期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
并行RSSD和改进MOMEDA的齿轮箱故障诊断
1
作者 尹志安 孙文龙 王凯 《机械设计与制造》 北大核心 2024年第9期196-204,共9页
为了克服传统共振稀疏信号分解与矩量法的局限性,提高其提取微弱故障特征的能力,提出了一种并行双参数优化RSSD和改进MOMEDA的行星齿轮箱故障诊断方法。首先,并行双参数优化RSSD构造了与不同故障特征相匹配的小波基函数,并将复合故障信... 为了克服传统共振稀疏信号分解与矩量法的局限性,提高其提取微弱故障特征的能力,提出了一种并行双参数优化RSSD和改进MOMEDA的行星齿轮箱故障诊断方法。首先,并行双参数优化RSSD构造了与不同故障特征相匹配的小波基函数,并将复合故障信号自适应分解为不同的谐振分量,实现了复杂故障特征的解耦。其次,利用改进MOMEDA对共振分量进行去卷积滤波,有效地消除了复杂传输路径和强环境噪声的影响,增强了与弱故障相关的脉冲。最后,通过对行星齿轮箱实验平台的实际故障信号的分析,证明了提出的方法不仅具有良好的解耦性能以及提取弱故障信号能力,且能够全面、准确地提取不同类型的故障。 展开更多
关键词 共振稀疏信号分解 多点最优最小熵反褶积 行星齿轮箱 故障诊断
下载PDF
多点最优最小熵反褶积结合交互信息的过载信号特征提取
2
作者 谢雨岑 房安琪 +4 位作者 郜王鑫 李彩芳 邵志豪 张珂 唐万杰 《探测与控制学报》 CSCD 北大核心 2024年第5期1-7,共7页
针对弹药超高速侵彻多层建筑物的过程中,侵彻过载加速度信号产生粘连混叠,影响侵彻穿层特征的精准辨识提取,造成引信难以精确计层的问题,提出一种基于多点最优最小熵反褶积(MOMEDA)和交互信息的过载信号穿层特征提取方法。考虑到引信加... 针对弹药超高速侵彻多层建筑物的过程中,侵彻过载加速度信号产生粘连混叠,影响侵彻穿层特征的精准辨识提取,造成引信难以精确计层的问题,提出一种基于多点最优最小熵反褶积(MOMEDA)和交互信息的过载信号穿层特征提取方法。考虑到引信加速度敏感系统在高频强动载下的响应规律未知,该方法利用MOMEDA的非迭代盲解卷积增强技术来实现对原始侵彻过载信号的降噪,基于交互信息理论进一步优化MOMEDA最佳滤波器的长度以增强原始侵彻过载信号中多层目标特征。通过对引信超高速侵彻多层靶板的仿真、试验信号的研究结果表明,该方法可以有效突显原始侵彻过载信号中的穿层特征,为强粘连信号下的引信精确计层功能实现提供依据。 展开更多
关键词 超高速侵彻 多点最优最小熵反褶积 交互信息 特征提取
下载PDF
ITD结合参数优化MOMEDA的滚动轴承故障特征提取
3
作者 刘沛 彭珍瑞 何泽人 《机械科学与技术》 CSCD 北大核心 2024年第6期967-974,共8页
针对固有时间尺度分解(Intrinsic time scale decomposition,ITD)方法在强背景噪声影响下难以提取轴承故障特征的问题,提出了一种ITD与参数优化的多点最优最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOME... 针对固有时间尺度分解(Intrinsic time scale decomposition,ITD)方法在强背景噪声影响下难以提取轴承故障特征的问题,提出了一种ITD与参数优化的多点最优最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)相结合的滚动轴承故障特征提取方法。首先根据包络谱峰值因子最大原则提取包含丰富故障信息的ITD分量,其次对该分量进行MOMEDA降噪处理。对影响MOMEDA滤波效果的两个参数——故障周期T与滤波器长度L分别以多点峭度和平方包络谱的基尼指数进行优化,最后进行包络谱分析提取故障特征频率。通过仿真信号与实测信号分析表明该方法能在强噪声干扰下有效提取故障特征。 展开更多
关键词 固有时间尺度分解 多点最优最小熵解卷积 滚动轴承 包络谱峰值因子 基尼指数
下载PDF
强噪声背景下地铁牵引电机轴承故障识别方法研究
4
