The paper presents a kind of transmission system which employs M-ary Position Phase Shift Keying(MPPSK) to send data and Phase Locked Loop(PLL) based techniques for data retrieve.With a single PLL, MPPSK demodulation ...The paper presents a kind of transmission system which employs M-ary Position Phase Shift Keying(MPPSK) to send data and Phase Locked Loop(PLL) based techniques for data retrieve.With a single PLL, MPPSK demodulation is achieved, as well as carrier recovery and symbol synchronization.Firstly, MPPSK modulation method is briefly introduced.2PPSK's PSD expression is given with its optimization result.Orthogonal Phase Detector(PD) and static threshold are used for the purpose of wider phase range and simplicity in demodulation.The data rate is alterable, which is 4.65 kbps for 2PPSK and 9.3 kbps for 4PPSK in the paper.Then some indicative comparisons in Signal to Noise Ratio Symbol Error Rate(SNR-SER) are made among 2PPSK, 3PPSK and 4PPSK, of which 4PPSK has proved to be optimal in ten slots each symbol conditions.And finally, it is demonstrated by system simulations that lower than 10-4 Symbol Error Rate(SER) performance can be obtained at 13 dB symbol SNR.展开更多
Some applications are constrained only to implement low cost receivers. In this case, designers are required to use less complex and non-expensive modulation techniques. Differential Quadrature Phase Shift Keying (DQP...Some applications are constrained only to implement low cost receivers. In this case, designers are required to use less complex and non-expensive modulation techniques. Differential Quadrature Phase Shift Keying (DQPSK) and Gaussian Frequency Shift Keying (GFSK) can be non-coherently demodulated with simple algorithms. However, these types of demodulation are not robust and suffer from poor performance. This paper proposes a new method to enhance the performance of DQPSK and GFSK using Interactive Kalman Filtering (IKF) technique, in which a one Unscented Kalman Filter (UKF) and two Kalman Filters (KF) are coupled to optimize the demodulated signals. This method consists of simple but very effective algorithms without adding complexity to the demodulators comparing to other very complex methods. UKF is used in this method due to its superiority in approximating and estimating nonlinear systems and its ability to handle non-Gaussian noise environments. The proposed method has been validated by creating a MATLAB/SIMULINK Bluetooth system model, in which the IKF is integrated into the receiver, which implement both DQPSK and GFSK, and run simulation in Gaussian and Non-Gaussian noise environments. Results have shown the effectiveness of this method in optimizing the received signals, and that the UKF outperforms the Extended Kalman Filter (EKF).展开更多
A novel iterative technique, the phase descent search detection was proposed. This technique constrained the solution (PDS) algorithm, for M-ary phase shift keying (M-PSK) symbols to have a unit magnitude and it w...A novel iterative technique, the phase descent search detection was proposed. This technique constrained the solution (PDS) algorithm, for M-ary phase shift keying (M-PSK) symbols to have a unit magnitude and it was based on coordinate descent iterations where coordinates were the unknown symbol phases. The PDS algorithm, together with a descent local search (also implemented as a version of the PDS algorithm), was used multiple times with different initializations in a proposed multiple phase detector; the solution with the minimum cost was then chosen as the final solution. The simulation results show that for highly loaded multiuser scenarios, the proposed technique has a detection performance that is close to the single-user bound. The results also show that the multiple phase detector allows detection in highly overloaded scenarios and it exhibits near-far resistance. In particular, the detector has a performance that is significantly better, and complexity that is significantly lower, than that of the detector based on semi-definite relaxation.展开更多
