A high proportion of renewable energy affects the power quality of distribution networks,and surplus energy will be sold to the upstream grid at a low price.In this paper,considering peer-to-peer energy transactions,t...A high proportion of renewable energy affects the power quality of distribution networks,and surplus energy will be sold to the upstream grid at a low price.In this paper,considering peer-to-peer energy transactions,the energy router-based multiple distribution networks are analyzed to solve the above problems and realize collaborative consumption of renewable energy.Presently,the investing cost of an energy router is high,and research on the economic operation of energy routers in distribution networks is little.Therefore,this paper establishes a planning model for energy routers considering peer-to-peer energy transactions among distribution networks,and explores the benefits of peer-to-peer energy transactions through energy router based multiple distribution networks.A structure of an energy router suitable for peer-to-peer energy transactions is selected,and a power flow calculation model based on a multilayer structure is established.The energy router’s scheduling model is established,and unique functions of the energy router and revenue of each distribution network are considered.A power flow calculation model based on peer-to-peer interconnection of multiple distribution networks through energy routers is also established.Finally,simulation results verify the effectiveness of the proposed planning model.Results show that peer-topeer energy transaction among distribution networks through energy routers can effectively reduce the comprehensive cost of distribution networks,significantly improve the power quality of the distribution networks,and reduce the impact of power fluctuation on the upstream grid incurred by the distribution network.展开更多
Energy and environmental problems are among the important factors restricting economic development. The development of green energy is an important measure to deal with energy and environmental problems, such as wind ...Energy and environmental problems are among the important factors restricting economic development. The development of green energy is an important measure to deal with energy and environmental problems, such as wind energy and photovoltaic. Energy Internet is an important mean to promote the transformation of the energy structure, improve energy efficiency and reduce pollution. In introduction, the energy Internet is put forward. Then the architecture and characteristics of energy Internet, such as integration, openness, intelligence and marketization of energy Internet are analyzed. Next, key technologies such as energy router, virtual power plant and network security technology are discussed. Finally, a few suggestions for the development of energy Internet are proposed, and hoped to promote the development of energy Internet.展开更多
This paper presents a potable renewable energy system. The portable renewable energy power unit is designed from a need. The need is for first response teams in remote natural disaster situations to have a reliable so...This paper presents a potable renewable energy system. The portable renewable energy power unit is designed from a need. The need is for first response teams in remote natural disaster situations to have a reliable source of energy to power a small vaccine refrigerator or water purification system and a basic satellite communication system. It is important that such a need is explored as a practical solution has the potential to save the lives of people in remote areas, who would otherwise suffer from a lack of humanitarian aid. Currently diesel generators are the primary source of electricity generation for disaster responders and in most situations work very well and provide a sufficient amount of electricity to meet the power needs. However, in remote areas road infrastructure is often damaged. In this type of situation getting a constant supply of diesel to the area is an expensive or impractical operation. This is where the portable renewable energy power unit bridges the gap and allows a more practical solution to be implemented. The specific aim of the work is to design a compact, stand-alone, product that can be easily transported by people across uneven terrain. It can generate power from wind, solar and hydro energy sources. In this work a new non-isolated multiport DC-DC converter topology for a hybrid energy system in low power applications is proposed. The new topology assimilates multiple renewable energy sources and power up multiple loads with different output levels. A complete Solid works model and FEA analysis, on required components, is completed. The scope of the work encompasses both the electrical and mechanical design of the system.展开更多
