期刊文献+
共找到1,754篇文章
< 1 2 88 >
每页显示 20 50 100
Multi-Physics Coupled Acoustic-Mechanics Analysis and Synergetic Optimization for a Twin-Fluid Atomization Nozzle
1
作者 Wenying Li Yanying Li +4 位作者 Yingjie Lu Jinhuan Xu Bo Chen Li Zhang Yanbiao Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期204-223,共20页
Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particul... Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particulate matter pollution.In this paper,the influences of the main parameters on the droplet size,effective atomization range and sound pressure level(SPL)of a twin-fluid nozzle(TFN)are investigated,and in order to improve the atomization performance,a multi-objective synergetic optimization algorithm is presented.A multi-physics coupled acousticmechanics model based on the discrete phase model(DPM),large eddy simulation(LES)model,and Ffowcs Williams-Hawkings(FW-H)model is established,and the numerical simulation results of the multi-physics coupled acoustic-mechanics method are verified via experimental comparison.Based on the analysis of the multi-physics coupled acoustic-mechanics numerical simulation results,the effects of the water flow on the characteristics of the atomization flow distribution were obtained.A multi-physics coupled acoustic-mechanics numerical simulation result was employed to establish an orthogonal test database,and a multi-objective synergetic optimization algorithm was adopted to optimize the key parameters of the TFN.The optimal parameters are as follows:A gas flow of 0.94 m^(3)/h,water flow of 0.0237 m^(3)/h,orifice diameter of the self-excited vibrating cavity(SVC)of 1.19 mm,SVC orifice depth of 0.53 mm,distance between SVC and the outlet of nozzle of 5.11 mm,and a nozzle outlet diameter of 3.15 mm.The droplet particle size in the atomization flow field was significantly reduced,the spray distance improved by 71.56%,and the SPL data at each corresponding measurement point decreased by an average of 38.96%.The conclusions of this study offer a references for future TFN research. 展开更多
关键词 Twin-fluid nozzle BP neural network Multi-objective optimization multi-physics coupled Acousticmechanics analysis Genetic algorithm
下载PDF
An internal ballistic model of electromagnetic railgun based on PFN coupled with multi-physical field and experimental validation
2
作者 Benfeng Gu Haiyuan Li Baoming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期254-261,共8页
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime... To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed. 展开更多
关键词 Internal ballistic modeling Electromagnetic rail gun multi-physics field coupling Experimental validation PFN
下载PDF
Subsurface multi-physical characterization of mountain excavation and city construction in loess plateau with a fiber-optic sensing system
3
作者 Jie Liu Bin Shi +3 位作者 Kai Gu Meng-Ya Sun Jun-Cheng Yao He-Ming Han 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期2935-2946,共12页
Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the ar... Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the artificial land is essential,yet challenging.Here,we use an improved fiber-optic monitoring system for its subsurface multi-physical characterization.The system enables us to gather spatiotemporal distribution of various parameters,including strata deformation,temperature,and moisture.Yan’an New District was selected as a case study to conduct refined in-situ monitoring through a 77 m-deep borehole and a 30 m-long trench.Findings reveal that the ground settlement involves both the deformation of the filling loess and the underlying intact loess.Notably,the filling loess exhibits a stronger creep capability compared to underlying intact loess.The deformation along the profile is unevenly distributed,with a positive correlation with soil moisture.Water accumulation has been observed at the interface between the filling loess and the underlying intact loess,leading to a significant deformation.Moreover,the temperature and moisture in the filling loess have reached a new equilibrium state,with their depths influenced by atmospheric conditions measuring at 31 m and 26 m,respectively.The refined investigation allows us to identify critical layers that matter the sustainable development of newly created urban areas,and provide improved insights into the evolution mechanisms of land creation. 展开更多
关键词 Mountain excavation and city construction Fiber-optic monitoring multi-physical characterization Compacted loess
下载PDF
Simultaneously realizing thermal andelectromagnetic cloaking by multi-physicalnull medium
4
作者 Yichao Liu Xiaomin Ma +6 位作者 Kun Chao Fei Sun Zihao Chen Jinyuan Shan Hanchuan Chen Gang Zhao Shaojie Chen 《Opto-Electronic Science》 2024年第2期45-59,共15页