Space shift keying (SSK) is a spectrally efficient and low-complexity technique that only uses antenna index to convey information.Combining SSK with cooperative communication,the transmission reliability of SSK syste...Space shift keying (SSK) is a spectrally efficient and low-complexity technique that only uses antenna index to convey information.Combining SSK with cooperative communication,the transmission reliability of SSK system can be improved effectively.In this paper,considering imperfect channel information,the performance of cooperative SSK system with amplify-and-forward (AF) relaying protocol is investigated,and the effect of estimation error on the performance is analyzed.According to the performance analysis,the probability density function and moment generating function of effective signal-to-noise ratio are derived,respectively.Using these results,the closed-form expression of average bit error rate (BER) can be achieved.Meanwhile,the asymptotically approximated BER and the corresponding diversity order analysis are presented for the performance evaluation.By computer simulations,the validness of the presented theoretical analysis is verified,and the theoretical BERs with different estimation errors are shown to be close to those of the corresponding simulations.展开更多
Generalized Space Shift Keying (GSSK) modulation is a low-complexity spatial nmltiplexing technique for nmltiple-antenna wireless systems. However, effective transmit antenna combinations have to be preselected, and...Generalized Space Shift Keying (GSSK) modulation is a low-complexity spatial nmltiplexing technique for nmltiple-antenna wireless systems. However, effective transmit antenna combinations have to be preselected, and there exist redundant antenna combinations which are not used in GSSK. In this paper, a novel adaptive mapping scheme for GSSK modulation, named as Adaptive Mapping Generalized Space Shift Keying (AMGSSK), is presented. Compared with GSSK, the antenna combinations are updated adaptively according to the Channel State Inforrmtion (CSI) in the proposed AMGSSK system, and the perfonrance of average Symbol Error Rate (SER) is reduced considerably. In the proposed scheme, two algorithrrs for selecting the optimum antenna combinations are described. The SER perfonmnce of AMGSSK is analyzed theoretically, and validated by Monte Carlo sinmlation. It is shown that the proposed AMGSSK scheme has good perfonmnce in SER and spectral efficiency.展开更多
Fifth generation(5G)wireless networks must meet the needs of emerging technologies like the Internet of Things(IoT),Vehicle-to-everything(V2X),Video on Demand(VoD)services,Device to Device communication(D2D)and many o...Fifth generation(5G)wireless networks must meet the needs of emerging technologies like the Internet of Things(IoT),Vehicle-to-everything(V2X),Video on Demand(VoD)services,Device to Device communication(D2D)and many other bandwidth-hungry multimedia applications that connect a huge number of devices.5G wireless networks demand better bandwidth efficiency,high data rates,low latency,and reduced spectral leakage.To meet these requirements,a suitable 5G waveform must be designed.In this work,a waveform namely Shaped Offset Quadrature Phase Shift Keying based Orthogonal Frequency Division Multiplexing(SOQPSK-OFDM)is proposed for 5G to provide bandwidth efficiency,reduced spectral leakage,and Bit Error Rate(BER).The proposed work is evaluated using a real-time Software Defined Radio(SDR)testbed-Wireless open Access Research Platform(WARP).Experimental and simulation results show that the proposed 5G waveform exhibits better BER performance and reduced Out of Band(OOB)radia-tion when compared with other waveforms like Offset Quadrature Phase Shift Key-ing(OQPSK)and Quadrature Phase Shift Keying(QPSK)based OFDM and a 5G waveform candidate Generalized Frequency Division Multiplexing(GFDM).BER analysis shows that the proposed SOQPSK-OFDM waveform attains a Signal to Noise Ratio(SNR)gain of 7.2 dB at a BER of 10�3,when compared with GFDM in a real-time indoor environment.An SNR gain of 8 and 6 dB is achieved by the proposed work for a BER of 10�4 when compared with QPSK-OFDM and OQPSK-OFDM signals,respectively.A significant reduction in OOB of nearly 15 dB is achieved by the proposed work SOQPSK-OFDM when compared to 16 Quadrature Amplitude Modulation(QAM)mapped OFDM.展开更多
Phase and amplitude regeneration are necessary for degraded differential phase-shift keying communication sys- tems. This paper proposes a regenerator based on semiconductor optical amplifier for differential phase-sh...Phase and amplitude regeneration are necessary for degraded differential phase-shift keying communication sys- tems. This paper proposes a regenerator based on semiconductor optical amplifier for differential phase-shift keying signals. The key regeneration mechanism is theoretically analysed. The effectiveness of semiconductor optical amplifier based regenerator is demonstrated by comparing the bit error rate and eye diagrams before and after regeneration for 40-Cbit/s differential phase-shift keying 1080-km transmission systems. The results show that regeneration effects are very well. Bit error rate is tess than 10-12 with the regenerator.展开更多
