Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint ...Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method.展开更多
Corona discharge, as a common means to obtain non-equilibrium plasma, can generally obtain high-concentration plasma by increasing discharge points to meet production needs. However,the existing numerical simulation m...Corona discharge, as a common means to obtain non-equilibrium plasma, can generally obtain high-concentration plasma by increasing discharge points to meet production needs. However,the existing numerical simulation models used to study multi-point corona discharge are all calculations of small-scale space models, which cannot obtain the distribution characteristics of plasma in large space. Based on our previous research, this paper proposes a hybrid model for studying the distribution of multi-point discharge plasma in large-scale spaces, which divides the computational domain and computes separately with the hydrodynamic model and the ion mobility model. The simulation results are verified by a needle–ball electrode device. Firstly, the electric field distribution and plasma distribution of the needle electrodes with single tip and double tips are compared and discussed. Secondly, the plasma distribution of the needle electrode with the double tip at different voltages is investigated. Both computational and experimental results indicate that the charged particle concentration and current of the needle electrode with double tips are both twice as high as those of the needle electrode with a single tip. This model can extend the computational area of the multi-point corona discharge finite element model to the sub-meter(25 cm) or meter level, which provides an effective means to study the plasma distribution generated by multiple discharge points in large-scale space.展开更多
Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracer...Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracers to enable the rapid and high-precision measurement of geometric errors for gantry-type computer numerical control(CNC)machine tools.This method also improves on the existing measurement efficiency issues in the single-base station measurement method and multi-base station time-sharing measurement method.We consider a three-axis gantry-type CNC machine tool,and the geometric error mathematical model is derived and established based on the combination of screw theory and a topological analysis of the machine kinematic chain.The four-station laser tracers position and measurement points are realized based on the multi-point positioning principle.A self-calibration algorithm is proposed for the coordinate calibration process of a laser tracer using the Levenberg-Marquardt nonlinear least squares method,and the geometric error is solved using Taylor’s first-order linearization iteration.The experimental results show that the geometric error calculated based on this modeling method is comparable to the results from the Etalon laser tracer.For a volume of 800 mm×1000 mm×350 mm,the maximum differences of the linear,angular,and spatial position errors were 2.0μm,2.7μrad,and 12.0μm,respectively,which verifies the accuracy of the proposed algorithm.This research proposes a modeling method for the precise measurement of errors in machine tools,and the applied nature of this study also makes it relevant both to researchers and those in the industrial sector.展开更多
Multi-point forming (MPF) is an advanced manufacturing technology for three-dimensional sheet metal parts. In this paper, the MPF integrated system is described that can form a variety of part shapes without the need ...Multi-point forming (MPF) is an advanced manufacturing technology for three-dimensional sheet metal parts. In this paper, the MPF integrated system is described that can form a variety of part shapes without the need for solid dies, and given only geometry and material information about the desired part. The central component of this system is a pair of matrices of punches, and the desired discrete die surface is constructed by changing the positions of punches though the CAD and control system. The basic MPF process is introduced and the typical application examples show the applicability of the MPF technology. Wrinkle and dimple are the major forming defects in MPF process, numerical simulation is a feasible way to predict forming defects in MPF. In conventional stamping, the mode to form sheet metal with blankholder is an effective way to suppress wrinkling; the same is true in MPF. A MPF press with flexible blankholder was developed, and the forming results indicated the forming stability of this technique. Based on the flexibility of MPF, varying deformation path MPF and sectional MPF were explored that cannot be realized in conventional stamping. By controlling each punch in real-time, a sheet part can be manufactured along a specific forming path. When the path of deformation in MPF is designed properly, forming defects will be avoided completely and lager deformation is achieved. A work piece can be formed section by section though the sectional MPF, and this technique makes it possible to manufacture large size parts in a small MPF press. Some critical experiments were performed that confirmed the validity of two special MPF techniques.展开更多
