Innovative Research Team(Grant No.2017TD-04)China Postdoctoral Science Foundation Funded Project(Grant No.2018T110246)Science and Technology Research Project of Education Department of Jilin Province(Grant Nos.20190141,JJKH20190135KJ)Joint Construction Project of Jilin University and Jilin Province(Grant No.SF2017-3-4)Scientific and Technological Development Program of Changchun City(Double Ten Project-19SS001)Science and Technology Development Program of Jilin Province(Technology R&D Project-20190302021GX)Graduate Innovation Fund of Jilin University(Grant No.2016020)Postdoctoral Innovative Talent Support Program(Grant No.BX20190139)Joint Fund of the Ministry of Education for Equipment Research(Grant No.6141A02022131)Fundamental Research Funds for the Central Universities.
文摘Solid particle erosion is a common phenomenon in engineering fields,such as manufacturing,energy,military and aviation.However,with the rising industrial requirements,the development of anti-solid particle erosion materials remains a great challenge.After billions of years of evolution,several natural materials exhibit unique and exceptional solid particle erosion resistance.These materials achieved the same excellent solid particle erosion resistance performance through diversified strategies.This resistance arises from their micro/nanoscale surface structure and interface material properties,which provide inspiration for novel multiple solutions to solid particle erosion.Here,this review first summarizes the recent significant process in the research of natural anti-solid particle erosion materials and their general design principles.According to these principles,several erosion-resistant structures are available.Combined with advanced micro/nanomanufacturing technologies,several artificial anti-solid particle erosion materials have been obtained.Then,the potential applications of anti-solid particle erosion materials are prospected.Finally,the remaining challenges and promising breakthroughs regarding anti-solid particle erosion materials are briefly discussed.
文摘Discrete element method(DEM)has been intensively used to study the constitutive behaviour of granular materials.However,to what extent a real granular material can be reproduced by virtual DEM simulations remains unclear.This study attempts to answer this question by comparing DEM simulations with typical features of experimental granular materials.Three groups of models with spherical and clumped particles are investigated from four perspectives:(i)deviatoric stress and volumetric behaviour;(ii)critical state behaviour;(iii)stress-dilatancy relationship;and(iv)the evolution of principal stress ratio against axial strain.The results demonstrate that DEM with spherical or clumped particles is capable of qualitatively describing macroscopic deviatoric stress responses,volumetric behaviour,and critical state behaviour observed in experiments for granular materials.On the other hand,some qualitative deviations between experiments and the investigated DEM simulations are also observed,in terms of the stress-dilatancy behaviour and principal stress ratio against axial strain,which are proven to be critical for constitutive modelling.The results demonstrate that DEM with spherical or clumped particles may not necessarily fully capture experimental features of granular materials even from a qualitative perspective.It is thus encouraged to thoroughly validate DEM with experiments when developing constitutive models based on DEM observations.
基金The authors would like to express their gratitude for the financial support from Xi’an Jiaotong-Liverpool University(XJTLU)(Grant Nos.RDF 15-01-38 and RDF 18-01-23)Also,the support by the Key Program Special Fund at XJTLU(Grant No.KSF-E-19)Natural Science Foundation of Jiangsu Province(Grant No.BK20160393)is greatly appreciated.
文摘This article studies the influences of particle morphology on the behaviors of granular materials at both macroscopic and microscopic levels based on the discrete element method(DEM).A set of numerical tests under drained triaxial compression was performed by controlling two morphological descriptors,i.e.ratio of the smallest to the largest pebble diameter,x,and the maximum pebbleepebble intersection angle,b.These descriptors are vital in generating particle geometry and surface textures.It was found that the stress responses of all assemblies exhibited similar behavior and showed post-peak strainsoftening.The normalized stress ratio and volumetric strains flatten off and tended to reach a steady value after an axial strain of 40%.While the friction angles at peak state varied with different morphological descriptors,the friction angles at critical state showed no significant variation.Moreover,evolution of the average coordination numbers showed a dramatic exponential decay until an axial strain of about 15%after which it stabilized and was unaffected by further increase of axial strain.In addition,stress ratio q/p and strong fabric parameter fs d=fs m were found to follow an approximately linear relationship for each assembly.These findings emphasized the significance of the influences of particle morphology on the macroscopic and microscopic responses of granular materials.
基金supported by the Special Important Technology of Guangdong Province,China(2009A080304010,2011A080802003)the Core Technology Research and Strategic Emerging Industries of Guangdong Province,China(2012A090100018)
文摘In order to select a suitable material for the rolling mill guide application, the dry sliding friction and wear resistance of a tungsten carbide combining cobalt (WC-Co) particle reinforced chromium cast iron composite material were studied. In particular, the wear resistance was discussed in detail. The results showed that the composite material demonstrates 25 times the wear resistance of high Cr cast iron, and 9 times the wear resistance of heat resistant steel. However, the average friction factor in the stable friction stage showed a relationship of μComposites/45#steel>μHigh chromium cast iron/45#steel>μHeat resistant steel/45 # steel. The wear resistance mechanism of the composite material was associated with the reinforcing particles, which protruded from the worn surface to bear the friction load when the matrix material surface was worn, thereby reducing the abrasive and adhesive wear. In addition, the matrix material possessed suitable hardness and toughness, providing a support to the reinforcements.