作者 王锦畅 陈威 +2 位作者 彭乐乐 郑树彬 钟倩文 《计算机与数字工程》 2024年第7期2239-2243,共5页
为了实现地铁车辆牵引电机轴承故障识别,论文针对电机轴承故障冲击被强背景噪声淹没特征提取困难的问题,利用多点最优调整的最小熵解卷积增强故障冲击成分,采用粒子群优化算法自适应地确定滤波器阶数和故障周期,获取高信噪比的故障特征... 为了实现地铁车辆牵引电机轴承故障识别,论文针对电机轴承故障冲击被强背景噪声淹没特征提取困难的问题,利用多点最优调整的最小熵解卷积增强故障冲击成分,采用粒子群优化算法自适应地确定滤波器阶数和故障周期,获取高信噪比的故障特征信号,最后对故障特征信号进行包络谱分析实现故障识别。现场采集数据验证了该方法的有效性。 展开更多
关键词 牵引电机 轴承故障诊断 多点最优调整的最小熵解卷积 粒子群优化
下载PDF
基于IEWT-MOMEDA-FSC的滚动轴承故障诊断
5
作者 吴振雄 王林军 +2 位作者 邹腾枭 陈梦华 陈保家 《三峡大学学报(自然科学版)》 北大核心 2024年第1期92-98,共7页
针对滚动轴承故障信号常伴有噪声干扰且故障特征难以提取的问题,本文提出一种基于改进经验小波变换(IEWT)、多点优化最小熵解卷积(MOMEDA)和快速谱相关(FSC)的滚动轴承故障诊断方法.首先,将原始信号进行快速谱相关分析得到增强包络谱,... 针对滚动轴承故障信号常伴有噪声干扰且故障特征难以提取的问题,本文提出一种基于改进经验小波变换(IEWT)、多点优化最小熵解卷积(MOMEDA)和快速谱相关(FSC)的滚动轴承故障诊断方法.首先,将原始信号进行快速谱相关分析得到增强包络谱,通过增强包络谱的极值点来自适应地划分频谱,以分割的频谱为边界构建小波滤波器组将信号分解为多个IMF分量,利用相关峭度准则筛选出有效的分量进行叠加;其次,用MOMEDA对其进行降噪处理,将降噪后的信号进行快速谱相关分析,得到增强包络谱图;最后,将增强包络谱图中幅值较高的频率与故障频率对比,判定其失效形式,用所提出的方法对实测轴承故障信号进行分析验证.结果表明,所提出的方法能有效降低噪音干扰且增强信号故障冲击特性,在噪声环境下具有较强的故障特征提取能力. 展开更多
关键词 改进经验小波变换 多点最优最小熵解卷积 快速谱相关 峭度 互相关
下载PDF
基于MMED+TQWT方法的叶轮振动信号特征提取研究
6
作者 袁艳 辛保娟 《山西电子技术》 2024年第4期102-104,共3页
为了提高高炉煤气余压发电装置(TRT)叶轮故障诊断能力,开发了以最小熵解卷积MMED和可调品质因子小波变换TQWT两种方法共同诊断叶轮故障的技术。先利用MMED方法转换初始振动信号获得更明显的故障冲击成分,再对经过预处理的信号实施TQWT分... 为了提高高炉煤气余压发电装置(TRT)叶轮故障诊断能力,开发了以最小熵解卷积MMED和可调品质因子小波变换TQWT两种方法共同诊断叶轮故障的技术。先利用MMED方法转换初始振动信号获得更明显的故障冲击成分,再对经过预处理的信号实施TQWT分解,并设定相应的品质因子Q,再按照峭度最大原则确定子带最优分量并计算包络谱数据,实现叶轮故障的诊断功能。研究结果表明:采用本文方法分析故障冲击成分获得了显著增强,对噪声干扰起到了明显抑制作用。从包络谱内明显看到跟叶轮故障特征频率相同的频率特征,形成了明显的边频带,说明叶轮中已形成故障特征。 展开更多
关键词 叶轮 最小熵解卷积 可调品质因子小波变换 特征提取 故障诊断
下载PDF
一种用于滚动轴承故障诊断的脉冲增强提取方法 被引量:3
7
作者 冯坤 李业政 胡明辉 《振动工程学报》 EI CSCD 北大核心 2023年第2期582-592,共11页