In order to study the impacts of warhead geometry and initiation pattern on the lethality of aimable warhead, multi-point synchronous initiated hexagonal prism and cylindrical warheads were compared through numerical ...In order to study the impacts of warhead geometry and initiation pattern on the lethality of aimable warhead, multi-point synchronous initiated hexagonal prism and cylindrical warheads were compared through numerical simulation, combined with theoretical formulas of fragment decelera- tion and target plugging. Enhancements of fragment velocity, kinetic energy and density toward the target and target destructions were analyzed. The results show that hexagonal prism warhead can produce dense fragment beams and enhance average velocity and kinetic energy with asymmetric eight-point initiation by 24. 13% and 54. 52% respectively, which are higher than those of the isomet- ric or same weight cylindrical warhead. The effective fragments are still relatively concentrated in an area of 8 m × 2 m for the hexagonal prism warhead when the distance between warhead and target is 40 m.展开更多
In this paper, the principle of multi-point forming (MPF) technique is presented. One of the most serious defects, wrinkling, during the multi-point forming process of a shallow rectangle cup is discussed by means of ...In this paper, the principle of multi-point forming (MPF) technique is presented. One of the most serious defects, wrinkling, during the multi-point forming process of a shallow rectangle cup is discussed by means of numerical simulation on the shallow rectangle cup forming process. The effects of thickness, material of sheet metal and the pressure of the blank holder are investigated. Based on the simulation results, the reasons and control methods of wrinkling are pointed out. Moreover, the experiment on the multi-point die forming of the shallow rectangle cup by the MPF machine is done to validate the efficiency of the numerical simulation, and the result proves that the application of an elastic cushion in the forming can restrain wrinkling efficiently.展开更多
A kind of third order multi-point boundary value problems, x'''( ι) = f( t, x ( t ), x" ( t ), x''' ( t ) ) + m 2 e(t),t∈(0, 1),x(0)=ax(ξ),x'(0)-0,x(l)= ^m2∑j=1 βjx(ηj), fεC[0,...A kind of third order multi-point boundary value problems, x'''( ι) = f( t, x ( t ), x" ( t ), x''' ( t ) ) + m 2 e(t),t∈(0, 1),x(0)=ax(ξ),x'(0)-0,x(l)= ^m2∑j=1 βjx(ηj), fεC[0, 1]×R^3, e(t)∈L^1[0, 1],a≥0, is considered, all theβj's have not the same sign, 0〈ξ〈 l, 0〈η1〈 η2〈… 〈ηm.2〈 1. By using the coincidence degree theory, some existence theorems for the problems at resonance are obtained.展开更多
This article deals with the following second-order multi-point boundary value problem x″(t)=r(t,x(t),x′(t))+e(t),t∈(0,1)x′(0)=m∑i=1aix′(ξi),x(1)=n∑j=1βjx(ηj), Under the resonance conditi...This article deals with the following second-order multi-point boundary value problem x″(t)=r(t,x(t),x′(t))+e(t),t∈(0,1)x′(0)=m∑i=1aix′(ξi),x(1)=n∑j=1βjx(ηj), Under the resonance conditions m∑i=1ai=1,n∑j=1βj=1,n∑j=1βjηj=1 , by applying the coincidence degree theory, some existence results of the problem are established. The emphasis here is that the dimension of the linear operator is two. In this paper, we extend and improve some previously known results like the ones in the references.展开更多
To apply the multi-point forming technology to the field of tube processing,the process of multi-point forming for tube is studied.Numerical simulation for the process of multi-point forming for tube is achieved by us...To apply the multi-point forming technology to the field of tube processing,the process of multi-point forming for tube is studied.Numerical simulation for the process of multi-point forming for tube is achieved by using elastic-plastic FEM in ABAQUS.During simulation,reasonable coefficient of mass scaling and friction model of penalty function are used.The influence of several major technological parameters on the process is analyzed.When the tube diameter is 60 mm and the forming curvature radius is 1000 mm,the distortion rate of cross-section and the absolute forming error gradually decrease with the increasing of tube wall thickness;However,when the tube wall thickness is constant,the smaller the curvature radius,the larger the distortion rate of cross-section,but as to forming part,its absolute forming error becomes smaller.展开更多
The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. Ho...The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. However, the above problems are not well solved currently because of having the difficulties in how to determine the multi-contact, to preciously present the changeable profiles of the rails and to establish an accurate spatial turnout system dynamics model. Based on a high-speed vehicle-turnout coupled model in which the track is modeled as flexible with rails and sleepers represented by beams, the line tracing extreme point method is introduced to investigate the wheel-rail multiple contact conditions and the key sections of the blade rail, longer nose rail, shorter rail in the switch and nose rail area are discretized to represent the varying profiles of rails in the turnout. The dynamic interaction between the vehicle and turnout is simulated for cases of the vehicle divergently passing the turnout and the multi-point contact is obtained. The tracks of the contact patches on the top of the rails are presented and the wheel-rail impact forces are offered in comparison with the contact patches transference on the rails. The numerical simulation results indicate that the length of two-point contact occurrence of a worn wheel profile and rails is longer than that of the new wheel profile and rails; The two-point contact definitely occurs in the switch and crossing area. Generally, three-point contact doesn’t occur for the new rail profile, which is testified by the wheel-rails interpolation distance and the first order derivative function of the tracing line extreme points. The presented research is not only helpful to optimize the structure of the turnout, but also useful to lower the dynamics of the high speed vehicle-turnout system.展开更多