基金Project supported by the National Natural Science Foundation of China (No. 10502025)Fok Ying Tong Education Foundation (No.101005)University Foundation of Jiangsu Province (No.05KJB1300421)
文摘To determine the time-independent constitutive modeling for porous and multi- phase nanocrystalline materials and understand the effects of grain size and porosity on their mechanical behavior, each phase was treated as a mixture of grain interior and grain bound- ary, and pores were taken as a single phase, then Budiansky's self-consistent method was used to calculate the Young's modulus of porous, possible multi-phase, nanocrystalline materials, the prediction being in good agreement with the results in the literature. Further, the established method is extended to simulate the constitutive relations of porous and possible multi-phase nanocrystalline materials with small plastic deformation in conjunction with the secant-moduli approach and iso-strain assumption. Comparisons between the experimental grain size and porosity dependent mechanical data and the corresponding predictions using the established model show that it appears to be capable of describing the time-independent mechanical behaviors for porous and multi-phase nanocrystalline materials in a small plastic strain range. Further discussion on the modification factor, the advantages and limitations of the model developed were present.
基金supported by the National Natural Science Foundation of China(Grants No.52009036,U1765205,and 51979091)the Key Project of Water Conservancy Science and Technology in Jiangxi Province(Grant No.201921ZDKT13).
文摘In rockfill dam engineering,particle breakage of rockfill materials is one of the major factors resulting in dam settlement.In this study,one-dimensional compression tests on a series of coarse granular materials with artificially-graded particle size distributions(PSDs)were carried out.The tests focused on understanding the role of initial PSDs in the dense packing density,compressibility and crushability of coarse granular materials.The effects of fractal dimension(D)and size polydispersity(θ)of PSDs were quantitatively analyzed.Two different loading stages were identified from the logarithms of the stress-strain relationships,with the turning point marked as the yield stress.A similar effect of initial PSDs was observed on the packing density and low-pressure modulus of coarse granular materials.The packing density and low-pressure modulus increased monotonically withθ,and their peak values were attained at a D value of approximately 2.2.However,there was no unique correspondence between the dense packing density and low-pressure modulus.The particle breakage was influenced differently by the initial PSDs,and it decreased with the values of D andθ.The emergence of the unique ultimate state was also identified from both the compression curves and PSDs of the samples after the tests.The potential implications of the test results in the design of both low and high rockfill dams were also demonstrated.
基金financial support from the 111 Project (Grant No. B13024)the National Science Foundation of China (Grant Nos. 51509024, 51678094 and 51578096)+2 种基金the Fundamental Research Funds for the Central Universities (Grant No. 106112017CDJQJ208848)the Special Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2017T100681)the State Key Laboratory for Geo Mechanics and Deep Underground Engineering, China University of Mining and Technology (Grant No. SKLGDUEK1810)
文摘Strength and deformation behaviors of rockfill materials,key factors for determining the stability of dams,pertain strongly to the grain crushing characteristics.In this study,single-particle crushing tests were carried out on rockfill materials with nominal particle diameters of 2.5 mm,5 mm and 10 mm to investigate the particle size effect on the single-particle strength and the relationship between the characteristic stress and probability of non-failure.Test data were found to be described by the Weibull distribution with the Weibull modulus of 3.24.Assemblies with uniform nominal grains were then subjected to one-dimensional compression tests at eight levels of vertical stress with a maximum of 100 MPa.The yield stress in one-dimensional compression tests increased with decreasing the particle size,which could be estimated from the single-particle crushing tests.The void ratio-vertical stress curve could be predicted by an exponential function.The particle size distribution curve increased obviously with applied stresses less than 16 MPa and gradually reached the ultimate fractal grading.The relative breakage index became constant with stress up to 64 MPa and was obtained from the ultimate grading at the fractal dimension(a?2:7).A hyperbolical function was also found useful for describing the relationship between the relative breakage index and input work during one-dimensional compression tests.
基金supported by 973(2011CB935900,2010CB631303)NSFC(21231005,51071087)+4 种基金111 Project(B12015)MOE(IRT13R30)the Research Fund for the Doctoral Program of Higher Education of China(20120031110001)Tianjin Sci&Tech Project(10SYSYJC27600)the Nature Science Foundation of Tianjin(11JCYBJC07700)
文摘Assisted by graphene oxide(GO),nano-sized LiMn0.6Fe0.4PO4 with excellent electrochemical performance was prepared by a facile hydrothermal method as cathode material for lithium ion battery.SEM and TEM images indicate that the particle size of LiMn0.6Fe0.4PO4(S2)was about 80 nm in diameter.The discharge capacity of LiMn0.6Fe0.4PO4 nanoparticles was 140.3 mAh-g^1 in the first cycle.It showed that graphene oxide was able to restrict the growth of LiMn0.6Fe0.4PO4 and it in situ reduction of GO could improve the electrical conductivity of LiMn0.6Fe0.4PO4 material.