The analysis is based on the error rate and the secure communication rate as functions of distance for three quantum-key-distribution (QKD) protocols: the Bennett-Brassard 1984, the Bennett Brassard Mermin 1992, an...The analysis is based on the error rate and the secure communication rate as functions of distance for three quantum-key-distribution (QKD) protocols: the Bennett-Brassard 1984, the Bennett Brassard Mermin 1992, and the coherent differential-phase-shift keying (DPSK) protocols. We consider the secure communication rate of the DPSK protocol against an arbitrary individual attack, including the most commonly considered intercept-resend and photonnumber splitting attacks, and concluded that the simple and efficient differential-phase-shift-keying protocol allows for more than 200 km of secure communication distance with high communication rates.展开更多
The novel compensating method directly demodulates the signals without the carrier recovery processes, in which the carrier with original modulation frequency is used as the local coherent carrier. In this way, the ph...The novel compensating method directly demodulates the signals without the carrier recovery processes, in which the carrier with original modulation frequency is used as the local coherent carrier. In this way, the phase offsets due to frequency shift are linear. Based on this premise, the compensation processes are: firstly, the phase offsets between the baseband neighbor-symbols after clock recovery is unbiasedly estimated among the reference symbols; then, the receiving signals symbols are adjusted by the phase estimation value; finally, the phase offsets after adjusting are compensated by the least mean squares (LMS) algorithm. In order to express the compensation processes and ability clearly, the quadrature phase shift keying (QPSK) modulation signals are regarded as examples for Matlab simulation. BER simulations are carried out using the Monte-Carlo method. The learning curves are obtained to study the algorithm's convergence ability. The constellation figures are also simulated to observe the compensation results directly.展开更多
The influence of multi-photon pulses on practical differcBtial-phase-shift quantum key distribution (DPS-Qt(D) is analysed. We have estimated the information which Eve obtained by PNS (photon-number splitting) at...The influence of multi-photon pulses on practical differcBtial-phase-shift quantum key distribution (DPS-Qt(D) is analysed. We have estimated the information which Eve obtained by PNS (photon-number splitting) attack and BS (beam splitting) attack. The result indicates that the PNS attack and BS attack will not limit the transmission distance as long as we select an appropriate mean photon number. Also, the maximum mean photon number under BS attack in practical DPS-QKD system and the set of practical assumptions about Eve's capabilities are presented.展开更多
This paper proposes an adaptive parameter identification method for breaking chaotic shift key communication from the transmitted signal in public channel. The sensitive dependence property of chaos on parameter misma...This paper proposes an adaptive parameter identification method for breaking chaotic shift key communication from the transmitted signal in public channel. The sensitive dependence property of chaos on parameter mismatch is used for chaos adaptive synchronization and parameter identification. An index function about the synchronization error is defined and conjugate gradient method is used to minimize the index function and to search the transmitter's parameter (key). By using proposed method, secure key is recovered from transmitted signal generated by low dimensional chaos and hyper chaos switching communication. Multi-parameters can also be identified from the transmitted signal with noise.展开更多