针对齿轮箱滚动轴承发生故障时,其故障脉冲被强烈干扰信号湮没而导致故障特征难以提取的难题,提出了基于脉冲增强提取的滚动轴承故障诊断方法。基于表征故障脉冲周期性的包络谱,构建了能指示振动信号中故障脉冲强度的脉冲提取算子(PEO)... 针对齿轮箱滚动轴承发生故障时,其故障脉冲被强烈干扰信号湮没而导致故障特征难以提取的难题,提出了基于脉冲增强提取的滚动轴承故障诊断方法。基于表征故障脉冲周期性的包络谱,构建了能指示振动信号中故障脉冲强度的脉冲提取算子(PEO);考虑到微弱故障信号特征增强的需求,结合最小熵解卷积(MED)构造了脉冲增强提取算子指标(PEEO),用于评价MED不同滤波长度对故障脉冲增强的效果;构建基于MED滤波长度、脉冲频率以及PEEO的三维滤波模型,利用三维滤波谱PEEO峰值定位MED最优滤波长度并指示脉冲增强信号特征频率,获取最优脉冲增强信号的同时实现齿轮箱滚动轴承故障特征的提取。仿真分析和实验验证结果表明,该方法可以有效增强轴承故障脉冲,并在最优脉冲增强信号PEEO幅值谱中呈现显著的轴承故障特征,实现了齿轮箱滚动轴承微弱故障的诊断,且与典型方法相比具有明显优势。 展开更多
关键词 故障诊断 滚动轴承 脉冲增强提取 最小熵解卷积(MED) 最优滤波
下载PDF
基于ACMD与改进MOMEDA的滚动轴承故障诊断 被引量:3
8
作者 石佳 黄宇峰 王锋 《振动与冲击》 EI CSCD 北大核心 2023年第16期218-226,261,共10页
针对强背景噪声下滚动轴承故障特征难以提取的问题,提出基于自适应非线性调频分量分解(adaptive chirp mode decomposition,ACMD)与改进多点优化最小熵解卷积(improved multipoint optimal minimum entropy deconvolution adjusted,IMOM... 针对强背景噪声下滚动轴承故障特征难以提取的问题,提出基于自适应非线性调频分量分解(adaptive chirp mode decomposition,ACMD)与改进多点优化最小熵解卷积(improved multipoint optimal minimum entropy deconvolution adjusted,IMOMEDA)的故障诊断方法。(1)为提高信号信噪比,采用基于基尼系数指标的ACMD,进行信号重构预处理;(2)为提高参数设定的准确性,提出改进的MOMEDA方法——利用天鹰优化算法,以多点峭度最大为目标,寻优确定滤波器周期参数;(3)对信号进行包络谱分析,通过对比包络谱的主导频率成分与理论故障特征频率,判断故障类型。仿真及实测数据分析结果表明,该方法能有效提取强背景噪声下的滚动轴承故障信号的特征信息,具备一定的优越性与实用性。 展开更多
关键词 自适应非线性调频分量分解(ACMD) 基尼系数 天鹰优化算法 多点最优调整最小熵解卷积 滚动轴承 故障诊断
下载PDF
基于旋转编码器信号的滚动轴承故障特征增强提取 被引量:2
9
作者 朱云贵 郭瑜 +2 位作者 邹翔 田田 徐万通 《振动与冲击》 EI CSCD 北大核心 2023年第8期119-125,共7页
针对滚动轴承故障特征较弱且振动传感器安装受限的场合下故障特征不易提取的问题。结合旋转编码器信号传递路径短、干扰少等优势,提出一种基于旋转编码器瞬时角速度(instantaneous angular speed,IAS)信号的滚动轴承故障特征增强提取法... 针对滚动轴承故障特征较弱且振动传感器安装受限的场合下故障特征不易提取的问题。结合旋转编码器信号传递路径短、干扰少等优势,提出一种基于旋转编码器瞬时角速度(instantaneous angular speed,IAS)信号的滚动轴承故障特征增强提取法。首先,使用去相位算法(de-phasing algorithm,DPA)抑制转频及其谐波等严格周期性分量;其次,通过多点优化最小熵反褶积(multi-point optimization minimum entropy deconvolution adjusted,MOMEDA)增强滚动轴承故障冲击分量;最后,对增强后的信号进行频谱分析,提取轴承故障冲击特征。通过仿真和轴承外圈实测数据验证所提方法的有效性。 展开更多
关键词 滚动轴承 编码器 瞬时角速度(IAS) 去相位算法(DPA) 最小熵反褶积(MOMEDA) 故障特征提取
下载PDF
基于OSSD-EMOMEDA的轮毂电机轴承故障特征提取方法 被引量:1
10
作者 丁殿勇 薛红涛 刘炳晨 《中国电机工程学报》 EI CSCD 北大核心 2023年第24期9721-9732,共12页
