In this paper, channel spatial characteristics which mainly depend on the spatial correlation are selected as the significant factors in over-the-air (OTA) testing for multiple input multiple output (MIMO) devices...In this paper, channel spatial characteristics which mainly depend on the spatial correlation are selected as the significant factors in over-the-air (OTA) testing for multiple input multiple output (MIMO) devices. The multi-probe anechoic chamber method, a promising candidate of the MIMO OTA testing methods, can reproduce the multipath environments in a controllable manner. A novel physical configuration based on the variation of relative positions of probes in a MIMO OTA setup is put forward to obtain better spatial characteristics. Two physical configurations are presented to make a comparison with the typical configuration in this paper. The simulation results show that by making a proper probe configuration, good channel simulation accuracy can be achieved. Meanwhile, in order to get better performance of emulating channel spatial characteristics, probes in the first and the last probe rings should be placed symmetrically in three dimensional (3D) physical probe configuration.展开更多
Over-the-air(OTA)testing is considered as the only feasible solution to evaluate radio performances of the fifth-generation(5G)wireless devices which feature two important technologies,i.e.,massive multiple-input mult...Over-the-air(OTA)testing is considered as the only feasible solution to evaluate radio performances of the fifth-generation(5G)wireless devices which feature two important technologies,i.e.,massive multiple-input multiple-output(MIMO)and millimeter-wave(mmWave).The multi-probe anechoic chamber(MPAC)based OTA setup is able to emulate realistic multipath propagation conditions in a controlled manner.This paper investigates an MPAC OTA setup which is capable of evaluating the performances of 5G base stations as the devices-under-test(DUTs)which are equipped with dual-polarized antennas.Both end-to-end setup and probe configuration for the considered MPAC setup will be elaborated.Furthermore,since building a practical MPAC setup is expensive,time-consuming,and error-prone,an endto-end software testbed is established for validation purpose to avoid technical risks before finalizing an MPAC setup.The architecture of the testbed is presented,which can emulate both the channel profiles perceived by the DUT and the physical-layer behaviors of the considered link conforming to 5G new radio(NR)specifications.Results show that the performances under the emulated channel agree well with those under the target channel,validating the accuracy and effectiveness of the MPAC method.展开更多
基金supported by the National Natural Science Foundation of China(61327806)the Youth Foundation of Beijing University of Posts and Telecommunications(2016RC14)The Corresponding Patent(CN 106209284 A)is pending
文摘In this paper, channel spatial characteristics which mainly depend on the spatial correlation are selected as the significant factors in over-the-air (OTA) testing for multiple input multiple output (MIMO) devices. The multi-probe anechoic chamber method, a promising candidate of the MIMO OTA testing methods, can reproduce the multipath environments in a controllable manner. A novel physical configuration based on the variation of relative positions of probes in a MIMO OTA setup is put forward to obtain better spatial characteristics. Two physical configurations are presented to make a comparison with the typical configuration in this paper. The simulation results show that by making a proper probe configuration, good channel simulation accuracy can be achieved. Meanwhile, in order to get better performance of emulating channel spatial characteristics, probes in the first and the last probe rings should be placed symmetrically in three dimensional (3D) physical probe configuration.
基金supported by the National Natural Science Foundation of China under Grant.61971067.
文摘Over-the-air(OTA)testing is considered as the only feasible solution to evaluate radio performances of the fifth-generation(5G)wireless devices which feature two important technologies,i.e.,massive multiple-input multiple-output(MIMO)and millimeter-wave(mmWave).The multi-probe anechoic chamber(MPAC)based OTA setup is able to emulate realistic multipath propagation conditions in a controlled manner.This paper investigates an MPAC OTA setup which is capable of evaluating the performances of 5G base stations as the devices-under-test(DUTs)which are equipped with dual-polarized antennas.Both end-to-end setup and probe configuration for the considered MPAC setup will be elaborated.Furthermore,since building a practical MPAC setup is expensive,time-consuming,and error-prone,an endto-end software testbed is established for validation purpose to avoid technical risks before finalizing an MPAC setup.The architecture of the testbed is presented,which can emulate both the channel profiles perceived by the DUT and the physical-layer behaviors of the considered link conforming to 5G new radio(NR)specifications.Results show that the performances under the emulated channel agree well with those under the target channel,validating the accuracy and effectiveness of the MPAC method.