With the increase in the amount of tasks offtoaded to the network edge, the energy supply of edge devices has become a challenge worthy of attention. It is a feasible way to use renewable energy to supply energy for e...With the increase in the amount of tasks offtoaded to the network edge, the energy supply of edge devices has become a challenge worthy of attention. It is a feasible way to use renewable energy to supply energy for edge devices, but production of renewable energy has certain uncertainty and stochasticity. In order to provide sufficient energy to ensure stable operation of edge devices, energy Internet (EI) provides an idea, that is, different edge devices are connected with distributed small energy supply and storage systems. As the core equipment of energy Internet, energy router (ER) plays an important role in information transmission, energy transmission and system control. In this paper, the concept of edge energy router is proposed, which has the ability of task computing and scheduling similar to edge computing server, as well as the ability of energy transmission and system control of energy router. Each edge energy router is connected with loads, photovoltaic panel (PV), micro turbine (MT) and battery energy storage (BES) to form a self-sufficient microgrid (MG) system. However, there exists a delay in energy transmission and task scheduling between different ERs. Moreover, the DC bus voltage stability of each edge energy router system is negatively affected by internal uncertainty, stochasticity and external interference. Therefore, the system is modeled by Markov jump ODEs with time delay, and robust control of DC bus voltage deviation is discussed in this paper. The linear matrix inequality (LMI) method is used to solve this Markov jump control problem. Finally, numerical simulations show the effectiveness of the proposed method.展开更多
能量路由器是能源互联网领域的核心设备,其电路拓扑能够实现新能源、储能、各类负荷的统一分配。目前,能量路由器缺乏配电网故障恢复能力。该文提出一种实现故障调控与新能源消纳的多端口能量路由器(multi‐port energy router,MP‐ER)...能量路由器是能源互联网领域的核心设备,其电路拓扑能够实现新能源、储能、各类负荷的统一分配。目前,能量路由器缺乏配电网故障恢复能力。该文提出一种实现故障调控与新能源消纳的多端口能量路由器(multi‐port energy router,MP‐ER)。首先,介绍MP‐ER拓扑及原理,根据MP‐ER整体结构,提出以直流母线电压为主信号,各个端口分散控制的控制策略;其次,通过直流母线电压及配电网零序电压情况,将MP‐ER工作模式分为正常模式和故障柔性消弧两种模式,在所提的控制策略下,实现各模态内的稳定、高效运行;最后,针对连接的微网、配电网系统,利用MATLAB数值软件,对该模型进行仿真并验证该文提出的拓扑结构功能的合理性。该研究为能量路由器的研究提出一种新的拓扑结构和模型。展开更多
传统的能量路由器能量管理策略未考虑多台设备之间的柔性互联关系,且在港口应用中港机负荷的冲击性和新能源发电的波动性,使区域电网的可靠供电和经济运行面临挑战。为此,基于模糊逻辑控制提出了一种适用于集群式岸电能量路由器的供能...传统的能量路由器能量管理策略未考虑多台设备之间的柔性互联关系,且在港口应用中港机负荷的冲击性和新能源发电的波动性,使区域电网的可靠供电和经济运行面临挑战。为此,基于模糊逻辑控制提出了一种适用于集群式岸电能量路由器的供能精细化就地管控策略。该方法考虑了互联岸电能量路由器之间输出功率的耦合影响,并依据并网模式下可能的功率流向制定了保证电力用户经济效益的模糊控制规则,使储能输出电流根据电池荷电状态(state of charge, SOC)、电网电价以及各台岸电能量路由器净输出功率的变化进行动态调整。该方法计及了互联系统间的协同作用,构建了互联系统间各端口传输功率关系,有利于分布式能源跨台区协同消纳,且不需要上层调度控制,减少了对通信的依赖。仿真结果验证了所提控制策略的有效性和可行性。展开更多
An energy router can effectively optimize the network loss and power quality of distribution networks. The optimal configuration of the energy router is relatively complex because issues dynamically influence each oth...An energy router can effectively optimize the network loss and power quality of distribution networks. The optimal configuration of the energy router is relatively complex because issues dynamically influence each other, such as the location of the energy router, optimal number and capacity of its ports, and building new distribution lines for the ports. Presently, there has been very few research studies on the practical problems for the energy router. In this paper, a planning model of an energy router combined with the distribution network is established, which fully exploits the active and reactive power control abilities of the energy router to optimize the operation of the grid. The configuration problem is decoupled into two stages. The upper layer determines the location of the energy router and the parameters of the candidate new distribution lines for the ports. The lower layer calculates the optimal configuration of the energy router by minimizing the total annual cost. Because of the same rated bus voltage in the distribution network, the existing structure of the energy router is changed to be more applicable for the distribution network, and then the power flow model of the energy router is also modified. Due to the nonlinearity of the model, the planning model is converted into a mixed-integer second-order cone model to solve efficiently. In addition, some core factors influencing the optimal scheme of the energy router are also analyzed in this paper. Simulation results show that the optimal scheme of the energy router can significantly improve the economic deployment of the energy router, and optimize the network loss and power quality of the distribution network.展开更多
