In order to achieve the goal that unmanned aerial vehicle(UAV)automatically positioning during power inspection,a visual positioning method which utilizes encoded sign as cooperative target is proposed.Firstly,we disc...In order to achieve the goal that unmanned aerial vehicle(UAV)automatically positioning during power inspection,a visual positioning method which utilizes encoded sign as cooperative target is proposed.Firstly,we discuss how to design the encoded sign and propose a robust decoding algorithm based on contour.Secondly,the Adaboost algorithm is used to train a classifier which can detect the encoded sign from image.Lastly,the position of UAV can be calculated by using the projective relation between the object points and their corresponding image points.Experiment includes two parts.First,simulated video data is used to verify the feasibility of the proposed method,and the results show that the average absolute error in each direction is below 0.02 m.Second,a video,acquired from an actual UAV flight,is used to calculate the position of UAV.The results show that the calculated trajectory is consistent with the actual flight path.The method runs at a speed of 0.153 sper frame.展开更多
This paper focus on the function of cooperative learning in developing positive affect,Including reducing anxiety,increasing motivation,facilitating the development of positive attitudes toward learning and language l...This paper focus on the function of cooperative learning in developing positive affect,Including reducing anxiety,increasing motivation,facilitating the development of positive attitudes toward learning and language learning,promoting self-esteem,as well as supporting different learning styles and encouraging perseverance in the difficult and confusing process of learning a foreign language.展开更多
The cooperative localization(CL)is affected by the communication topology among the platforms.Based on the unscented Kalman filtering,the distributed CL(DCL)oriented to the unpredicted communication topology is invest...The cooperative localization(CL)is affected by the communication topology among the platforms.Based on the unscented Kalman filtering,the distributed CL(DCL)oriented to the unpredicted communication topology is investigated.To improve the adaptability,the character of the look-up Cholesky decomposition is exploited for the covariance matrix decomposing.Then,the distributed U transformation can be dynamically implemented according to the available communication topology.In the proposed algorithm,the global information is not required for the individual,and only the available information from the neighbor is used.Each platform’s state can be estimated independently.The error covariance of the state estimates can be updated in the single platform.The algorithm is adaptive to any serial communication topologies where the measuring to the measured platform is a starting path.The applicability of the proposed algorithm to unpredicted communication topology is improved,remaining equivalent localization performance to free connection communication.展开更多
For situations such as indoor and underground parking lots in which satellite signals are obstructed,GNSS cooperative positioning can be used to achieve highprecision positioning with the assistance of cooperative nod...For situations such as indoor and underground parking lots in which satellite signals are obstructed,GNSS cooperative positioning can be used to achieve highprecision positioning with the assistance of cooperative nodes.Here we study the cooperative positioning of two static nodes,node 1 is placed on the roof of the building and the satellite observation is ideal,node 2 is placed on the indoor windowsill where the occlusion situation is more serious,we mainly study how to locate node 2 with the assistance of node 1.Firstly,the two cooperative nodes are located with pseudo-range single point positioning,and the positioning performance of cooperative node is analyzed,therefore the information of pseudo-range and position of node 1 is obtained.Secondly,the distance between cooperative nodes is obtained by using the baseline method with double-difference carrier phase.Finally,the cooperative location algorithms are studied.The Extended Kalman Filtering(EKF),Unscented Kalman Filtering(UKF)and Particle Filtering(PF)are used to fuse the pseudo-range,ranging information and location information respectively.Due to the mutual influences among the cooperative nodes in cooperative positioning,the EKF,UKF and PF algorithms are improved by resetting the error covariance matrix of the cooperative nodes at each update time.Experimental results show that after being improved,the influence between the cooperative nodes becomes smaller,and the positioning performance of the nodes is better than before.展开更多
Relative positioning is recognized as an important issue for vehicles in urban environments.Multi-vehicle Cooperative Positioning(CP)techniques which fuse the Global Navigation Satellite System(GNSS)and inter-vehicle ...Relative positioning is recognized as an important issue for vehicles in urban environments.Multi-vehicle Cooperative Positioning(CP)techniques which fuse the Global Navigation Satellite System(GNSS)and inter-vehicle ranging have attracted attention in improving the performance of baseline estimation between vehicles.However,current CP methods estimate the baselines separately and ignore the interactions among the positioning information of different baselines.These interactions are called’information coupling’.In this work,we propose a new multivehicle precise CP framework using the coupled information in the network based on the Carrier Differential GNSS(CDGNSS)and inter-vehicle ranging.We demonstrate the benefit of the coupled information by deriving the Cramer-Rao Lower Bound(CRLB)of the float estimation in CP.To fully use this coupled information,we propose a Whole-Net CP(WN-CP)method which consists of the Whole-Net Extended Kalman Filter(WN-EKF)as the float estimation filter,and the Partial Baseline Fixing(PBF)as the ambiguity resolution part.The WN-EKF fuses the measurements of all baselines simultaneously to improve the performance of float estimation,and the PBF strategy fixes the ambiguities of the one baseline to be estimated,instead of full ambiguity resolution,to reduce the computation load of ambiguity resolution.Field tests involving four vehicles were conducted in urban environments.The results show that the proposed WN-CP method can achieve better performance and meanwhile maintain a low computation load compared to the existing methods.展开更多