Recently,a round-robin differential phase-shift(RRDPS) protocol was proposed[Nature 509,475(2014)],in which the amount of leakage is bounded without monitoring the signal disturbance.Introducing states of the phas...Recently,a round-robin differential phase-shift(RRDPS) protocol was proposed[Nature 509,475(2014)],in which the amount of leakage is bounded without monitoring the signal disturbance.Introducing states of the phase-encoded Bennett-Brassard 1984 protocol(PE-BB84) to the RRDPS,this paper presents another quantum key distribution protocol called round-robin differential quadrature phase-shift(RRDQPS) quantum key distribution.Regarding a train of many pulses as a single packet,the sender modulates the phase of each pulse by one of {0,π/2,π,3π/2},then the receiver measures each packet with a Mach-Zehnder interferometer having a phase basis of 0 or π/2.The RRDQPS protocol can be implemented with essential similar hardware to the PE-BB84,so it has great compatibility with the current quantum system.Here we analyze the security of the RRDQPS protocol against the intercept-resend attack and the beam-splitting attack.Results show that the proposed protocol inherits the advantages arising from the simplicity of the RRDPS protocol and is more robust against these attacks than the original protocol.展开更多
Quantum key distribution is the art of sharing secret keys between two distant parties, and has attracted a lot of attention due to its unconditional security. Compared with other quantum key distribution protocols, t...Quantum key distribution is the art of sharing secret keys between two distant parties, and has attracted a lot of attention due to its unconditional security. Compared with other quantum key distribution protocols, the differential phase shift quantum key distribution protocol has higher efficiency and simpler apparatus. Unfortunately, the uncondi- tional security of differential phase shift quantum key distribution has not been proved. Utilizing the sharp continuity of the von Neuman entropy and some basic inequalities, we estimate the upper bound for the eavesdropper Eve's infor- mation. We then prove the lower bound for the security of the differential phase shift quantum key distribution protocol against a one-pulse attack with Devatak-Winter's secret key rate formula.展开更多
In this paper, we proposed the scheme for a passive round-robin differential-phase-shift quantum key distribution(RRDPS-QKD) set-up based on the principle of Hong–Ou–Mandel interference. Our scheme requires two le...In this paper, we proposed the scheme for a passive round-robin differential-phase-shift quantum key distribution(RRDPS-QKD) set-up based on the principle of Hong–Ou–Mandel interference. Our scheme requires two legitimate parties to prepare their signal state with two different non-orthogonal bases instead of single in original protocol. Incorporating this characteristic, we establish the level of security of our protocol under the intercept-resend attack and demonstrate its detector-flaw-immune feature. Furthermore, we show that our scheme not only inherits the merit of better tolerance of bit errors and finite-sized-key effects but can be implemented using hardware similar to the measurement device independent QKD(MDI-QKD). This ensures good compatibility with the current commonly used quantum system.展开更多
本文设计了一个多输入单输出(Multiple-Input Single-Output,MISO)的三维室内可见光定位通信一体化(Visible Light Position and Communication,VLPC)系统,该系统在接收端基于接收信号强度(Received Signal Strength,RSS)的三维可见光定...本文设计了一个多输入单输出(Multiple-Input Single-Output,MISO)的三维室内可见光定位通信一体化(Visible Light Position and Communication,VLPC)系统,该系统在接收端基于接收信号强度(Received Signal Strength,RSS)的三维可见光定位(Visible Light Position,VLP)算法获得定位数据,同时估计信道状态信息(Channel State Information,CSI)并上传给发射端进行定向通信.该系统的发射端基于空移键控(Space Shift Keying,SSK)的室内可见光通信(Visible Light Communication,VLC)技术实现系统的通信功能.另外,本方案可以完全避免通信与定位子系统之间的干扰.同时,通过推导定位误差的克拉美罗下界(Cramér-Rao Lower Bound,CRLB)和SSK-VLC的通信可达速率来评估本文提出的VLPC系统的性能.仿真结果验证了本文所提方案的有效性.展开更多
基金Supported by National Natural Science Foundation of China (60472054)
文摘The paper presents a kind of transmission system which employs M-ary Position Phase Shift Keying(MPPSK) to send data and Phase Locked Loop(PLL) based techniques for data retrieve.With a single PLL, MPPSK demodulation is achieved, as well as carrier recovery and symbol synchronization.Firstly, MPPSK modulation method is briefly introduced.2PPSK's PSD expression is given with its optimization result.Orthogonal Phase Detector(PD) and static threshold are used for the purpose of wider phase range and simplicity in demodulation.The data rate is alterable, which is 4.65 kbps for 2PPSK and 9.3 kbps for 4PPSK in the paper.Then some indicative comparisons in Signal to Noise Ratio Symbol Error Rate(SNR-SER) are made among 2PPSK, 3PPSK and 4PPSK, of which 4PPSK has proved to be optimal in ten slots each symbol conditions.And finally, it is demonstrated by system simulations that lower than 10-4 Symbol Error Rate(SER) performance can be obtained at 13 dB symbol SNR.