Although the dead-time optimization design of resonant converters has been widely researched,classical design methods focus more on achieving zero-voltage switching(ZVS)operation.The body diode loss is always ignored,...Although the dead-time optimization design of resonant converters has been widely researched,classical design methods focus more on achieving zero-voltage switching(ZVS)operation.The body diode loss is always ignored,which results in low-efficiency of the converter,especially,in energy router(ER).To deal with this problem,this paper proposes an adaptive deadtime modulation scheme for bidirectional LLC resonant converters in ER.First,the power loss of the MOSFET is analyzed based on the dead-time.Then,a novel dead-time optimization modulation principle is proposed.It can eliminate the body diode loss of MOSFET compared with existing literature.Based on the optimization modulation principle,this paper proposes an adaptive dead-time modulation scheme.To this end,the converter adopting the scheme no longer needs to calculate dead-time,which simplifies the parameter design process.Meanwhile,this scheme enables dead-time to dynamically change with working conditions according to the dead-time optimization modulation principle.With these effects,the ZVS operation is achieved,and the body diode loss of MOSFET is also eliminated.Furthermore,a digital implementation method is designed to make the proposed modulation scheme have fast-transient response.Finally,experimental results show that the proposed dead-time modulation scheme enables converters to achieve ZVS operation in all working conditions,and has higher efficiency than classical dead-time design methods.展开更多
The multi-port energy router(ER)is an effective topology for integrating train traction load,AC load,the energy storage system and photovoltaic(PV)energy.The start and stop process of urban rail transit trains and the...The multi-port energy router(ER)is an effective topology for integrating train traction load,AC load,the energy storage system and photovoltaic(PV)energy.The start and stop process of urban rail transit trains and the access of distributed energy sources to rail transit ER lead to serious fluctuations of DC bus power,so it is necessary to route energy between different ports,involving multi-operating modes,while seamless switching is a major challenge.In this paper,a hierarchical coordinated control strategy is proposed to enable the multi-port ER to operate in a coor-dinated fashion under the conditions of train parking,acceleration,constant power driving and deceleration,and to switch seamlessly under various working conditions.The energy central dispatching layer sends working condi-tion instructions by sampling the state information of each port,while the microgrid control layer adopts central-ized control,receiving upper working condition instructions and sending drive signals to the local control layers to maintain the balanced energy flow of each port.In the local control layers,the PV adopts the improved perturbation and observation method of power control(PC-P&O),while the ES system adopts voltage loop control with an SOC influence factor,voltage loop control with switching factor and power loop control according to the different working conditions,so as to transmit the required train load power accurately and maintain the stability of the DC bus voltage.Finally,the effectiveness of the proposed hierarchical coordination control is verified by MATLAB/Simulink simulations.展开更多
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant 2018JBZ004.
文摘A high proportion of renewable energy affects the power quality of distribution networks,and surplus energy will be sold to the upstream grid at a low price.In this paper,considering peer-to-peer energy transactions,the energy router-based multiple distribution networks are analyzed to solve the above problems and realize collaborative consumption of renewable energy.Presently,the investing cost of an energy router is high,and research on the economic operation of energy routers in distribution networks is little.Therefore,this paper establishes a planning model for energy routers considering peer-to-peer energy transactions among distribution networks,and explores the benefits of peer-to-peer energy transactions through energy router based multiple distribution networks.A structure of an energy router suitable for peer-to-peer energy transactions is selected,and a power flow calculation model based on a multilayer structure is established.The energy router’s scheduling model is established,and unique functions of the energy router and revenue of each distribution network are considered.A power flow calculation model based on peer-to-peer interconnection of multiple distribution networks through energy routers is also established.Finally,simulation results verify the effectiveness of the proposed planning model.Results show that peer-topeer energy transaction among distribution networks through energy routers can effectively reduce the comprehensive cost of distribution networks,significantly improve the power quality of the distribution networks,and reduce the impact of power fluctuation on the upstream grid incurred by the distribution network.