为了解决轮毂电机轴承早期微弱故障特征难以提取的问题,提出一种基于优化奇异谱分解(optimized singular spectrum decomposition,OSSD)和增强多点最优调整最小熵解卷积(enhance multipoint optimal minimum entropy deconvolution adju... 为了解决轮毂电机轴承早期微弱故障特征难以提取的问题,提出一种基于优化奇异谱分解(optimized singular spectrum decomposition,OSSD)和增强多点最优调整最小熵解卷积(enhance multipoint optimal minimum entropy deconvolution adjusted,EMOMEDA)的特征提取方法,以实现故障特征的检测与提取,及时掌握轮毂电机的运行安全。首先,提出由新的时频综合指标(time-frequency composite index,TCI)自适应优化分量个数的OSSD方法,并对原始信号进行前处理,通过包络谱峰值指标选择敏感的奇异谱分量。然后,提出EMOMEDA方法,设计一种改进的波形延拓策略恢复解卷积信号长度,克服MOMEDA算法的边缘效应,并通过二次解卷积运算获得最优解卷积信号。最后,对最优解卷积信号进行包络分析,实现故障特征的增强提取。分别采用仿真和试验信号验证所提方法的可行性,并将其与多种故障特征提取方法进行对比,证明了其优越性。结果表明,所提方法能够有效提取微弱故障特征,在特征增强方面具有可观的优势。 展开更多
关键词 轮毂电机 轴承故障 特征提取 奇异谱分解 多点最优调整最小熵解卷积
下载PDF
基于MVMD-MOMEDA的齿轮箱故障诊断方法 被引量:1
11
作者 崔素晓 崔彦平 +2 位作者 武哲 吕志元 张琳琳 《河北科技大学学报》 CAS 北大核心 2023年第6期551-561,共11页
针对齿轮箱振动信号受复杂传递路径、强背景噪声的影响导致早期微弱故障难以诊断的问题,提出了一种基于多元变分模态分解(MVMD)和多点最优最小熵反褶积调整(MOMEDA)的齿轮箱故障诊断方法。首先,利用MVMD将融合后的多通道振动信号进行模... 针对齿轮箱振动信号受复杂传递路径、强背景噪声的影响导致早期微弱故障难以诊断的问题,提出了一种基于多元变分模态分解(MVMD)和多点最优最小熵反褶积调整(MOMEDA)的齿轮箱故障诊断方法。首先,利用MVMD将融合后的多通道振动信号进行模态分解,得到一系列表征信号局部特征的IMF分量;其次,引入峭度值(Ku),选取最佳模态进行信号重构,剔除含噪声分量高的IMF;最后,对重构信号进行MOMEDA特征提取以识别故障频率,从而进行故障诊断。结果表明,所提故障诊断方法可以有效剔除噪声分量的干扰,识别出信号中的故障冲击成分及其倍频进而确定故障类型。MVMD-MOMEDA方法解决了在单一通道问题上无法处理多源信号的缺点以及早期微弱故障特征难以提取等问题,可为故障诊断和多源信号处理提供参考。 展开更多
关键词 数据处理 齿轮箱 多元变分模态分解 多点最优最小熵反褶积调整 特征提取 故障诊断
下载PDF
基于MOMEDA与BiLSTM的滚动轴承微弱故障识别方法 被引量:1
12
作者 权伟 和丹 +1 位作者 杨鹏程 区瑞坚 《轻工机械》 CAS 2023年第2期57-65,共9页
针对传统的滚动轴承智能诊断模型计算效率低和准确率欠佳问题,课题组提出一种基于多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)和双向长短时记忆(bidirectional long short-term memory ne... 针对传统的滚动轴承智能诊断模型计算效率低和准确率欠佳问题,课题组提出一种基于多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)和双向长短时记忆(bidirectional long short-term memory network,BiLSTM)网络相结合的滚动轴承故障诊断模型。该模型利用MOMEDA方法增强故障特征,并结合遗传算法(genetic algorithm,GA)对BiLSTM模型参数进行优化,实现滚动轴承智能、高效及鲁棒性诊断。利用该模型对经典轴承数据集以及牵引电机轴承故障数据集进行验证,平均准确率达到了99.63%,分别比传统卷积神经网络(convolutional neural network,CNN)、单层长短时记忆网络(long short-term memory network,LSTM)、双向长短时记忆网络和最新的CNN-LSTM模型高16.02%,9.98%,7.01%和5.65%,验证了该模型的有效性和优越性。 展开更多