Simultaneously manipulating multiple physical fields plays an important role in the increasingly complex integrated systems,aerospace equipment,biochemical productions,etc.For on-chip systems with high integration lev... Simultaneously manipulating multiple physical fields plays an important role in the increasingly complex integrated systems,aerospace equipment,biochemical productions,etc.For on-chip systems with high integration level,the precise and efficient control of the propagation of electromagnetic waves and heat fluxes simultaneously is particularly important.In this study,we propose a graphical designing method(i.e.,thermal-electromagnetic surface transformation)based on thermal-electromagnetic null medium to simultaneously control the propagation of electromagnetic waves and thermal fields according to the pre-designed paths.A thermal-electromagnetic cloak,which can create a cloaking effect on both electromagnetic waves and thermal fields simultaneously,is designed by thermal-electromagnetic surface transformation and verified by both numerical simulations and experimental measurements.The thermal-electromagnetic surface transformation proposed in this study provides a new methodology for simultaneous controlling on electromagnetic and temperature fields,and may have significant applications in improving thermal-electromagnetic compatibility problem,protecting of thermal-electromagnetic sensitive components,and improving efficiency of energy usage for complex onchip systems. 展开更多
关键词 transformation optics multi-physical cloak null medium
下载PDF
Transient multi-physics behavior of an insert high temperature superconducting no-insulation coil in hybrid superconducting magnets with inductive coupling 被引量:1
5
作者 Xiang KANG Yujin TONG +1 位作者 Wei WU Xingzhe WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第2期255-272,共18页
A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet dur... A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications. 展开更多
关键词 hybrid superconducting magnet high temperature superconducting(HTS)no-insulation(NI)coil inductive coupling multi-physics field thermal stability
下载PDF
Verification of a self-developed CFD-based multi-physics coupled code MPC-LBE for LBE-cooled reactor 被引量:9
6
作者 Zhi-Xing Gu Qing-Xian Zhang +4 位作者 Yi Gu Liang-Quan Ge Guo-Qiang Zeng Mu-Hao Zhang Bao-Jie Nie 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第5期84-100,共17页
To perform an integral simulation of a pool-type reactor using CFD code,a multi-physics coupled code MPC-LBE for an LBE-cooled reactor was proposed by integrating a point kinetics model and a fuel pin heat transfer mo... To perform an integral simulation of a pool-type reactor using CFD code,a multi-physics coupled code MPC-LBE for an LBE-cooled reactor was proposed by integrating a point kinetics model and a fuel pin heat transfer model into self-developed CFD code.For code verification,a code-to-code comparison was employed to validate the CFD code.Furthermore,a typical BT transient benchmark on the LBE-cooled XADS reactor was selected for verification in terms of the integral or system performance.Based on the verification results,it was demonstrated that the MPC-LBE coupled code can perform thermal-hydraulics or safety analyses for analysis for processes involved in LBE-cooled pool-type reactors. 展开更多
关键词 LBE-cooled pool-type reactor Computational fluid dynamics multi-physics coupling code Safety analysis code VERIFICATION
下载PDF
Development and application of a multi-physics and multi-scale coupling program for lead-cooled fast reactor 被引量:4
7
作者 Xiao Luo Chi Wang +4 位作者 Ze-Ren Zou Lian-Kai Cao Shuai Wang Zhao Chen Hong-Li Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第2期40-52,共13页
In this study,a multi-physics and multi-scale coupling program,Fluent/KMC-sub/NDK,was developed based on the user-defined functions(UDF)of Fluent,in which the KMC-sub-code is a sub-channel thermal-hydraulic code and t... In this study,a multi-physics and multi-scale coupling program,Fluent/KMC-sub/NDK,was developed based on the user-defined functions(UDF)of Fluent,in which the KMC-sub-code is a sub-channel thermal-hydraulic code and the NDK code is a neutron diffusion code.The coupling program framework adopts the"master-slave"mode,in which Fluent is the master program while NDK and KMC-sub are coupled internally and compiled into the dynamic link library(DLL)as slave codes.The domain decomposition method was adopted,in which the reactor core was simulated by NDK and KMC-sub,while the rest of the primary loop was simulated using Fluent.A simulation of the reactor shutdown process of M2LFR-1000 was carried out using the coupling program,and the code-to-code verification was performed with ATHLET,demonstrating a good agreement,with absolute deviation was smaller than 0.2%.The results show an obvious thermal stratification phenomenon during the shutdown process,which occurs 10 s after shutdown,and the change in thermal stratification phenomena is also captured by the coupling program.At the same time,the change in the neutron flux density distribution of the reactor was also obtained. 展开更多