A multi-point flexible straightening process characterized by reciprocating bending is proposed.Specifically,the process is analyzed in terms of deformation mechanism and verified by numerical simulations and physical...A multi-point flexible straightening process characterized by reciprocating bending is proposed.Specifically,the process is analyzed in terms of deformation mechanism and verified by numerical simulations and physical experiments of the straightening of a series of metal profiles with different materials and initial shapes.Further,the relationship between the bending radius and the times of reciprocating bending required to unify the curvature is discussed,and the distribution of residual stress after straightening is analyzed.The results show that the reciprocating bending process can eliminate the difference of the initial curvature,make the curvature of each section tend to be uniform;the times of reciprocating bending to reach the uniform curvature decreases with the decrease of bending radius.The straightness of the straightened profile obtained from the experiment and simulation is less than 0.2%,demonstrating a good feasibility of this method.展开更多
Resource allocation is an important problem in ubiquitous network. Most of the existing resource allocation methods considering only wireless networks are not suitable for the ubiquitous network environment, and they ...Resource allocation is an important problem in ubiquitous network. Most of the existing resource allocation methods considering only wireless networks are not suitable for the ubiquitous network environment, and they will harm the interest of individual users with instable resource requirements. This paper considers the multi-point video surveillance scenarios in a complex network environment with both wired and wireless networks. We introduce the utility estimated by the total costs of an individual network user. The problem is studied through mathematical modeling and we propose an improved problem-specific branch-and-cut algorithm to solve it. The algorithm follows the divide-and-conquer principle and fully considers the duality feature of network selection. The experiment is conducted by simulation through C and Lingo. And it shows that compared with a centralized random allocation scheme and a cost greed allocation scheme, the proposed scheme has better per- formance of reducing the total costs by 13.0% and 30.6% respectively for the user.展开更多
A class of multi-point boundary value problems are studied.Easily verified suffcient conditions to guarantee the existence of at least one solutions of above mentioned BVPs are established.The examples are presented t...A class of multi-point boundary value problems are studied.Easily verified suffcient conditions to guarantee the existence of at least one solutions of above mentioned BVPs are established.The examples are presented to illustrate the main results.展开更多
This paper is concerned with the existence of solutions for the following multipoint boundary value problem at resonance{(Φp (x'))' + f(t,x)=0,0 < t < 1,x' (0)=x'(ξ) x(1)=m-3 ∑i=1 βi x(η i),...This paper is concerned with the existence of solutions for the following multipoint boundary value problem at resonance{(Φp (x'))' + f(t,x)=0,0 < t < 1,x' (0)=x'(ξ) x(1)=m-3 ∑i=1 βi x(η i),where βi∈ R,m-3 ∑i=1 β i=1,0 < η 1 < η 2 < ··· < ηm-3 < 1,m-3 ∑i=1 βiηi=1,0 < ξ < 1.An existence theorem is obtained by using the extension of Mawhin's continuation theorem.Since almost all the multi-point boundary value problem at resonance in previous papers are for the linear operator without p-Laplacian by the use of Mawhin's continuation theorem,our method is new.展开更多
In general, the seismic response analysis in earthquake engineering assumes that the vibration parameters of the target and the contact surface of the external media are identical,i. e., single point input. However, e...In general, the seismic response analysis in earthquake engineering assumes that the vibration parameters of the target and the contact surface of the external media are identical,i. e., single point input. However, earthquake energy has an attenuation phenomenon in wave propagation,so a wide range of soil slopes and the external medium contact surface of different input points on motion are not identical. If we consider single point input only, it may not correspond with reality, so it is necessary to carry out research on multi-point input methods. Based on the 2-D slope model,single-point input and multi-point input are performed respectively to analyze and compare their similarities and differences in the perspectives of the characteristics of seismic response of soil layer and plastic zone distribution to provide a reference for the seismic design of slopes. The results show that in the perspective of soil seismic response analysis,the peak acceleration output and peak velocity output under multi-point input are greater than the peak values under single point input at the same monitoring point,the peak appearing time is also earlier than that of the single point input; in terms of the plastic zone distribution,the multi-point effect is manifested as the presence of more obvious tensile shear failures; in the perspective of safety coefficient,the safety coefficient under each multi-point input is smaller than that of single point input,a difference of about 7 % or so. In summary,multi-point input is more reasonable and practical than single point input,so multi-point input should be considered in seismic design.展开更多