关键词 滚动轴承 多点最优最小熵解卷积 遗传算法 双向长短时记忆网络
下载PDF
AVMD-IMOMEDA在滚动轴承声学复合故障诊断的应用
13
作者 周文杰 周俊 +1 位作者 柳小勤 刘韬 《振动与冲击》 EI CSCD 北大核心 2023年第24期152-159,共8页
针对滚动轴承声信号存在较强的背景噪声干扰,微弱故障特征信息难以有效提取等问题,并考虑到声信号非接触式测量的优势。提出一种参数自适应变分模式分解结合改进多点最优最小熵反褶积(improve multipoint optimal minimum entropy decon... 针对滚动轴承声信号存在较强的背景噪声干扰,微弱故障特征信息难以有效提取等问题,并考虑到声信号非接触式测量的优势。提出一种参数自适应变分模式分解结合改进多点最优最小熵反褶积(improve multipoint optimal minimum entropy deconvolution adjusted, MOMEDA)的复合故障声学诊断方法;采用综合指标解决变分模态分解(variational mode decomposition, VMD)参数自适应选择问题,利用最大加权峭度识别最优分量并重构信号,增强与故障特征相关的脉冲特征信息;结合IMOMEDA方法从重构信号中分离提取周期性的脉冲信号,通过包络解调获取故障特征频率。仿真信号和试验信号验证了该方法的有效性,与传统VMD、MOMEDA、VMD-MCKD(maximum correlation kurtosis deconvolution)方法进行比较,凸显了方法的优越性。 展开更多
关键词 自适应变分模式分解 改进多点最优最小熵反褶积(IMOMEDA) 加权峭度 复合故障 声学诊断
下载PDF
基于WOA-VMD联合MOMEDA的轴承外圈故障特征提取方法 被引量:3
14
作者 王莹莹 陈志刚 王衍学 《机电工程》 CAS 北大核心 2023年第11期1655-1663,共9页
滚动轴承工作环境较为复杂,在复杂的环境因素影响下,其故障特征信号容易受到噪声的影响,导致其难以被识别。针对这一问题,提出了一种基于鲸鱼优化算法(WOA)的变分模态分解(VMD)联合多点最优最小熵解卷积(MOMEDA)的滚动轴承外圈故障特征... 滚动轴承工作环境较为复杂,在复杂的环境因素影响下,其故障特征信号容易受到噪声的影响,导致其难以被识别。针对这一问题,提出了一种基于鲸鱼优化算法(WOA)的变分模态分解(VMD)联合多点最优最小熵解卷积(MOMEDA)的滚动轴承外圈故障特征提取方法。首先,利用变分模态分解(VMD)对仿真信号进行了分解,使用鲸鱼优化算法(WOA)确定了最佳分解层数以及各分量的样本熵;然后,以样本熵最小值为目标寻优,得出了包含故障信号的最佳分量,对得到的最佳分量进行了MOMEDA重构,从重构信号的包络谱中获得了仿真信号故障特征频率及其倍频;最后,为了验证WOA-VMD联合MOMEDA的有效性,在实验台上采集数据,对滚动轴承的外圈故障信号进行了特征提取。实验结果表明:使用该方法可以高效地进行信号的分解寻优,能较为准确地得到仿真信号的故障频率(100 Hz)和实验台提取信号的近似故障频率(87.5 Hz),验证了该方法的有效性。研究结果表明:低信噪比的工况条件下,采用WOA-VMD联合MOMEDA的方法可以有效地提取滚动轴承的故障特征信号,并能从重构信号中提取故障特征频率。 展开更多
关键词 故障信号分解 故障信号重构 鲸鱼优化算法 变分模态分解 样本熵 多点最优最小熵解卷积 故障特征频率
下载PDF
基于MKurt-MOMEDA的齿轮箱复合故障特征提取 被引量:20
15
作者 王志坚 王俊元 +3 位作者 赵志芳 吴文轩 张纪平 寇彦飞 《振动.测试与诊断》 EI CSCD 北大核心 2017年第4期830-834,共5页