文摘Some applications are constrained only to implement low cost receivers. In this case, designers are required to use less complex and non-expensive modulation techniques. Differential Quadrature Phase Shift Keying (DQPSK) and Gaussian Frequency Shift Keying (GFSK) can be non-coherently demodulated with simple algorithms. However, these types of demodulation are not robust and suffer from poor performance. This paper proposes a new method to enhance the performance of DQPSK and GFSK using Interactive Kalman Filtering (IKF) technique, in which a one Unscented Kalman Filter (UKF) and two Kalman Filters (KF) are coupled to optimize the demodulated signals. This method consists of simple but very effective algorithms without adding complexity to the demodulators comparing to other very complex methods. UKF is used in this method due to its superiority in approximating and estimating nonlinear systems and its ability to handle non-Gaussian noise environments. The proposed method has been validated by creating a MATLAB/SIMULINK Bluetooth system model, in which the IKF is integrated into the receiver, which implement both DQPSK and GFSK, and run simulation in Gaussian and Non-Gaussian noise environments. Results have shown the effectiveness of this method in optimizing the received signals, and that the UKF outperforms the Extended Kalman Filter (EKF).
文摘A novel iterative technique, the phase descent search detection was proposed. This technique constrained the solution (PDS) algorithm, for M-ary phase shift keying (M-PSK) symbols to have a unit magnitude and it was based on coordinate descent iterations where coordinates were the unknown symbol phases. The PDS algorithm, together with a descent local search (also implemented as a version of the PDS algorithm), was used multiple times with different initializations in a proposed multiple phase detector; the solution with the minimum cost was then chosen as the final solution. The simulation results show that for highly loaded multiuser scenarios, the proposed technique has a detection performance that is close to the single-user bound. The results also show that the multiple phase detector allows detection in highly overloaded scenarios and it exhibits near-far resistance. In particular, the detector has a performance that is significantly better, and complexity that is significantly lower, than that of the detector based on semi-definite relaxation.
基金supported by the National Natural Science Foundation of China(Nos.61601220,61172077)the Foundation of Graduate Innovation Center in NUAA (No. kfjj20170410)+2 种基金the Fundamental Research Funds for the Central Universitiesthe Open Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2017D03)the Six Talent Peaks Project of Jiangsu Province(No.2015-DZXX-007)
文摘Space shift keying (SSK) is a spectrally efficient and low-complexity technique that only uses antenna index to convey information.Combining SSK with cooperative communication,the transmission reliability of SSK system can be improved effectively.In this paper,considering imperfect channel information,the performance of cooperative SSK system with amplify-and-forward (AF) relaying protocol is investigated,and the effect of estimation error on the performance is analyzed.According to the performance analysis,the probability density function and moment generating function of effective signal-to-noise ratio are derived,respectively.Using these results,the closed-form expression of average bit error rate (BER) can be achieved.Meanwhile,the asymptotically approximated BER and the corresponding diversity order analysis are presented for the performance evaluation.By computer simulations,the validness of the presented theoretical analysis is verified,and the theoretical BERs with different estimation errors are shown to be close to those of the corresponding simulations.
基金supported partially by the National Key Basic Research Program of China under Grant No.2007CB310605the Science and Technology Development Fund of Tianjin Colleges and Universities under Grant No.20080708the Research Fund of Tianjin University of Technology and Education under Grants No.KJ09-012,No.KJ10-06
文摘Generalized Space Shift Keying (GSSK) modulation is a low-complexity spatial nmltiplexing technique for nmltiple-antenna wireless systems. However, effective transmit antenna combinations have to be preselected, and there exist redundant antenna combinations which are not used in GSSK. In this paper, a novel adaptive mapping scheme for GSSK modulation, named as Adaptive Mapping Generalized Space Shift Keying (AMGSSK), is presented. Compared with GSSK, the antenna combinations are updated adaptively according to the Channel State Inforrmtion (CSI) in the proposed AMGSSK system, and the perfonrance of average Symbol Error Rate (SER) is reduced considerably. In the proposed scheme, two algorithrrs for selecting the optimum antenna combinations are described. The SER perfonmnce of AMGSSK is analyzed theoretically, and validated by Monte Carlo sinmlation. It is shown that the proposed AMGSSK scheme has good perfonmnce in SER and spectral efficiency.
