Designing of a multi-purpose plant as one of the well-known manufacturing systems is more challenging than other manufacturing systems. This paper applies a stochastic colored Petri net (CPN) to design and analyze mul...Designing of a multi-purpose plant as one of the well-known manufacturing systems is more challenging than other manufacturing systems. This paper applies a stochastic colored Petri net (CPN) to design and analyze multi-purpose plants. A simple approach is proposed to determine the utilization of shared resources and to reduce the equipment’s idle times. Three scenarios are presented to describe the proposed model. Generally, according to desire of a decision maker, different scenarios can be considered in the model to achieve to the expected design or plant configuration. The main characteristics of the proposed model are flexibility, the easiness of practical application and the simulation of the model in an easy way.展开更多
Composite water samples taken from Owena Multi-purpose Dam in six sampling campaigns covering the wet and dry seasons were analyzed for physico-chemical and microbial characteristics using standard methods for the exa...Composite water samples taken from Owena Multi-purpose Dam in six sampling campaigns covering the wet and dry seasons were analyzed for physico-chemical and microbial characteristics using standard methods for the examination of water and wastewater jointly published by the American Public Health Association, American Water Works Association and Water Pollution Control Federation. Results showed significant (p < 0.05) seasonal variations in most measured parameters with few showing significant spatial variation. The characteristics of the water from the dam lake revealed an acceptable quality for most measured parameters with low chemical pollutants burden when compared with drinking water standards and water quality for aquaculture. However, high values of turbidity, colour, iron, manganese and microbial load were recorded compared with drinking water standards, which call for proper treatment of the water before distribution for public consumption.展开更多
The effect of the positive bias on Reynolds stress (RS) and its effect on the radial turbulent transport at the edge plasma (r/a =0.9) and scrape-off layer (SOL) region of plasma in tokamak are investigated. The...The effect of the positive bias on Reynolds stress (RS) and its effect on the radial turbulent transport at the edge plasma (r/a =0.9) and scrape-off layer (SOL) region of plasma in tokamak are investigated. The radial and poloidal electric fields (Sr, Ep) and ion saturation current (Is) are measured by multi-purpose probe (MPP). This probe is fabricated and constructed for the first time in the IR-T1 tokamak. The most advantage of this probe is that the variations of Er and Ep can be measured in different radii at the single shot. Thus the information of different radii can be compared with high precision. The bias voltage is fixed at Vbias = 200 V and it has been applied with the limiter bias that is fixed in r/a = 0.9. Moreover, the phase difference between radial and poloidal electric fields, and temporal evolution of the RS .spectrum detected by MPP are calculated. RS magnitude on the edge (r/a = 0.9) is more than its value in the SOL (r/a = 1.02). With the applied bias 200 V, ItS and the magnitude of the phase difference between Er and Ep are increased, while the radial turbulent transport is decreased simultaneously. Thus it can be concluded that RS affects radial turbulence. Temporal evolution of the RS spectrum shows that the frequency of RS is increased and reaches its highest value at r/a=0.9 in the presence of bias.展开更多
Aimed at current deficiencies of multi-purpose guided missile kill probability model against gunship, the concept of the important coefficient of vulnerability blade unit is proposed in this paper. Laser fuze actuatio...Aimed at current deficiencies of multi-purpose guided missile kill probability model against gunship, the concept of the important coefficient of vulnerability blade unit is proposed in this paper. Laser fuze actuation model and warhead condition kill probability model of rotor blades are established by Monte Carlo method and kinetics theory with new ideas. Based on limited data, armor thickness of gunship is estimated, and a complete multi-purpose guided missile kill probability mathematical model is established, which provides necessary mathematical tool for the accurate and objective analysis of multi-purpose guided missile kill probability against gunship. Based on the establishment of the model, sensitivity analysis and optimal design of the main factors of multi-purpose guided missile kill probability are conducted, and the results show that the single multi-purpose guided missile lethality performance can be improved significantly by sensitivity analysis and optimization.展开更多
The objective of this study is to investigate themethods for soil liquefaction discrimination. Typically, predicting soilliquefaction potential involves conducting the standard penetration test (SPT), which requires f...The objective of this study is to investigate themethods for soil liquefaction discrimination. Typically, predicting soilliquefaction potential involves conducting the standard penetration test (SPT), which requires field testing and canbe time-consuming and labor-intensive. In contrast, the cone penetration test (CPT) provides a more convenientmethod and offers detailed and continuous information about soil layers. In this study, the feature matrix based onCPT data is proposed to predict the standard penetration test blow count N. The featurematrix comprises the CPTcharacteristic parameters at specific depths, such as tip resistance qc, sleeve resistance f s, and depth H. To fuse thefeatures on the matrix, the convolutional neural network (CNN) is employed for feature extraction. Additionally,Genetic Algorithm (GA) is utilized to obtain the best combination of convolutional kernels and the number ofneurons. The study evaluated the robustness of the proposed model using multiple engineering field data sets.Results demonstrated that the proposed model outperformed conventional methods in predicting N values forvarious soil categories, including sandy silt, silty sand, and clayey silt. Finally, the proposed model was employedfor liquefaction discrimination. The liquefaction discrimination based on the predicted N values was comparedwith the measured N values, and the results showed that the discrimination results were in 75% agreement. Thestudy has important practical application value for foundation liquefaction engineering. Also, the novel methodadopted in this research provides new ideas and methods for research in related fields, which is of great academicsignificance.展开更多
文摘Designing of a multi-purpose plant as one of the well-known manufacturing systems is more challenging than other manufacturing systems. This paper applies a stochastic colored Petri net (CPN) to design and analyze multi-purpose plants. A simple approach is proposed to determine the utilization of shared resources and to reduce the equipment’s idle times. Three scenarios are presented to describe the proposed model. Generally, according to desire of a decision maker, different scenarios can be considered in the model to achieve to the expected design or plant configuration. The main characteristics of the proposed model are flexibility, the easiness of practical application and the simulation of the model in an easy way.