针对齿轮箱中旋转零部件的故障信号是周期性的冲击信号这一特性,提出了一种基于多点峭度(multipoint kurtosis,简称MKurt)和多点最优最小熵反褶积(multipoint optimal minimum entropy deconvolution adjusted,简称MOMEDA)的齿轮箱复合... 针对齿轮箱中旋转零部件的故障信号是周期性的冲击信号这一特性,提出了一种基于多点峭度(multipoint kurtosis,简称MKurt)和多点最优最小熵反褶积(multipoint optimal minimum entropy deconvolution adjusted,简称MOMEDA)的齿轮箱复合故障特征提取方法。利用MKurt可以有效提取齿轮箱中被噪声淹没的冲击性振动信号的周期,实现对振动信号振动源的追踪。根据故障的周期设置合理的周期区间,通过MOMEDA对原信号进行降噪,进一步提取原信号的周期性冲击。通过仿真信号和实测数据的分析和验证,证明了MKurt-MOMEDA方法可以准确有效地诊断齿轮箱复合故障故障特征。 展开更多
关键词 多点峭度 最优最小熵反褶积 复合故障 特征提取
下载PDF
一种改进的解卷积算法及其在滚动轴承复合故障诊断中的应用 被引量:16
16
作者 齐咏生 樊佶 +2 位作者 李永亭 高学金 刘利强 《振动与冲击》 EI CSCD 北大核心 2020年第21期140-150,共11页
针对滚动轴承复合故障振动信号非平稳、非线性特性且不同类型故障之间相互耦合,使得传统方法对复合故障冲击特征难以提取的问题,提出了一种基于自适应信号稀疏共振分解(ARSSD)和多点峭度最优最小熵解卷积修正(MK-MOMEDA)的故障诊断新方... 针对滚动轴承复合故障振动信号非平稳、非线性特性且不同类型故障之间相互耦合,使得传统方法对复合故障冲击特征难以提取的问题,提出了一种基于自适应信号稀疏共振分解(ARSSD)和多点峭度最优最小熵解卷积修正(MK-MOMEDA)的故障诊断新方法。使用ARSSD分析故障信号,并定义一个新的复合指标作为目标函数,利用布谷鸟寻优算法(CSA)对高、低品质因子进行优化选择,获得包含瞬态冲击成分的最优低共振分量;计算其多点峭度谱,提取低共振分量中包含的故障冲击周期成分;之后设定适当的周期区间,进行解卷积运算分离不同的故障特征;通过包络解调,分析谱图中突出的故障特征频率进而识别故障类型。实验平台模拟了滚动轴承两种和三种故障的复合情况,并对所提算法进行了验证,结果表明该方法可有效的从复合故障中提取出各类故障特征,实现故障诊断。 展开更多
关键词 振动信号 复合故障 故障诊断 RSSD 最优最小熵解卷积修正
下载PDF
基于SK‑MOMEDA的风电机组轴承复合故障特征分离提取 被引量:5
17
作者 向玲 李京蓄 +1 位作者 胡爱军 李营 《振动.测试与诊断》 EI CSCD 北大核心 2021年第4期644-651,826,共9页
针对在实际工况中风电机组滚动轴承发生复合故障时,多个故障间相互作用,彼此干扰,造成复合故障特征难以分离问题,提出了基于谱峭度(spectral kurtosis,简称SK)与多点最优调整的最小熵解卷积(multipoint optimal minimum entropy deconvo... 针对在实际工况中风电机组滚动轴承发生复合故障时,多个故障间相互作用,彼此干扰,造成复合故障特征难以分离问题,提出了基于谱峭度(spectral kurtosis,简称SK)与多点最优调整的最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,简称MOMEDA)的风电机组滚动轴承复合故障特征分离提取方法。首先,对复合故障信号进行谱峭度分析,选出能量较大的共振频带,并通过构建带通滤波器对相应的共振频带进行滤波,对滤波信号进行包络谱分析,对单一故障特征进行分离提取;其次,对未能实现单一故障特征提取的滤波信号进行多点峭度谱分析并确定故障周期,应用MOMEDA完成后续分离提取过程。仿真信号和工程应用分析结果表明,该方法能够准确且有效地实现轴承复合故障特征的分离提取。 展开更多