To improve the quality of multi-point die forming, a new approach using discrete steel pads was proposed. The formability of three different multi-point die forming processes was analyzed through numerical simulation ...To improve the quality of multi-point die forming, a new approach using discrete steel pads was proposed. The formability of three different multi-point die forming processes was analyzed through numerical simulation and experiments. Numerical simulation and experimental results showed that the use of discrete steel pads in the multi-point forming process can substantially improve the stress–strain state on the plate and suppress dimple, straight-edge, and wrinkle defects. This analysis verified that the use of discrete steel pads in a multi-point forming process can effectively improve the quality and accuracy with which sheet metal is formed.展开更多
Airfoil is the element of fan blade design. It is strongly anticipated to design a fan of ave- raged high performance over a wide operation range. Multi-point optimization design of airfoil for axial flow fan was prop...Airfoil is the element of fan blade design. It is strongly anticipated to design a fan of ave- raged high performance over a wide operation range. Multi-point optimization design of airfoil for axial flow fan was proposed over specific operation range. Weighted objective function of airfoil lift-drag ratio was constructed for several operation points around the designing one. Airfoil was defined by parametric B-spline curve of limited shape controlling points. Results show that normal standard airfoils have remained spaces to be optimized under specific operation conditions. Airfoil performance is sensitive to flow′s Reynolds number and cascade solidity. Predicting flow transition along airfoil profile is essential to search for optimized one. Optimized airfoil of wide operation range is possible to obtain with prescribed fitness function. Obtainments of multi-point optimization may be relatively lower at design point, but positive obtainments are achieved at off-design ones. Resulted airfoil is specially suitable for axial flow fans operating frequently at off-design point such as air condition coolers.展开更多
We use feedback wavefront shaping technology to realize the multi-point uniform light focusing in three-dimensional(3D) space through scattering media only by loading the optimal mask once.General 3D spatial focusing ...We use feedback wavefront shaping technology to realize the multi-point uniform light focusing in three-dimensional(3D) space through scattering media only by loading the optimal mask once.General 3D spatial focusing needs to load the optimal mask multiple times to realize the spatial movement of the focal point and the uniformity of multi-point focusing cannot be guaranteed.First,we investigate the effects of speckle axial correlation and different axial distances on 3D spatial multi-point uniform focusing and propose possible solutions.Then we use our developed non-dominated sorting genetic algorithm suitable for 3D spatial focusing(S-NSGA) to verify the experiment of multi-point focusing in 3D space.This research is expected to have potential applications in the fields of optical manipulation and optogenetics.展开更多
By using fixed point theorem, multiple positive solutions for some fourth- order multi-point boundary value problems with nonlinearity depending on all order derivatives are obtained. The associated Green's functions...By using fixed point theorem, multiple positive solutions for some fourth- order multi-point boundary value problems with nonlinearity depending on all order derivatives are obtained. The associated Green's functions are also given.展开更多
Fast and accurate identification of unknown pollution sources plays a crucial role in the emergency response and source control of air pollution.In this work,the applicability of a previously proposed two-step inversi...Fast and accurate identification of unknown pollution sources plays a crucial role in the emergency response and source control of air pollution.In this work,the applicability of a previously proposed two-step inversion method is investigated with sensitivity experiments and real data from the first release of the European Tracer Experiment(ETEX-1).The two-step inversion method is based on the principle of least squares and carries out additional model correction through the residual iterative process.To evaluate its performance,its retrieval results are compared with those of two other existing algorithms.It is shown that for those cases with richer measurements,all three methods are less sensitive to errors,while for cases where measurements are sparse,their retrieval accuracy will rapidly decrease as errors increase.From the results of sensitivity experiments,the new method provides higher estimation accuracy and a more stable performance than the other two methods.The new method presents the smallest maximum location error of 18.20 km when the amplitude of the measurement error increases to 100%,and 22.67 km when errors in the wind fields increase to 200%.Moreover,when applied to ETEX-1 data,the new method also exhibits good performance,with a location error of 4.71 km,which is the best estimation with respect to source location.展开更多
文摘Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method.