文摘Fifth generation(5G)wireless networks must meet the needs of emerging technologies like the Internet of Things(IoT),Vehicle-to-everything(V2X),Video on Demand(VoD)services,Device to Device communication(D2D)and many other bandwidth-hungry multimedia applications that connect a huge number of devices.5G wireless networks demand better bandwidth efficiency,high data rates,low latency,and reduced spectral leakage.To meet these requirements,a suitable 5G waveform must be designed.In this work,a waveform namely Shaped Offset Quadrature Phase Shift Keying based Orthogonal Frequency Division Multiplexing(SOQPSK-OFDM)is proposed for 5G to provide bandwidth efficiency,reduced spectral leakage,and Bit Error Rate(BER).The proposed work is evaluated using a real-time Software Defined Radio(SDR)testbed-Wireless open Access Research Platform(WARP).Experimental and simulation results show that the proposed 5G waveform exhibits better BER performance and reduced Out of Band(OOB)radia-tion when compared with other waveforms like Offset Quadrature Phase Shift Key-ing(OQPSK)and Quadrature Phase Shift Keying(QPSK)based OFDM and a 5G waveform candidate Generalized Frequency Division Multiplexing(GFDM).BER analysis shows that the proposed SOQPSK-OFDM waveform attains a Signal to Noise Ratio(SNR)gain of 7.2 dB at a BER of 10�3,when compared with GFDM in a real-time indoor environment.An SNR gain of 8 and 6 dB is achieved by the proposed work for a BER of 10�4 when compared with QPSK-OFDM and OQPSK-OFDM signals,respectively.A significant reduction in OOB of nearly 15 dB is achieved by the proposed work SOQPSK-OFDM when compared to 16 Quadrature Amplitude Modulation(QAM)mapped OFDM.
基金supported by the Scientific Fund for Chinese Universities (Grant No. BUPT 2009RC0413)the National "863" High Technology Projects (Grant No. 2009AA01Z224)
文摘Phase and amplitude regeneration are necessary for degraded differential phase-shift keying communication sys- tems. This paper proposes a regenerator based on semiconductor optical amplifier for differential phase-shift keying signals. The key regeneration mechanism is theoretically analysed. The effectiveness of semiconductor optical amplifier based regenerator is demonstrated by comparing the bit error rate and eye diagrams before and after regeneration for 40-Cbit/s differential phase-shift keying 1080-km transmission systems. The results show that regeneration effects are very well. Bit error rate is tess than 10-12 with the regenerator.
基金supported by the Natural Science Foundation of Beijing,China (Grant No XK100130837)
文摘The analysis is based on the error rate and the secure communication rate as functions of distance for three quantum-key-distribution (QKD) protocols: the Bennett-Brassard 1984, the Bennett Brassard Mermin 1992, and the coherent differential-phase-shift keying (DPSK) protocols. We consider the secure communication rate of the DPSK protocol against an arbitrary individual attack, including the most commonly considered intercept-resend and photonnumber splitting attacks, and concluded that the simple and efficient differential-phase-shift-keying protocol allows for more than 200 km of secure communication distance with high communication rates.
基金supported by the National Natural Science Foundation of China(60532030)
文摘The novel compensating method directly demodulates the signals without the carrier recovery processes, in which the carrier with original modulation frequency is used as the local coherent carrier. In this way, the phase offsets due to frequency shift are linear. Based on this premise, the compensation processes are: firstly, the phase offsets between the baseband neighbor-symbols after clock recovery is unbiasedly estimated among the reference symbols; then, the receiving signals symbols are adjusted by the phase estimation value; finally, the phase offsets after adjusting are compensated by the least mean squares (LMS) algorithm. In order to express the compensation processes and ability clearly, the quadrature phase shift keying (QPSK) modulation signals are regarded as examples for Matlab simulation. BER simulations are carried out using the Monte-Carlo method. The learning curves are obtained to study the algorithm's convergence ability. The constellation figures are also simulated to observe the compensation results directly.
文摘The influence of multi-photon pulses on practical differcBtial-phase-shift quantum key distribution (DPS-Qt(D) is analysed. We have estimated the information which Eve obtained by PNS (photon-number splitting) attack and BS (beam splitting) attack. The result indicates that the PNS attack and BS attack will not limit the transmission distance as long as we select an appropriate mean photon number. Also, the maximum mean photon number under BS attack in practical DPS-QKD system and the set of practical assumptions about Eve's capabilities are presented.