文摘Composite water samples taken from Owena Multi-purpose Dam in six sampling campaigns covering the wet and dry seasons were analyzed for physico-chemical and microbial characteristics using standard methods for the examination of water and wastewater jointly published by the American Public Health Association, American Water Works Association and Water Pollution Control Federation. Results showed significant (p < 0.05) seasonal variations in most measured parameters with few showing significant spatial variation. The characteristics of the water from the dam lake revealed an acceptable quality for most measured parameters with low chemical pollutants burden when compared with drinking water standards and water quality for aquaculture. However, high values of turbidity, colour, iron, manganese and microbial load were recorded compared with drinking water standards, which call for proper treatment of the water before distribution for public consumption.
文摘The effect of the positive bias on Reynolds stress (RS) and its effect on the radial turbulent transport at the edge plasma (r/a =0.9) and scrape-off layer (SOL) region of plasma in tokamak are investigated. The radial and poloidal electric fields (Sr, Ep) and ion saturation current (Is) are measured by multi-purpose probe (MPP). This probe is fabricated and constructed for the first time in the IR-T1 tokamak. The most advantage of this probe is that the variations of Er and Ep can be measured in different radii at the single shot. Thus the information of different radii can be compared with high precision. The bias voltage is fixed at Vbias = 200 V and it has been applied with the limiter bias that is fixed in r/a = 0.9. Moreover, the phase difference between radial and poloidal electric fields, and temporal evolution of the RS .spectrum detected by MPP are calculated. RS magnitude on the edge (r/a = 0.9) is more than its value in the SOL (r/a = 1.02). With the applied bias 200 V, ItS and the magnitude of the phase difference between Er and Ep are increased, while the radial turbulent transport is decreased simultaneously. Thus it can be concluded that RS affects radial turbulence. Temporal evolution of the RS spectrum shows that the frequency of RS is increased and reaches its highest value at r/a=0.9 in the presence of bias.
文摘Aimed at current deficiencies of multi-purpose guided missile kill probability model against gunship, the concept of the important coefficient of vulnerability blade unit is proposed in this paper. Laser fuze actuation model and warhead condition kill probability model of rotor blades are established by Monte Carlo method and kinetics theory with new ideas. Based on limited data, armor thickness of gunship is estimated, and a complete multi-purpose guided missile kill probability mathematical model is established, which provides necessary mathematical tool for the accurate and objective analysis of multi-purpose guided missile kill probability against gunship. Based on the establishment of the model, sensitivity analysis and optimal design of the main factors of multi-purpose guided missile kill probability are conducted, and the results show that the single multi-purpose guided missile lethality performance can be improved significantly by sensitivity analysis and optimization.
基金the Center University(Grant No.B220202013)Qinglan Project of Jiangsu Province(2022).
文摘The objective of this study is to investigate themethods for soil liquefaction discrimination. Typically, predicting soilliquefaction potential involves conducting the standard penetration test (SPT), which requires field testing and canbe time-consuming and labor-intensive. In contrast, the cone penetration test (CPT) provides a more convenientmethod and offers detailed and continuous information about soil layers. In this study, the feature matrix based onCPT data is proposed to predict the standard penetration test blow count N. The featurematrix comprises the CPTcharacteristic parameters at specific depths, such as tip resistance qc, sleeve resistance f s, and depth H. To fuse thefeatures on the matrix, the convolutional neural network (CNN) is employed for feature extraction. Additionally,Genetic Algorithm (GA) is utilized to obtain the best combination of convolutional kernels and the number ofneurons. The study evaluated the robustness of the proposed model using multiple engineering field data sets.Results demonstrated that the proposed model outperformed conventional methods in predicting N values forvarious soil categories, including sandy silt, silty sand, and clayey silt. Finally, the proposed model was employedfor liquefaction discrimination. The liquefaction discrimination based on the predicted N values was comparedwith the measured N values, and the results showed that the discrimination results were in 75% agreement. Thestudy has important practical application value for foundation liquefaction engineering. Also, the novel methodadopted in this research provides new ideas and methods for research in related fields, which is of great academicsignificance.