基金supported by National Natural Science Foundation of China (Nos.52207158 and 51821005)the Fundamental Research Funds for the Central Universities (HUST: No.2022JYCXJJ012)the National Key Research and Development Program of China (Nos.2016YFC0401002 and 2016YFC0401006)。
文摘Corona discharge, as a common means to obtain non-equilibrium plasma, can generally obtain high-concentration plasma by increasing discharge points to meet production needs. However,the existing numerical simulation models used to study multi-point corona discharge are all calculations of small-scale space models, which cannot obtain the distribution characteristics of plasma in large space. Based on our previous research, this paper proposes a hybrid model for studying the distribution of multi-point discharge plasma in large-scale spaces, which divides the computational domain and computes separately with the hydrodynamic model and the ion mobility model. The simulation results are verified by a needle–ball electrode device. Firstly, the electric field distribution and plasma distribution of the needle electrodes with single tip and double tips are compared and discussed. Secondly, the plasma distribution of the needle electrode with the double tip at different voltages is investigated. Both computational and experimental results indicate that the charged particle concentration and current of the needle electrode with double tips are both twice as high as those of the needle electrode with a single tip. This model can extend the computational area of the multi-point corona discharge finite element model to the sub-meter(25 cm) or meter level, which provides an effective means to study the plasma distribution generated by multiple discharge points in large-scale space.
基金Supported by Natural Science Foundation of Shaanxi Province of China(Grant No.2021JM010)Suzhou Municipal Natural Science Foundation of China(Grant Nos.SYG202018,SYG202134).
文摘Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracers to enable the rapid and high-precision measurement of geometric errors for gantry-type computer numerical control(CNC)machine tools.This method also improves on the existing measurement efficiency issues in the single-base station measurement method and multi-base station time-sharing measurement method.We consider a three-axis gantry-type CNC machine tool,and the geometric error mathematical model is derived and established based on the combination of screw theory and a topological analysis of the machine kinematic chain.The four-station laser tracers position and measurement points are realized based on the multi-point positioning principle.A self-calibration algorithm is proposed for the coordinate calibration process of a laser tracer using the Levenberg-Marquardt nonlinear least squares method,and the geometric error is solved using Taylor’s first-order linearization iteration.The experimental results show that the geometric error calculated based on this modeling method is comparable to the results from the Etalon laser tracer.For a volume of 800 mm×1000 mm×350 mm,the maximum differences of the linear,angular,and spatial position errors were 2.0μm,2.7μrad,and 12.0μm,respectively,which verifies the accuracy of the proposed algorithm.This research proposes a modeling method for the precise measurement of errors in machine tools,and the applied nature of this study also makes it relevant both to researchers and those in the industrial sector.
文摘Multi-point forming (MPF) is an advanced manufacturing technology for three-dimensional sheet metal parts. In this paper, the MPF integrated system is described that can form a variety of part shapes without the need for solid dies, and given only geometry and material information about the desired part. The central component of this system is a pair of matrices of punches, and the desired discrete die surface is constructed by changing the positions of punches though the CAD and control system. The basic MPF process is introduced and the typical application examples show the applicability of the MPF technology. Wrinkle and dimple are the major forming defects in MPF process, numerical simulation is a feasible way to predict forming defects in MPF. In conventional stamping, the mode to form sheet metal with blankholder is an effective way to suppress wrinkling; the same is true in MPF. A MPF press with flexible blankholder was developed, and the forming results indicated the forming stability of this technique. Based on the flexibility of MPF, varying deformation path MPF and sectional MPF were explored that cannot be realized in conventional stamping. By controlling each punch in real-time, a sheet part can be manufactured along a specific forming path. When the path of deformation in MPF is designed properly, forming defects will be avoided completely and lager deformation is achieved. A work piece can be formed section by section though the sectional MPF, and this technique makes it possible to manufacture large size parts in a small MPF press. Some critical experiments were performed that confirmed the validity of two special MPF techniques.
