Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The signif...Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods.展开更多
为研究串联系统下多部件应力-强度模型的可靠性问题,基于Kumaraswamy分布,采用极大似然法给出参数及应力-强度模型可靠度的极大似然估计(maximum likelihood estimation,MLE);再利用Jeffreys准则构造无信息先验分布,运用马尔可夫链蒙特...为研究串联系统下多部件应力-强度模型的可靠性问题,基于Kumaraswamy分布,采用极大似然法给出参数及应力-强度模型可靠度的极大似然估计(maximum likelihood estimation,MLE);再利用Jeffreys准则构造无信息先验分布,运用马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)方法给出参数及应力-强度模型可靠度的贝叶斯估计;最后,利用逆矩估计方法给出参数及应力-强度模型可靠度的逆矩估计(inverse moment estimation,IME)。数值模拟结果表明,在不同系统可靠度及不同样本量条件下,通过对3种估计方法的数值进行比较发现贝叶斯估计效果最好,IME优于MLE。该研究为探讨串联系统多部件应力-强度模型可靠性提供了一定的理论基础。展开更多
文摘Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods.
文摘为研究串联系统下多部件应力-强度模型的可靠性问题,基于Kumaraswamy分布,采用极大似然法给出参数及应力-强度模型可靠度的极大似然估计(maximum likelihood estimation,MLE);再利用Jeffreys准则构造无信息先验分布,运用马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)方法给出参数及应力-强度模型可靠度的贝叶斯估计;最后,利用逆矩估计方法给出参数及应力-强度模型可靠度的逆矩估计(inverse moment estimation,IME)。数值模拟结果表明,在不同系统可靠度及不同样本量条件下,通过对3种估计方法的数值进行比较发现贝叶斯估计效果最好,IME优于MLE。该研究为探讨串联系统多部件应力-强度模型可靠性提供了一定的理论基础。