关键词 multi-physics and multi-scale coupling method User-defined functions Dynamic link library Thermal stratification Lead-cooled fast reactor
下载PDF
Minimal Realization of Linear Graph Models for Multi-physics Systems
8
作者 Clarence W.DE SILVA 《Instrumentation》 2019年第4期72-84,共13页
An engineering system may consist of several different types of components,belonging to such physical"domains"as mechanical,electrical,fluid,and thermal.It is termed a multi-domain(or multi-physics)system.Th... An engineering system may consist of several different types of components,belonging to such physical"domains"as mechanical,electrical,fluid,and thermal.It is termed a multi-domain(or multi-physics)system.The present paper concerns the use of linear graphs(LGs)to generate a minimal model for a multi-physics system.A state-space model has to be a minimal realization.Specifically,the number of state variables in the model should be the minimum number that can completely represent the dynamic state of the system.This choice is not straightforward.Initially,state variables are assigned to all the energy-storage elements of the system.However,some of the energy storage elements may not be independent,and then some of the chosen state variables will be redundant.An approach is presented in the paper,with illustrative examples in the mixed fluid-mechanical domains,to illustrate a way to recognize dependent energy storage elements and thereby obtain a minimal state-space model.System analysis in the frequency domain is known to be more convenient than in the time domain,mainly because the relevant operations are algebraic rather than differential.For achieving this objective,the state space model has to be converted into a transfer function.The direct way is to first convert the state-space model into the input-output differential equation,and then substitute the time derivative by the Laplace variable.This approach is shown in the paper.The same result can be obtained through the transfer function linear graph(TF LG)of the system.In a multi-physics system,first the physical domains have to be converted into an equivalent single domain(preferably,the output domain of the system),when using the method of TFLG.This procedure is illustrated as well,in the present paper. 展开更多
关键词 multi-physics Modelling Mechatronic Systems Linear Graphs Dependent Energy Storage Elements Redundant State Variables Minimal State-space Realization Domain Conversion Equivalent Models Frequency-domain Model
下载PDF
Mechatronic Modeling and Domain Transformation of Multi-physics Systems
9
作者 Clarence W.DE SILVA 《Instrumentation》 2021年第1期14-28,共15页
The enhanced definition of Mechatronics involves the four underlying characteristics of integrated,unified,unique,and systematic approaches.In this realm,Mechatronics is not limited to electro-mechanical systems,in th... The enhanced definition of Mechatronics involves the four underlying characteristics of integrated,unified,unique,and systematic approaches.In this realm,Mechatronics is not limited to electro-mechanical systems,in the multi-physics sense,but involves other physical domains such as fluid and thermal.This paper summarizes the mechatronic approach to modeling.Linear graphs facilitate the development of state-space models of mechatronic systems,through this approach.The use of linear graphs in mechatronic modeling is outlined and an illustrative example of sound system modeling is given.Both time-domain and frequency-domain approaches are presented for the use of linear graphs.A mechatronic model of a multi-physics system may be simplified by converting all the physical domains into an equivalent single-domain system that is entirely in the output domain of the system.This approach of converting(transforming)physical domains is presented.An illustrative example of a pressure-controlled hydraulic actuator system that operates a mechanical load is given. 展开更多
关键词 Mechatronic Modeling multi-physics Systems Integrated Unified Unique and Systematic Approach Linear Graphs Physical Domain Conversion/Transformation
下载PDF
Multi-physics analysis of permanent magnet tubular linear motors under severe volumetric and thermal constraints 被引量:1
10