文摘In order to study the impacts of warhead geometry and initiation pattern on the lethality of aimable warhead, multi-point synchronous initiated hexagonal prism and cylindrical warheads were compared through numerical simulation, combined with theoretical formulas of fragment decelera- tion and target plugging. Enhancements of fragment velocity, kinetic energy and density toward the target and target destructions were analyzed. The results show that hexagonal prism warhead can produce dense fragment beams and enhance average velocity and kinetic energy with asymmetric eight-point initiation by 24. 13% and 54. 52% respectively, which are higher than those of the isomet- ric or same weight cylindrical warhead. The effective fragments are still relatively concentrated in an area of 8 m × 2 m for the hexagonal prism warhead when the distance between warhead and target is 40 m.
文摘In this paper, the principle of multi-point forming (MPF) technique is presented. One of the most serious defects, wrinkling, during the multi-point forming process of a shallow rectangle cup is discussed by means of numerical simulation on the shallow rectangle cup forming process. The effects of thickness, material of sheet metal and the pressure of the blank holder are investigated. Based on the simulation results, the reasons and control methods of wrinkling are pointed out. Moreover, the experiment on the multi-point die forming of the shallow rectangle cup by the MPF machine is done to validate the efficiency of the numerical simulation, and the result proves that the application of an elastic cushion in the forming can restrain wrinkling efficiently.
文摘A kind of third order multi-point boundary value problems, x'''( ι) = f( t, x ( t ), x" ( t ), x''' ( t ) ) + m 2 e(t),t∈(0, 1),x(0)=ax(ξ),x'(0)-0,x(l)= ^m2∑j=1 βjx(ηj), fεC[0, 1]×R^3, e(t)∈L^1[0, 1],a≥0, is considered, all theβj's have not the same sign, 0〈ξ〈 l, 0〈η1〈 η2〈… 〈ηm.2〈 1. By using the coincidence degree theory, some existence theorems for the problems at resonance are obtained.
基金Supported by the NSF of Jiangsu Province(BK2008119)the NSF of the Education Department of Jiangsu Province (08KJB110011)+1 种基金Innovation Project of Jiangsu Province Postgraduate Training Project(CX07S 015z)the Qinglan Program of Jiangsu Province (QL200613)
文摘This article deals with the following second-order multi-point boundary value problem x″(t)=r(t,x(t),x′(t))+e(t),t∈(0,1)x′(0)=m∑i=1aix′(ξi),x(1)=n∑j=1βjx(ηj), Under the resonance conditions m∑i=1ai=1,n∑j=1βj=1,n∑j=1βjηj=1 , by applying the coincidence degree theory, some existence results of the problem are established. The emphasis here is that the dimension of the linear operator is two. In this paper, we extend and improve some previously known results like the ones in the references.
基金Sponsored by the Specific Targeted Research Projects,the 6th Framework Project,EU(Grant No.AST5-CT-2006-030877)
文摘To apply the multi-point forming technology to the field of tube processing,the process of multi-point forming for tube is studied.Numerical simulation for the process of multi-point forming for tube is achieved by using elastic-plastic FEM in ABAQUS.During simulation,reasonable coefficient of mass scaling and friction model of penalty function are used.The influence of several major technological parameters on the process is analyzed.When the tube diameter is 60 mm and the forming curvature radius is 1000 mm,the distortion rate of cross-section and the absolute forming error gradually decrease with the increasing of tube wall thickness;However,when the tube wall thickness is constant,the smaller the curvature radius,the larger the distortion rate of cross-section,but as to forming part,its absolute forming error becomes smaller.