文摘Energy and environmental problems are among the important factors restricting economic development. The development of green energy is an important measure to deal with energy and environmental problems, such as wind energy and photovoltaic. Energy Internet is an important mean to promote the transformation of the energy structure, improve energy efficiency and reduce pollution. In introduction, the energy Internet is put forward. Then the architecture and characteristics of energy Internet, such as integration, openness, intelligence and marketization of energy Internet are analyzed. Next, key technologies such as energy router, virtual power plant and network security technology are discussed. Finally, a few suggestions for the development of energy Internet are proposed, and hoped to promote the development of energy Internet.
文摘This paper presents a potable renewable energy system. The portable renewable energy power unit is designed from a need. The need is for first response teams in remote natural disaster situations to have a reliable source of energy to power a small vaccine refrigerator or water purification system and a basic satellite communication system. It is important that such a need is explored as a practical solution has the potential to save the lives of people in remote areas, who would otherwise suffer from a lack of humanitarian aid. Currently diesel generators are the primary source of electricity generation for disaster responders and in most situations work very well and provide a sufficient amount of electricity to meet the power needs. However, in remote areas road infrastructure is often damaged. In this type of situation getting a constant supply of diesel to the area is an expensive or impractical operation. This is where the portable renewable energy power unit bridges the gap and allows a more practical solution to be implemented. The specific aim of the work is to design a compact, stand-alone, product that can be easily transported by people across uneven terrain. It can generate power from wind, solar and hydro energy sources. In this work a new non-isolated multiport DC-DC converter topology for a hybrid energy system in low power applications is proposed. The new topology assimilates multiple renewable energy sources and power up multiple loads with different output levels. A complete Solid works model and FEA analysis, on required components, is completed. The scope of the work encompasses both the electrical and mechanical design of the system.
基金supported by the BNRist project(No.BNR2024TD03003).
文摘With the increase in the amount of tasks offtoaded to the network edge, the energy supply of edge devices has become a challenge worthy of attention. It is a feasible way to use renewable energy to supply energy for edge devices, but production of renewable energy has certain uncertainty and stochasticity. In order to provide sufficient energy to ensure stable operation of edge devices, energy Internet (EI) provides an idea, that is, different edge devices are connected with distributed small energy supply and storage systems. As the core equipment of energy Internet, energy router (ER) plays an important role in information transmission, energy transmission and system control. In this paper, the concept of edge energy router is proposed, which has the ability of task computing and scheduling similar to edge computing server, as well as the ability of energy transmission and system control of energy router. Each edge energy router is connected with loads, photovoltaic panel (PV), micro turbine (MT) and battery energy storage (BES) to form a self-sufficient microgrid (MG) system. However, there exists a delay in energy transmission and task scheduling between different ERs. Moreover, the DC bus voltage stability of each edge energy router system is negatively affected by internal uncertainty, stochasticity and external interference. Therefore, the system is modeled by Markov jump ODEs with time delay, and robust control of DC bus voltage deviation is discussed in this paper. The linear matrix inequality (LMI) method is used to solve this Markov jump control problem. Finally, numerical simulations show the effectiveness of the proposed method.
文摘能量路由器是能源互联网领域的核心设备,其电路拓扑能够实现新能源、储能、各类负荷的统一分配。目前,能量路由器缺乏配电网故障恢复能力。该文提出一种实现故障调控与新能源消纳的多端口能量路由器(multi‐port energy router,MP‐ER)。首先,介绍MP‐ER拓扑及原理,根据MP‐ER整体结构,提出以直流母线电压为主信号,各个端口分散控制的控制策略;其次,通过直流母线电压及配电网零序电压情况,将MP‐ER工作模式分为正常模式和故障柔性消弧两种模式,在所提的控制策略下,实现各模态内的稳定、高效运行;最后,针对连接的微网、配电网系统,利用MATLAB数值软件,对该模型进行仿真并验证该文提出的拓扑结构功能的合理性。该研究为能量路由器的研究提出一种新的拓扑结构和模型。
文摘传统的能量路由器能量管理策略未考虑多台设备之间的柔性互联关系,且在港口应用中港机负荷的冲击性和新能源发电的波动性,使区域电网的可靠供电和经济运行面临挑战。为此,基于模糊逻辑控制提出了一种适用于集群式岸电能量路由器的供能精细化就地管控策略。该方法考虑了互联岸电能量路由器之间输出功率的耦合影响,并依据并网模式下可能的功率流向制定了保证电力用户经济效益的模糊控制规则,使储能输出电流根据电池荷电状态(state of charge, SOC)、电网电价以及各台岸电能量路由器净输出功率的变化进行动态调整。该方法计及了互联系统间的协同作用,构建了互联系统间各端口传输功率关系,有利于分布式能源跨台区协同消纳,且不需要上层调度控制,减少了对通信的依赖。仿真结果验证了所提控制策略的有效性和可行性。
基金supported in part by the Fundamental Research Funds for the Central University under Grant 2018JBZ004.