作者 李方 叶佩青 张辉 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1690-1699,共10页
Permanent magnet tubular linear motors(TLMs) arranged in multiple rows and multiple columns used for a radiotherapy machine were studied. Due to severe volumetric and thermal constraints, the TLMs were at high risk of... Permanent magnet tubular linear motors(TLMs) arranged in multiple rows and multiple columns used for a radiotherapy machine were studied. Due to severe volumetric and thermal constraints, the TLMs were at high risk of overheating. To predict the performance of the TLMs accurately, a multi-physics analysis approach was proposed. Specifically, it considered the coupling effects amongst the electromagnetic and the thermal models of the TLMs, as well as the fluid model of the surrounding air. To reduce computation cost, both the electromagnetic and the thermal models were based on lumped-parameter methods. Only a minimum set of numerical computation(computational fluid dynamics, CFD) was performed to model the complex fluid behavior. With the proposed approach, both steady state and transient state temperature distributions, thermal rating and permissible load can be predicted. The validity of this approach is verified through the experiment. 展开更多
关键词 永磁直线电机 物理分析方法 体积 计算流体动力学 计算流体力学 放射治疗机 经济过热 耦合效应
下载PDF
A robust multi-objective and multi-physics optimization of multi-physics behavior of microstructure
11
作者 Hamda Chagraoui Mohamed Soula Mohamed Guedri 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3225-3238,共14页
A new strategy is presented to solve robust multi-physics multi-objective optimization problem known as improved multi-objective collaborative optimization(IMOCO) and its extension improved multi-objective robust coll... A new strategy is presented to solve robust multi-physics multi-objective optimization problem known as improved multi-objective collaborative optimization(IMOCO) and its extension improved multi-objective robust collaborative(IMORCO).In this work,the proposed IMORCO approach combined the IMOCO method,the worst possible point(WPP) constraint cuts and the Genetic algorithm NSGA-II type as an optimizer in order to solve the robust optimization problem of multi-physics of microstructures with uncertainties.The optimization problem is hierarchically decomposed into two levels: a microstructure level,and a disciplines levels.For validation purposes,two examples were selected: a numerical example,and an engineering example of capacitive micro machined ultrasonic transducers(CMUT) type.The obtained results are compared with those obtained from robust non-distributed and distributed optimization approach,non-distributed multi-objective robust optimization(NDMORO) and multi-objective collaborative robust optimization(McRO),respectively.Results obtained from the application of the IMOCO approach to an optimization problem of a CMUT cell have reduced the CPU time by 44% ensuring a Pareto front close to the reference non-distributed multi-objective optimization(NDMO) approach(mahalanobis distance,D_M^2=0.9503 and overall spread,S_o=0.2309).In addition,the consideration of robustness in IMORCO approach applied to a CMUT cell of optimization problem under interval uncertainty has reduced the CPU time by 23% keeping a robust Pareto front overlaps with that obtained by the robust NDMORO approach(D_M^2=10.3869 and S_o=0.0537). 展开更多
关键词 多目标优化问题 鲁棒优化 协同优化 物理结构 行为 不确定性 工程实例 超声换能器
下载PDF
Investigating effect of coke porosity on blast furnace performance based on multi-physical fields
12
作者 Ji Chen Zhao Lei +3 位作者 Zhe Yao Li Wang Qiang Ling Ping Cui 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2024年第2期357-367,共11页
Reducing coke use is an effective measure to reduce carbon emission and energy consumption in the blast furnace(BF)ironmaking.Essentially,BF is a high-temperature moving bed reactor,where complex physical transformati... Reducing coke use is an effective measure to reduce carbon emission and energy consumption in the blast furnace(BF)ironmaking.Essentially,BF is a high-temperature moving bed reactor,where complex physical transformations coupled with complicated reactions occur.This makes it challenging to investigate the factors determining BF performance with the conventional method.A multi-physical field coupling mathematical model of BF was thus developed to describe its mass and heat transfer as well as its intrinsic reactions.Then,the proposed model was validated with the production data.Under coupling conditions,influences of dominating reactions on BF performance(temperature distribution,gas distribution,iron formation reaction,and direct reduction degree)were revealed.The results indicated that coke combustion,indirect reduction,and direct reduction of iron ore mainly took place nearby the shaft tuyere,cohesive zone,and dripping zone,respectively.Besides,the rate of coke solution loss reaction was increased with the rising coke porosity in the cohesive zone.Considering the effect of coke porosity on the efficiency and stability of BF,the coke porosity of 0.42 was regarded as a reasonable value. 展开更多