基金supported by National Natural Science Foundation of China (Grant Nos. 51175032, U1134201)National Basic Research Program of China (973 Program, Grant No. 2011CD711104)
文摘The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. However, the above problems are not well solved currently because of having the difficulties in how to determine the multi-contact, to preciously present the changeable profiles of the rails and to establish an accurate spatial turnout system dynamics model. Based on a high-speed vehicle-turnout coupled model in which the track is modeled as flexible with rails and sleepers represented by beams, the line tracing extreme point method is introduced to investigate the wheel-rail multiple contact conditions and the key sections of the blade rail, longer nose rail, shorter rail in the switch and nose rail area are discretized to represent the varying profiles of rails in the turnout. The dynamic interaction between the vehicle and turnout is simulated for cases of the vehicle divergently passing the turnout and the multi-point contact is obtained. The tracks of the contact patches on the top of the rails are presented and the wheel-rail impact forces are offered in comparison with the contact patches transference on the rails. The numerical simulation results indicate that the length of two-point contact occurrence of a worn wheel profile and rails is longer than that of the new wheel profile and rails; The two-point contact definitely occurs in the switch and crossing area. Generally, three-point contact doesn’t occur for the new rail profile, which is testified by the wheel-rails interpolation distance and the first order derivative function of the tracing line extreme points. The presented research is not only helpful to optimize the structure of the turnout, but also useful to lower the dynamics of the high speed vehicle-turnout system.
基金financially supported by the National Natural Science Foundation of China(No.52005431)the National Natural Science Foundation of Hebei Province,China(No.E2020203086)the National Major Science and Technology Project of China(No.2018ZX04007002).
文摘A multi-point flexible straightening process characterized by reciprocating bending is proposed.Specifically,the process is analyzed in terms of deformation mechanism and verified by numerical simulations and physical experiments of the straightening of a series of metal profiles with different materials and initial shapes.Further,the relationship between the bending radius and the times of reciprocating bending required to unify the curvature is discussed,and the distribution of residual stress after straightening is analyzed.The results show that the reciprocating bending process can eliminate the difference of the initial curvature,make the curvature of each section tend to be uniform;the times of reciprocating bending to reach the uniform curvature decreases with the decrease of bending radius.The straightness of the straightened profile obtained from the experiment and simulation is less than 0.2%,demonstrating a good feasibility of this method.
基金Supported by the National Science and Technology Major Project (No.2011ZX03005-004-04)the National Grand Fundamental Research 973 Program of China (No.2011CB302-905)+2 种基金the National Natural Science Foundation of China (No.61170058,61272133,and 51274202)the Research Fund for the Doctoral Program of Higher Education of China (No.20103402110041)the Suzhou Fundamental Research Project (No.SYG201143)
文摘Resource allocation is an important problem in ubiquitous network. Most of the existing resource allocation methods considering only wireless networks are not suitable for the ubiquitous network environment, and they will harm the interest of individual users with instable resource requirements. This paper considers the multi-point video surveillance scenarios in a complex network environment with both wired and wireless networks. We introduce the utility estimated by the total costs of an individual network user. The problem is studied through mathematical modeling and we propose an improved problem-specific branch-and-cut algorithm to solve it. The algorithm follows the divide-and-conquer principle and fully considers the duality feature of network selection. The experiment is conducted by simulation through C and Lingo. And it shows that compared with a centralized random allocation scheme and a cost greed allocation scheme, the proposed scheme has better per- formance of reducing the total costs by 13.0% and 30.6% respectively for the user.
基金Supported by the Science Foundation of Educational Committee of Hunan Province(08C794)
文摘A class of multi-point boundary value problems are studied.Easily verified suffcient conditions to guarantee the existence of at least one solutions of above mentioned BVPs are established.The examples are presented to illustrate the main results.
文摘This paper is concerned with the existence of solutions for the following multipoint boundary value problem at resonance{(Φp (x'))' + f(t,x)=0,0 < t < 1,x' (0)=x'(ξ) x(1)=m-3 ∑i=1 βi x(η i),where βi∈ R,m-3 ∑i=1 β i=1,0 < η 1 < η 2 < ··· < ηm-3 < 1,m-3 ∑i=1 βiηi=1,0 < ξ < 1.An existence theorem is obtained by using the extension of Mawhin's continuation theorem.Since almost all the multi-point boundary value problem at resonance in previous papers are for the linear operator without p-Laplacian by the use of Mawhin's continuation theorem,our method is new.