This paper proposes robot position control using force information for cooperative work between two remote robot systems with force feedback in each of which a user operates a remote robot by using a haptic interface ...This paper proposes robot position control using force information for cooperative work between two remote robot systems with force feedback in each of which a user operates a remote robot by using a haptic interface device while observing work of the robot with a video camera. We also investigate the effect of the proposed control by experiment. As cooperative work, we deal with work in which two robots carry an object together. The robot position control using force information finely adjusts the position of the robot arm to reduce the force applied to the object. Thus, the purpose of the control is to avoid large force so that the object is not broken. In our experiment, we make a comparison among the following three cases in order to clarify how to carry out the control effectively. In the first case, the two robots are operated manually by a user with his/her both hands. In the second case, one robot is operated manually by a user, and the other robot is moved automatically under the proposed control. In the last case, the object is carried directly by a human instead of the robot which is operated by the user in the second case. As a result, experimental results demonstrate that the control can help each system operated manually by the user to carry the object smoothly.展开更多
This paper proposes the cooperative position estimation of a group of mobile robots, which pertbrms disaster relief tasks in a wide area. When searching the wide area, it becomes important to know a robot's position ...This paper proposes the cooperative position estimation of a group of mobile robots, which pertbrms disaster relief tasks in a wide area. When searching the wide area, it becomes important to know a robot's position correctly. However, for each mobile robot, it is impossible to know its own position correctly. Therefore, each mobile robot estimates its position from the data of sensor equipped on it. Generally, the sensor data is incorrect since there is sensor noise, etc. This research considers two types of the sensor data errors from omnidirectional camera. One is the error of white noise of the image captured by omnidirectional camera and so on. Another is the error of position and posture between two omnidirectional cameras. To solve the error of latter case, we proposed a self-position estimation algorithm for multiple mobile robots using two omnidirectional cameras and an accelerometer. On the other hand, to solve the error of the former case, this paper proposed an algorithm of cooperative position estimation for multiple mobile robots. In this algorithm, each mobile robot uses two omnidirectional cameras to observe the surrounding mobile robot and get the relative position between mobile robots. Each mobile robot estimates its position with only measurement data of each other mobile robots. The algorithm is based on a Bayesian filtering. Simulations of the proposed cooperative position estimation algorithm for multiple mobile robots are performed. The results show that position estimation is possible by only using measurement value from each other robot.展开更多
Based on multiple unmanned aerial vehicles(UAVs) flight at a constant altitude,a fault-tolerant cooperative localization algorithm against global positioning system(GPS) signal loss due to GPS receiver malfunction...Based on multiple unmanned aerial vehicles(UAVs) flight at a constant altitude,a fault-tolerant cooperative localization algorithm against global positioning system(GPS) signal loss due to GPS receiver malfunction is proposed.Contrast to the traditional means with single UAV,the proposed method is based on the use of inter-UAV relative range measurements against GPS signal loss and more suitable for the small-size and low-cost UAV applications.Firstly,for re-localizing an UAV with a malfunction in its GPS receiver,an algorithm which makes use of any other three healthy UAVs in the cooperative flight as the reference points for re-localization is proposed.Secondly,by using the relative ranges from the faulty UAV to the other three UAVs,its horizontal location can be determined after the GPS signal is lost.In order to improve an accuracy of the localization,a Kalman filter is further exploited to provide the estimated location of the UAV with the GPS signal loss.The Kalman filter calculates the variance of observations in terms of horizontal dilution of positioning(HDOP) automatically.Then,during each discrete computing time step,the best reference points are selected adaptively by minimizing the HDOP.Finally,two simulation examples in Matlab/Simulink environment with five UAVs in cooperative flight are shown to evaluate the effectiveness of the proposed method.展开更多
The asymptotic behavior of the time-dependent solution for a 3-species cooperating model was investigated with the effects of both diffusion and time delay taken into consideration. We proved the global asymptotic sta...The asymptotic behavior of the time-dependent solution for a 3-species cooperating model was investigated with the effects of both diffusion and time delay taken into consideration. We proved the global asymptotic stability of a positive steady-state solution to the model problem by using coupled upper and lower solutions for a more general reaction-diffusion system that gives a common framework for 3-species cooperating model problems. The result of global asymptotic stability implies that the model system coexistence is permanent. Some global asymptotic stability results for 2-species cooperating reaction-diffusion systems are included in the discussion, and some known results are extended.展开更多
基金supported by the National Key Research Projects(No.2016YFB0501403)the National Demonstration Center for Experimental Remote Sensing&Information Engineering(Wuhan University)
文摘In order to achieve the goal that unmanned aerial vehicle(UAV)automatically positioning during power inspection,a visual positioning method which utilizes encoded sign as cooperative target is proposed.Firstly,we discuss how to design the encoded sign and propose a robust decoding algorithm based on contour.Secondly,the Adaboost algorithm is used to train a classifier which can detect the encoded sign from image.Lastly,the position of UAV can be calculated by using the projective relation between the object points and their corresponding image points.Experiment includes two parts.First,simulated video data is used to verify the feasibility of the proposed method,and the results show that the average absolute error in each direction is below 0.02 m.Second,a video,acquired from an actual UAV flight,is used to calculate the position of UAV.The results show that the calculated trajectory is consistent with the actual flight path.The method runs at a speed of 0.153 sper frame.