关键词 风电机组 轴承 复合故障 分离提取 谱峭度 多点最优调整的最小熵解卷积
下载PDF
最优最小熵反褶积与包络-导数能量算子在轴承故障提取中的应用 被引量:4
18
作者 杨娜 刘晔 武昆 《电子测量与仪器学报》 CSCD 北大核心 2020年第4期134-141,共8页
最小熵反褶积是检测轴承故障或齿轮故障信号等类脉冲信号的一种有效技术,但是该方法仍存在一个不足,即在使用前须设置滤波器的长度,而该参数值的选择一般只能通过技术人员的经验选择。针对这个局限性,提出了一个基于峭度、排列熵与信号... 最小熵反褶积是检测轴承故障或齿轮故障信号等类脉冲信号的一种有效技术,但是该方法仍存在一个不足,即在使用前须设置滤波器的长度,而该参数值的选择一般只能通过技术人员的经验选择。针对这个局限性,提出了一个基于峭度、排列熵与信号能量的滤波器长度选择准则。通过该准则,可以有效地挑选出最优的滤波器长度,从而更好地对故障信号进行滤波。随后,一种增强的能量算子,包络-导数能量算子用来对过滤后的故障信号进行故障特征频率的提取。实验结果表明,该方法不仅可以有效地提取出轴承故障特征频率,并且与一些传统方法相比,该方法可以大大突出故障特征频率的幅值。 展开更多
关键词 轴承故障诊断 最优选择准则 最小熵反褶积 包络-导数能量算子
下载PDF
基于MOMEDA和增强倒频谱的风电机组齿轮箱多故障诊断方法 被引量:21
19
作者 胡爱军 严家祥 白泽瑞 《振动与冲击》 EI CSCD 北大核心 2021年第7期268-273,共6页
风电机组齿轮箱结构复杂,当齿轮、轴承存在多故障时,由于各故障强弱不同、故障间相互耦合及噪声干扰,造成故障诊断准确率低及漏诊问题。提出了一种基于多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted... 风电机组齿轮箱结构复杂,当齿轮、轴承存在多故障时,由于各故障强弱不同、故障间相互耦合及噪声干扰,造成故障诊断准确率低及漏诊问题。提出了一种基于多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)和增强倒频谱的风电机组齿轮箱多故障诊断方法。依据齿轮和轴承不同部位的故障特征频率设置合理的解卷积周期,利用MOMEDA对原始信号进行预处理;再通过增强倒频谱进一步抑制噪声干扰和增强故障特征;将增强倒频谱中的突出成分与齿轮箱故障特征频率对比,判断故障类型。实际风电机组齿轮箱多故障振动试验数据分析结果表明,该方法可以有效地提取出齿轮箱多故障特征信息。 展开更多
关键词 齿轮箱 多故障诊断 特征提取 多点最优最小熵解卷积(MOMEDA) 增强倒频谱
下载PDF
改进的共振稀疏分解方法及其在滚动轴承复合故障诊断中的应用 被引量:8
20
作者 张守京 慎明俊 +1 位作者 杨静雯 吴芮 《中国机械工程》 EI CAS CSCD 北大核心 2022年第14期1697-1706,共10页
滚动轴承复合故障信号中各故障特征受到传输路径和其他干扰源的影响,在多缺陷共存条件下提取单个缺陷诱发的故障特征存在困难。提出一种基于双参数优化、子带重构改进的共振稀疏分解(RSSD)滚动轴承复合故障诊断方法:首先利用人工鱼群算... 滚动轴承复合故障信号中各故障特征受到传输路径和其他干扰源的影响,在多缺陷共存条件下提取单个缺陷诱发的故障特征存在困难。提出一种基于双参数优化、子带重构改进的共振稀疏分解(RSSD)滚动轴承复合故障诊断方法:首先利用人工鱼群算法自适应选择RSSD的品质因子和分解层数以构造与故障特征匹配的最优小波基,获得包含瞬态冲击的低共振分量;然后依据提出的子带筛选准则选择并重构低共振分量中包含瞬态冲击成分的最佳子带;最后通过多点最优最小熵反卷积(MOMEDA)方法识别并提取重构信号中周期性故障冲击。仿真信号和轴承全寿命周期复合故障信号分析结果表明,与RSSD-MCKD方法相比,所提出方法能有效提取复合故障信号中各故障特征,精确实现轴承复合故障诊断。 展开更多
关键词 共振稀疏分解 品质因子 子带重构 多点最优最小熵反卷积
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部