关键词 Blast furnace Mathematical model multi-physical field Simulation Coke porosity
原文传递
Probing multi-physical process and deformation mechanism of a largescale landslide using integrated dual-source monitoring
13
作者 Hong-Hu Zhu Xiao Ye +3 位作者 Hua-Fu Pei Wei Zhang Gang Cheng Zi-Li Li 《Geoscience Frontiers》 SCIE CAS CSCD 2024年第2期417-432,共16页
The implementation of isolated heterologous monitoring systems for spatially distant borehole deployments often comes with substantial equipment costs,which can limit the effectiveness of geohazard mitigation and geor... The implementation of isolated heterologous monitoring systems for spatially distant borehole deployments often comes with substantial equipment costs,which can limit the effectiveness of geohazard mitigation and georisk management efforts.To address this,we have developed a novel monitoring system that integrates fiber Bragg grating(FBG)and microelectromechanical system(MEMS)techniques to capture soil moisture,temperature,sliding resistance,strain,surface tilt,and deep-seated inclination.This system enables real-time,simultaneous data acquisition and cross-validation analyses,offering a costeffective solution for monitoring critical parameters in geohazard-prone areas.We successfully applied this integrated monitoring system to the Xinpu landslide,an active super-large landslide located in the Three Gorges Reservoir Area(TGRA)of China.The resulting strain profile confirmed the presence of two shallow secondary sliding surfaces at depths of approximately 7 m and 12 m,respectively,in addition to the deep-seated sliding surface at a depth of28 m.The lower secondary sliding surface was activated by extreme precipitation,while the upper one was primarily driven by significant changes in reservoir water levels and secondarily triggered by concentrated rainfalls.Anti-slide piles have remarkably reinforced the upper moving masses but failed to control the lower ones.The gap between the pile heads and the soil amplified the rainwater erosion effect,creating a preferential channel for rainwater infiltration.Multi-physical measurements revealed a mixture of seepage-driven and buoyancy-driven behaviors within the landslide.This study offers an integrated dual-source multi-physical monitoring paradigm that enables collaborative management of multiple crucial boreholes on a large-scale landslide,and contributes to the evaluation and improvement of engineering measures in similar geological settings. 展开更多
关键词 Reservoir landslide multi-physical process Integrated dual-source monitoring Fiber optic Extreme weather
原文传递
Multi-physics multi-scale simulation of unique equiaxed-to-columnar-to-equiaxed transition during the whole solidification process of Al-Li alloy laser welding
14
作者 Chu Han Ping Jiang +1 位作者 Shaoning Geng Liangyuan Ren 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第4期235-251,共17页
In this study,a novel multi-physics multi-scale model with the dilute multicomponent phase-field method in three-dimensional(3D)space was developed to investigate the complex microstructure evolu-tion in the molten po... In this study,a novel multi-physics multi-scale model with the dilute multicomponent phase-field method in three-dimensional(3D)space was developed to investigate the complex microstructure evolu-tion in the molten pool during laser welding of Al-Li alloy.To accurately compute mass data within both two and three-dimensional computational domains,three efficient computing methods,including central processing unit parallel computing,adaptive mesh refinement,and moving-frame algorithm,were uti-lized.Emphasis was placed on the distinctive equiaxed-to-columnar-to-equiaxed transition phenomenon that occurs during the entire solidification process of Al-Li alloy laser welding.Simulation results indi-cated that the growth distance of columnar grains that epitaxially grew from the base metal(BM)de-creased as the nucleation rate increased.As the nucleation rate increased,the morphology of the newly formed grains near the fusion boundary(FB)changed from columnar to equiaxed,and newly formed equiaxed grains changed from having high-order dendrites to no obvious dendrite structure.When the nucleation rate was sufficiently high,non-dendritic equiaxed grains could directly form near the FB,and there was nearly no epitaxial growth from the BM.Additionally,simulation results illustrated the com-petition among multiple grains with varying orientations that grow in 3D space near the FB.Finally,how equiaxed grain bands develop was elucidated.The equiaxed band not only hindered the growth of early columnar grains but also some of its grains could grow epitaxially to form new columnar grains.These predicted results were in good agreement with experimental measurements and observations. 展开更多