文摘This paper focus on the function of cooperative learning in developing positive affect,Including reducing anxiety,increasing motivation,facilitating the development of positive attitudes toward learning and language learning,promoting self-esteem,as well as supporting different learning styles and encouraging perseverance in the difficult and confusing process of learning a foreign language.
文摘The cooperative localization(CL)is affected by the communication topology among the platforms.Based on the unscented Kalman filtering,the distributed CL(DCL)oriented to the unpredicted communication topology is investigated.To improve the adaptability,the character of the look-up Cholesky decomposition is exploited for the covariance matrix decomposing.Then,the distributed U transformation can be dynamically implemented according to the available communication topology.In the proposed algorithm,the global information is not required for the individual,and only the available information from the neighbor is used.Each platform’s state can be estimated independently.The error covariance of the state estimates can be updated in the single platform.The algorithm is adaptive to any serial communication topologies where the measuring to the measured platform is a starting path.The applicability of the proposed algorithm to unpredicted communication topology is improved,remaining equivalent localization performance to free connection communication.
基金This work was financially supported by National Major SpecialScience and Technology (No. GFZX0301040115)the National Natural Science Foundationof China (No. 61301094, No. 61571188)the Construct Program of the Key Discipline inHunan Province, China, the Aid program for Science and Technology Innovative ResearchTeam in Higher Educational Institute of Hunan Province, and the Planned Science andTechnology Project of Loudi City, Hunan Province, China.
文摘For situations such as indoor and underground parking lots in which satellite signals are obstructed,GNSS cooperative positioning can be used to achieve highprecision positioning with the assistance of cooperative nodes.Here we study the cooperative positioning of two static nodes,node 1 is placed on the roof of the building and the satellite observation is ideal,node 2 is placed on the indoor windowsill where the occlusion situation is more serious,we mainly study how to locate node 2 with the assistance of node 1.Firstly,the two cooperative nodes are located with pseudo-range single point positioning,and the positioning performance of cooperative node is analyzed,therefore the information of pseudo-range and position of node 1 is obtained.Secondly,the distance between cooperative nodes is obtained by using the baseline method with double-difference carrier phase.Finally,the cooperative location algorithms are studied.The Extended Kalman Filtering(EKF),Unscented Kalman Filtering(UKF)and Particle Filtering(PF)are used to fuse the pseudo-range,ranging information and location information respectively.Due to the mutual influences among the cooperative nodes in cooperative positioning,the EKF,UKF and PF algorithms are improved by resetting the error covariance matrix of the cooperative nodes at each update time.Experimental results show that after being improved,the influence between the cooperative nodes becomes smaller,and the positioning performance of the nodes is better than before.