基金funded by the Program of China Earthquake Science Data Sharing Platform and the Youth Fund(17404031570521)
文摘In general, the seismic response analysis in earthquake engineering assumes that the vibration parameters of the target and the contact surface of the external media are identical,i. e., single point input. However, earthquake energy has an attenuation phenomenon in wave propagation,so a wide range of soil slopes and the external medium contact surface of different input points on motion are not identical. If we consider single point input only, it may not correspond with reality, so it is necessary to carry out research on multi-point input methods. Based on the 2-D slope model,single-point input and multi-point input are performed respectively to analyze and compare their similarities and differences in the perspectives of the characteristics of seismic response of soil layer and plastic zone distribution to provide a reference for the seismic design of slopes. The results show that in the perspective of soil seismic response analysis,the peak acceleration output and peak velocity output under multi-point input are greater than the peak values under single point input at the same monitoring point,the peak appearing time is also earlier than that of the single point input; in terms of the plastic zone distribution,the multi-point effect is manifested as the presence of more obvious tensile shear failures; in the perspective of safety coefficient,the safety coefficient under each multi-point input is smaller than that of single point input,a difference of about 7 % or so. In summary,multi-point input is more reasonable and practical than single point input,so multi-point input should be considered in seismic design.
文摘To improve the quality of multi-point die forming, a new approach using discrete steel pads was proposed. The formability of three different multi-point die forming processes was analyzed through numerical simulation and experiments. Numerical simulation and experimental results showed that the use of discrete steel pads in the multi-point forming process can substantially improve the stress–strain state on the plate and suppress dimple, straight-edge, and wrinkle defects. This analysis verified that the use of discrete steel pads in a multi-point forming process can effectively improve the quality and accuracy with which sheet metal is formed.
基金Strategic Leading Project of Shanghai Municipal Science Committee(16DZ1121202)
文摘Airfoil is the element of fan blade design. It is strongly anticipated to design a fan of ave- raged high performance over a wide operation range. Multi-point optimization design of airfoil for axial flow fan was proposed over specific operation range. Weighted objective function of airfoil lift-drag ratio was constructed for several operation points around the designing one. Airfoil was defined by parametric B-spline curve of limited shape controlling points. Results show that normal standard airfoils have remained spaces to be optimized under specific operation conditions. Airfoil performance is sensitive to flow′s Reynolds number and cascade solidity. Predicting flow transition along airfoil profile is essential to search for optimized one. Optimized airfoil of wide operation range is possible to obtain with prescribed fitness function. Obtainments of multi-point optimization may be relatively lower at design point, but positive obtainments are achieved at off-design ones. Resulted airfoil is specially suitable for axial flow fans operating frequently at off-design point such as air condition coolers.
基金Project supported by the Natural Science Foundation of Beijing Municipality,China(Grant No.7182091)。
文摘We use feedback wavefront shaping technology to realize the multi-point uniform light focusing in three-dimensional(3D) space through scattering media only by loading the optimal mask once.General 3D spatial focusing needs to load the optimal mask multiple times to realize the spatial movement of the focal point and the uniformity of multi-point focusing cannot be guaranteed.First,we investigate the effects of speckle axial correlation and different axial distances on 3D spatial multi-point uniform focusing and propose possible solutions.Then we use our developed non-dominated sorting genetic algorithm suitable for 3D spatial focusing(S-NSGA) to verify the experiment of multi-point focusing in 3D space.This research is expected to have potential applications in the fields of optical manipulation and optogenetics.
文摘By using fixed point theorem, multiple positive solutions for some fourth- order multi-point boundary value problems with nonlinearity depending on all order derivatives are obtained. The associated Green's functions are also given.
基金supported by the National Key R&D Program of China[grant numbers 2017YFC1501803 and 2017YFC1502102].
文摘Fast and accurate identification of unknown pollution sources plays a crucial role in the emergency response and source control of air pollution.In this work,the applicability of a previously proposed two-step inversion method is investigated with sensitivity experiments and real data from the first release of the European Tracer Experiment(ETEX-1).The two-step inversion method is based on the principle of least squares and carries out additional model correction through the residual iterative process.To evaluate its performance,its retrieval results are compared with those of two other existing algorithms.It is shown that for those cases with richer measurements,all three methods are less sensitive to errors,while for cases where measurements are sparse,their retrieval accuracy will rapidly decrease as errors increase.From the results of sensitivity experiments,the new method provides higher estimation accuracy and a more stable performance than the other two methods.The new method presents the smallest maximum location error of 18.20 km when the amplitude of the measurement error increases to 100%,and 22.67 km when errors in the wind fields increase to 200%.Moreover,when applied to ETEX-1 data,the new method also exhibits good performance,with a location error of 4.71 km,which is the best estimation with respect to source location.