关键词 Laser welding Al-Li alloy Equiaxed-to-columnar-to-equiaxed transition multi-physics multi-scale model Multicomponent alloys 3D phase-field model
原文传递
Observation and research of deep underground multi-physical fields—Huainan–848 m deep experiment 被引量:3
15
作者 Yun WANG Yaxin YANG +9 位作者 Heping SUN Chengliang XIE Qisheng ZHANG Xiaoming CUI Chang CHEN Yongsheng HE Qiangqiang MIAO Chaomin MU Lianghui GUO Jiwen TENG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第1期54-70,共17页
Compared with the surface,the deep environment has the advantages of allowing“super-quiet and ultra-clean”-geophysical field observation with low vibration noise and little electromagnetic interference,which are con... Compared with the surface,the deep environment has the advantages of allowing“super-quiet and ultra-clean”-geophysical field observation with low vibration noise and little electromagnetic interference,which are conducive to the realization of long-term and high-precision observation of multi-physical fields,thus enabling the solution of a series of geoscience problems.In the Panyidong Coal Mine,where there are extensive underground tunnels at the depth of 848 m below sea level,we carried out the first deep-underground geophysical observations,including radioactivity,gravity,magnetic,magnetotelluric,background vibration and six-component seismic observations.We concluded from these measurements that(1)the background of deep subsurface gravity noise in the long-period frequency band less than 2 Hz is nearly two orders of magnitude weaker than that in the surface observation environment;(2)the underground electric field is obviously weaker than the surface electric field,and the relatively high frequency of the underground field,greater than 1 Hz,is more than two orders of magnitude weaker than that of the surface electric field;the east-west magnetic field underground is approximately the same as that at the surface;the relatively high-frequency north-south magnetic field underground,below 10 Hz,is at least one order of magnitude lower than that at the surface,showing that the underground has a clean electromagnetic environment;(3)in addition to the highfrequency and single-frequency noises introduced by underground human activities,the deep underground space has a significantly lower background vibration noise than the surface,which is very beneficial to the detection of weak earthquake and gravity signals;and(4)the underground roadway support system built with ferromagnetic material interferes the geomagnetic field.We also found that for deep observation in the“ultra-quiet and ultra-clean”environment,the existing geophysical equipment and observation technology have problems of poor adaptability and insufficient precision as well as data cleaning problems,such as the effective separation of the signal and noise of deep observation data.It is also urgent to interpret and comprehensively utilize these high-precision multi-physics observation data. 展开更多
关键词 multi-physical fields RADIOACTIVITY GRAVITY GEOMAGNETIC Electromagnetic EARTHQUAKE Observations deep underground
原文传递
Effect of melt current on multi-physical field and heat flow distribution during ESR process based on model of dynamic formation of slag skin
16
作者 Fu-bin Liu Xin-hao Yu +3 位作者 Hua-bing Li Zhou-hua Jiang Hong-chun Zhu Xin Geng 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第6期1258-1267,共10页
A numerical model coupled with a multi-physical field based on dynamic formation of slag skin is established.After validation by comparing the experimental and simulation results of depth of metal pool,slag skin thick... A numerical model coupled with a multi-physical field based on dynamic formation of slag skin is established.After validation by comparing the experimental and simulation results of depth of metal pool,slag skin thickness and melt rate,it is utilized to investigate the effect of melt current on the coupled multi-physical field,slag skin thickness,metal pool depth and the heat flow distribution during electroslag remelting(ESR)Inconel 625 solidification process.The results showed that with the increase in the melt current,the velocities of ESR system and the temperature of metal pool increased,whereas the highest temperature of slag bath firstly decreased and then increased.With the increase in the melt current,the slag skin thickness,metal pool depth and melt rate increased.Furthermore,the characteristics of the heat flow distribution and the effect of melt current on the heat flow distribution were analysed. 展开更多