基金supported by the National Natural Science Foundation of China(No.61901015)。
文摘Relative positioning is recognized as an important issue for vehicles in urban environments.Multi-vehicle Cooperative Positioning(CP)techniques which fuse the Global Navigation Satellite System(GNSS)and inter-vehicle ranging have attracted attention in improving the performance of baseline estimation between vehicles.However,current CP methods estimate the baselines separately and ignore the interactions among the positioning information of different baselines.These interactions are called’information coupling’.In this work,we propose a new multivehicle precise CP framework using the coupled information in the network based on the Carrier Differential GNSS(CDGNSS)and inter-vehicle ranging.We demonstrate the benefit of the coupled information by deriving the Cramer-Rao Lower Bound(CRLB)of the float estimation in CP.To fully use this coupled information,we propose a Whole-Net CP(WN-CP)method which consists of the Whole-Net Extended Kalman Filter(WN-EKF)as the float estimation filter,and the Partial Baseline Fixing(PBF)as the ambiguity resolution part.The WN-EKF fuses the measurements of all baselines simultaneously to improve the performance of float estimation,and the PBF strategy fixes the ambiguities of the one baseline to be estimated,instead of full ambiguity resolution,to reduce the computation load of ambiguity resolution.Field tests involving four vehicles were conducted in urban environments.The results show that the proposed WN-CP method can achieve better performance and meanwhile maintain a low computation load compared to the existing methods.
文摘This paper proposes robot position control using force information for cooperative work between two remote robot systems with force feedback in each of which a user operates a remote robot by using a haptic interface device while observing work of the robot with a video camera. We also investigate the effect of the proposed control by experiment. As cooperative work, we deal with work in which two robots carry an object together. The robot position control using force information finely adjusts the position of the robot arm to reduce the force applied to the object. Thus, the purpose of the control is to avoid large force so that the object is not broken. In our experiment, we make a comparison among the following three cases in order to clarify how to carry out the control effectively. In the first case, the two robots are operated manually by a user with his/her both hands. In the second case, one robot is operated manually by a user, and the other robot is moved automatically under the proposed control. In the last case, the object is carried directly by a human instead of the robot which is operated by the user in the second case. As a result, experimental results demonstrate that the control can help each system operated manually by the user to carry the object smoothly.
文摘This paper proposes the cooperative position estimation of a group of mobile robots, which pertbrms disaster relief tasks in a wide area. When searching the wide area, it becomes important to know a robot's position correctly. However, for each mobile robot, it is impossible to know its own position correctly. Therefore, each mobile robot estimates its position from the data of sensor equipped on it. Generally, the sensor data is incorrect since there is sensor noise, etc. This research considers two types of the sensor data errors from omnidirectional camera. One is the error of white noise of the image captured by omnidirectional camera and so on. Another is the error of position and posture between two omnidirectional cameras. To solve the error of latter case, we proposed a self-position estimation algorithm for multiple mobile robots using two omnidirectional cameras and an accelerometer. On the other hand, to solve the error of the former case, this paper proposed an algorithm of cooperative position estimation for multiple mobile robots. In this algorithm, each mobile robot uses two omnidirectional cameras to observe the surrounding mobile robot and get the relative position between mobile robots. Each mobile robot estimates its position with only measurement data of each other mobile robots. The algorithm is based on a Bayesian filtering. Simulations of the proposed cooperative position estimation algorithm for multiple mobile robots are performed. The results show that position estimation is possible by only using measurement value from each other robot.
基金supported by the National Natural Science Foundation of China(60974146)the Natural Science and Engineering Research Council of Canada(NSERC)
文摘Based on multiple unmanned aerial vehicles(UAVs) flight at a constant altitude,a fault-tolerant cooperative localization algorithm against global positioning system(GPS) signal loss due to GPS receiver malfunction is proposed.Contrast to the traditional means with single UAV,the proposed method is based on the use of inter-UAV relative range measurements against GPS signal loss and more suitable for the small-size and low-cost UAV applications.Firstly,for re-localizing an UAV with a malfunction in its GPS receiver,an algorithm which makes use of any other three healthy UAVs in the cooperative flight as the reference points for re-localization is proposed.Secondly,by using the relative ranges from the faulty UAV to the other three UAVs,its horizontal location can be determined after the GPS signal is lost.In order to improve an accuracy of the localization,a Kalman filter is further exploited to provide the estimated location of the UAV with the GPS signal loss.The Kalman filter calculates the variance of observations in terms of horizontal dilution of positioning(HDOP) automatically.Then,during each discrete computing time step,the best reference points are selected adaptively by minimizing the HDOP.Finally,two simulation examples in Matlab/Simulink environment with five UAVs in cooperative flight are shown to evaluate the effectiveness of the proposed method.
基金the Academic Mainstay Cultivate Foundation of Sichuan Province under the grant No.1200311.
文摘The asymptotic behavior of the time-dependent solution for a 3-species cooperating model was investigated with the effects of both diffusion and time delay taken into consideration. We proved the global asymptotic stability of a positive steady-state solution to the model problem by using coupled upper and lower solutions for a more general reaction-diffusion system that gives a common framework for 3-species cooperating model problems. The result of global asymptotic stability implies that the model system coexistence is permanent. Some global asymptotic stability results for 2-species cooperating reaction-diffusion systems are included in the discussion, and some known results are extended.