基金Project supported by the China Postdoctoral Science Foundation (Grant No 20060390318)Natural Science Foundation of Shaanxi Province (Grant No 2007F017)Fok Ying Tong Education Foundation
文摘This paper proposes an adaptive parameter identification method for breaking chaotic shift key communication from the transmitted signal in public channel. The sensitive dependence property of chaos on parameter mismatch is used for chaos adaptive synchronization and parameter identification. An index function about the synchronization error is defined and conjugate gradient method is used to minimize the index function and to search the transmitter's parameter (key). By using proposed method, secure key is recovered from transmitted signal generated by low dimensional chaos and hyper chaos switching communication. Multi-parameters can also be identified from the transmitted signal with noise.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61505261 and 11304397)the National Basic Research Program of China(Grant No.2013CB338002)
文摘Recently,a round-robin differential phase-shift(RRDPS) protocol was proposed[Nature 509,475(2014)],in which the amount of leakage is bounded without monitoring the signal disturbance.Introducing states of the phase-encoded Bennett-Brassard 1984 protocol(PE-BB84) to the RRDPS,this paper presents another quantum key distribution protocol called round-robin differential quadrature phase-shift(RRDQPS) quantum key distribution.Regarding a train of many pulses as a single packet,the sender modulates the phase of each pulse by one of {0,π/2,π,3π/2},then the receiver measures each packet with a Mach-Zehnder interferometer having a phase basis of 0 or π/2.The RRDQPS protocol can be implemented with essential similar hardware to the PE-BB84,so it has great compatibility with the current quantum system.Here we analyze the security of the RRDQPS protocol against the intercept-resend attack and the beam-splitting attack.Results show that the proposed protocol inherits the advantages arising from the simplicity of the RRDPS protocol and is more robust against these attacks than the original protocol.
基金supported by the National Fundamental Research Program of China (Grant No. 2006CB921900)National Natural Science Foundation of China (Grant Nos. 60537020 and 60621064)the Innovation Funds of the Chinese Academy of Sciences
文摘Quantum key distribution is the art of sharing secret keys between two distant parties, and has attracted a lot of attention due to its unconditional security. Compared with other quantum key distribution protocols, the differential phase shift quantum key distribution protocol has higher efficiency and simpler apparatus. Unfortunately, the uncondi- tional security of differential phase shift quantum key distribution has not been proved. Utilizing the sharp continuity of the von Neuman entropy and some basic inequalities, we estimate the upper bound for the eavesdropper Eve's infor- mation. We then prove the lower bound for the security of the differential phase shift quantum key distribution protocol against a one-pulse attack with Devatak-Winter's secret key rate formula.
基金Project supported by the Fund from the State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)(Grant No.IPOC2017ZT0)
文摘In this paper, we proposed the scheme for a passive round-robin differential-phase-shift quantum key distribution(RRDPS-QKD) set-up based on the principle of Hong–Ou–Mandel interference. Our scheme requires two legitimate parties to prepare their signal state with two different non-orthogonal bases instead of single in original protocol. Incorporating this characteristic, we establish the level of security of our protocol under the intercept-resend attack and demonstrate its detector-flaw-immune feature. Furthermore, we show that our scheme not only inherits the merit of better tolerance of bit errors and finite-sized-key effects but can be implemented using hardware similar to the measurement device independent QKD(MDI-QKD). This ensures good compatibility with the current commonly used quantum system.
文摘本文设计了一个多输入单输出(Multiple-Input Single-Output,MISO)的三维室内可见光定位通信一体化(Visible Light Position and Communication,VLPC)系统,该系统在接收端基于接收信号强度(Received Signal Strength,RSS)的三维可见光定位(Visible Light Position,VLP)算法获得定位数据,同时估计信道状态信息(Channel State Information,CSI)并上传给发射端进行定向通信.该系统的发射端基于空移键控(Space Shift Keying,SSK)的室内可见光通信(Visible Light Communication,VLC)技术实现系统的通信功能.另外,本方案可以完全避免通信与定位子系统之间的干扰.同时,通过推导定位误差的克拉美罗下界(Cramér-Rao Lower Bound,CRLB)和SSK-VLC的通信可达速率来评估本文提出的VLPC系统的性能.仿真结果验证了本文所提方案的有效性.