关键词 Electroslag remelting Melt current Slag skin Model multi-physical field
原文传递
Numerical simulation of coupling multi-physical field in electrical arc furnace for smelting titanium slag
17
作者 He-nan Cui Tao Li +2 位作者 Chen-guang Bai Min Tan Yu-lin Zhu 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第11期2194-2209,共16页
The smelting reduction process of the ilmenite in an electric arc furnace(EAF)is a commonly used technology for producing titanium slag in the world.It has particular significance to analyze the velocity-temperature-e... The smelting reduction process of the ilmenite in an electric arc furnace(EAF)is a commonly used technology for producing titanium slag in the world.It has particular significance to analyze the velocity-temperature-electromagnetics multi-physical field in an EAF for improving its productivity and reducing energy consumption.A transient three-dimensional mathematical model was developed to characterize the flow,heat transfer,and electromagnetic behavior in a titanium slag EAF.For describing the electromagnetic field and its effects on velocity and temperature distribution in the furnace,magnetohydrodynamic equations and conservation equations for mass,momentum,and energy were solved simultaneously by compiling the user-defined function program.The numerical model was verified by comparing with the literature data.The results indicate that the Lorentz force is the main driving force of the velocity and temperature distribution.Moreover,the influence of input current and location of electrodes on the multi-physical field distribution was also investigated.It is found that the appropriate range of input current and diameter of pitch circle are about 30,000 A and 3000-3500 mm,respectively.The mathematical model established can characterize the multi-physical field more accu-rately than before,which can provide valuable guidance for the operation improvement and design optimization of the EAF for producing titanium slag. 展开更多
关键词 Electric arc furnace Titanium slag MAGNETOHYDRODYNAMIC multi-physical field User-defined function
原文传递
Integration of multi-physics and machine learning-based surrogate modelling approaches for multi-objective optimization of deformed GDL of PEM fuel cells
18
作者 Jiankang Wang Hai Jiang +4 位作者 Gaojian Chen Huizhi Wang Lu Lu Jianguo Liu Lei Xing 《Energy and AI》 2023年第4期159-172,共14页
The development of artificial intelligence(AI)greatly boosts scientific and engineering innovation.As one of the promising candidates for transiting the carbon intensive economy to zero emission future,proton exchange... The development of artificial intelligence(AI)greatly boosts scientific and engineering innovation.As one of the promising candidates for transiting the carbon intensive economy to zero emission future,proton exchange membrane(PEM)fuel cells has aroused extensive attentions.The gas diffusion layer(GDL)strongly affects the water and heat management during PEM fuel cells operation,therefore multi-variable optimization,including thickness,porosity,conductivity,channel/rib widths and compression ratio,is essential for the improved cell performance.However,traditional experiment-based optimization is time consuming and economically unaffordable.To break down the obstacles to rapidly optimize GDLs,physics-based simulation and machine-learning-based surrogate modelling are integrated to build a sophisticated M 5 model,in which multi-physics and multi-phase flow simulation,machine-learning-based surrogate modelling,multi-variable and multi-objects optimization are included.Two machine learning methodologies,namely response surface methodol-ogy(RSM)and artificial neural network(ANN)are compared.The M 5 model is proved to be effective and efficient for GDL optimization.After optimization,the current density and standard deviation of oxygen dis-tribution at 0.4 V are improved by 20.8%and 74.6%,respectively.Pareto front is obtained to trade off the cell performance and homogeneity of oxygen distribution,e.g.,20.5%higher current density is achieved when sacrificing the standard deviation of oxygen distribution by 26.0%. 展开更多
关键词 multi-physics modelling Machine learning Multi-objective optimization Gas diffusion layer Proton exchange membrane fuel cells
原文传递
CFD–DEM–CVD multi-physical field coupling model for simulating particle coating process in spout bed 被引量:7