文摘An energy router can effectively optimize the network loss and power quality of distribution networks. The optimal configuration of the energy router is relatively complex because issues dynamically influence each other, such as the location of the energy router, optimal number and capacity of its ports, and building new distribution lines for the ports. Presently, there has been very few research studies on the practical problems for the energy router. In this paper, a planning model of an energy router combined with the distribution network is established, which fully exploits the active and reactive power control abilities of the energy router to optimize the operation of the grid. The configuration problem is decoupled into two stages. The upper layer determines the location of the energy router and the parameters of the candidate new distribution lines for the ports. The lower layer calculates the optimal configuration of the energy router by minimizing the total annual cost. Because of the same rated bus voltage in the distribution network, the existing structure of the energy router is changed to be more applicable for the distribution network, and then the power flow model of the energy router is also modified. Due to the nonlinearity of the model, the planning model is converted into a mixed-integer second-order cone model to solve efficiently. In addition, some core factors influencing the optimal scheme of the energy router are also analyzed in this paper. Simulation results show that the optimal scheme of the energy router can significantly improve the economic deployment of the energy router, and optimize the network loss and power quality of the distribution network.
文摘Although the dead-time optimization design of resonant converters has been widely researched,classical design methods focus more on achieving zero-voltage switching(ZVS)operation.The body diode loss is always ignored,which results in low-efficiency of the converter,especially,in energy router(ER).To deal with this problem,this paper proposes an adaptive deadtime modulation scheme for bidirectional LLC resonant converters in ER.First,the power loss of the MOSFET is analyzed based on the dead-time.Then,a novel dead-time optimization modulation principle is proposed.It can eliminate the body diode loss of MOSFET compared with existing literature.Based on the optimization modulation principle,this paper proposes an adaptive dead-time modulation scheme.To this end,the converter adopting the scheme no longer needs to calculate dead-time,which simplifies the parameter design process.Meanwhile,this scheme enables dead-time to dynamically change with working conditions according to the dead-time optimization modulation principle.With these effects,the ZVS operation is achieved,and the body diode loss of MOSFET is also eliminated.Furthermore,a digital implementation method is designed to make the proposed modulation scheme have fast-transient response.Finally,experimental results show that the proposed dead-time modulation scheme enables converters to achieve ZVS operation in all working conditions,and has higher efficiency than classical dead-time design methods.
基金supported by the Chinese National Natural Science Foundation (grant number 51977039 and 51950410593).
文摘The multi-port energy router(ER)is an effective topology for integrating train traction load,AC load,the energy storage system and photovoltaic(PV)energy.The start and stop process of urban rail transit trains and the access of distributed energy sources to rail transit ER lead to serious fluctuations of DC bus power,so it is necessary to route energy between different ports,involving multi-operating modes,while seamless switching is a major challenge.In this paper,a hierarchical coordinated control strategy is proposed to enable the multi-port ER to operate in a coor-dinated fashion under the conditions of train parking,acceleration,constant power driving and deceleration,and to switch seamlessly under various working conditions.The energy central dispatching layer sends working condi-tion instructions by sampling the state information of each port,while the microgrid control layer adopts central-ized control,receiving upper working condition instructions and sending drive signals to the local control layers to maintain the balanced energy flow of each port.In the local control layers,the PV adopts the improved perturbation and observation method of power control(PC-P&O),while the ES system adopts voltage loop control with an SOC influence factor,voltage loop control with switching factor and power loop control according to the different working conditions,so as to transmit the required train load power accurately and maintain the stability of the DC bus voltage.Finally,the effectiveness of the proposed hierarchical coordination control is verified by MATLAB/Simulink simulations.