19
作者 Malin Liu Meng Chen +5 位作者 Tianjin Li Yaping Tang Rongzheng Liu Youlin Shao Bing Liu Jiaxing Chang 《Particuology》 SCIE EI CAS CSCD 2019年第1期67-78,共12页
Particle coating is a very important step in many industrial production processes as the particle coating layers may fix surfaces with unique advantages. Given the limitation and disadvantages of the existing simulati... Particle coating is a very important step in many industrial production processes as the particle coating layers may fix surfaces with unique advantages. Given the limitation and disadvantages of the existing simulation methods, a coupled CFD–DEM–CVD multi-physical field model for particle-coating simulations has been established taking into account the velocity field, temperature field, concentration field, and deposition model. In this model, gas behavior and chemical reactions are simulated in the CFD frame based on the conservation laws of mass, momentum, and energy. The particle behavior is simulated in the DEM frame based on the gas–solid interphase force model and contact force model. The deposition behavior is simulated in the CVD frame based on the particle movement–adhesion–deposition model. The coupled model can be implemented in Fluent-EDEM software with their user definition function and application programming interface. The particle coating process involving the pyrolysis of acetylene was investigated, and the effect of bed temperature and inlet gas velocity on deposition rate and coating efficiency were investigated based on the proposed model with adjustable deposition coefficients. Both the average deposition layer mass and the average deposition layer thickness were found to be proportional to the elapsed time and increased at the rate of about 1.05 × 10^-2 mg/s and 3.45 × 10^-4 mm/s, respectively, setting the inlet gas velocity to 11 m/s and bed temperature to 1680 K. A higher temperature and larger inlet gas velocity lead to a larger deposition rate, but the coating efficiency decreases because of limits imposed by the chemical reaction. At a bed temperature of 1280 K, the average deposition rate is 7.40 × 10?3 mg/s when the inlet gas velocity is set to 11 m/s, which is about double the deposition rate when the inlet gas velocity is set as 5 m/s. The proposed model can provide some guidance for the operating conditions and parameters design of the spouted bed in actual coating settings and can also be further developed as a basic model of mechanisms to integrate detailed information across multiple scales. 展开更多
关键词 PARTICLE coating process CFD–DEM–CVD multi-physical FIELD Chemical vapor deposition model Multiscale simulation
原文传递
Heavy Rainfall Ensemble Prediction:Initial Condition Perturbation vs Multi-Physics Perturbation 被引量:6
20
作者 陈静 薛纪善 《Acta meteorologica Sinica》 SCIE 2009年第1期53-67,共15页
Mesoscale ensemble is an encouraging technology for improving the accuracy of heavy rainfall predictions. Occurrences of heavy rainfall are closely related to convective instability and topography. In mid-latitudes, p... Mesoscale ensemble is an encouraging technology for improving the accuracy of heavy rainfall predictions. Occurrences of heavy rainfall are closely related to convective instability and topography. In mid-latitudes, perturbed initial fields for medium-range weather forecasts are often configured to focus on the baroclinic instability rather than the convective instability. Thus, alternative approaches to generate initial perturba- tions need to be developed to accommodate the uncertainty of the convective instability. In this paper, an initial condition perturbation approach to mesoscale heavy rainfall ensemble prediction, named as Different Physics Mode Method (DPMM), is presented in detail. Based on the PSU/NCAR mesoscale model MM5, an ensemble prediction experiment on a typical heavy rainfall event in South China is carried out by using the DPMM, and the structure of the initial condition perturbation is analyzed. Further, the DPMM ensem- ble prediction is compared with a multi-physics ensemble prediction, and the results show that the initial perturbation fields from the DPMM have a reasonable mesoscale circulation structure and could reflect the prediction uncertainty in the sensitive regions of convective instability. An evaluation of the DPMM ini- tial condition perturbation indicates that the DPMM method produces better ensemble members than the multi-physics perturbation method, and can significantly improve the precipitation forecast than the control non-ensemble run. 展开更多
关键词 heavy rainfall ensemble prediction initial condition perturbation multi-physics perturbation
原文传递
上一页 1 2 88 下一页 到第
使用帮助 返回顶部