To study multi-radio multi-channel (MR-MC) Ad Hoc networks based on 802.11, an efficient cross-layer routing protocol with the function of joint channel assignment, called joint channel assignment and cross-layer ro...To study multi-radio multi-channel (MR-MC) Ad Hoc networks based on 802.11, an efficient cross-layer routing protocol with the function of joint channel assignment, called joint channel assignment and cross-layer routing (JCACR), is presented. Firstly, this paper introduces a new concept called channel utilization percentage (CUP), which is for measuring the contention level of different channels in a node’s neighborhood, and deduces its optimal value for determining whether a channel is overloaded or not. Then, a metric parameter named channel selection metric (CSM) is designed, which actually reffects not only the channel status but also corresponding node’s capacity to seize it. JCACR evaluates channel assignment by CSM, performs a local optimization by assigning each node a channel with the smaller CSM value, and changes the working channel dynamically when the channel is overloaded. Therefore, the network load balancing can be achieved. In addition, simulation shows that, when compared with the protocol of weighted cumulative expected transfer time (WCETT), the new protocol can improve the network throughput and reduce the end-to-end average delay with fewer overheads.展开更多
为降低通信冲突和信道干扰,对Mult-i Radio Mult-i Channel传感器网络无冲突信道进行研究,结果证实在网络通信半径大于3倍的网络最大功率通信半径的前提下,Sensor节点规模满足2倍网络功率级数加1的环境下,网络无冲突信道分配的信道数达...为降低通信冲突和信道干扰,对Mult-i Radio Mult-i Channel传感器网络无冲突信道进行研究,结果证实在网络通信半径大于3倍的网络最大功率通信半径的前提下,Sensor节点规模满足2倍网络功率级数加1的环境下,网络无冲突信道分配的信道数达到网络信道冲突图的最大值。文章通过对无冲突信道算法的运用,最终证实其可以有效地提高传感器网络的工作效率,大幅度提升网络的吞吐量。展开更多
Improving capacity and reducing delay are the most challenging topics in wireless ad hoc networks. Nodes that equip multiple radios working on different channels simultaneously permit ef-fective utility of frequency s...Improving capacity and reducing delay are the most challenging topics in wireless ad hoc networks. Nodes that equip multiple radios working on different channels simultaneously permit ef-fective utility of frequency spectrum and can also reduce interference. In this paper, after analyzing several current protocols in Multi-Radio Multi-Channel (MR-MC) ad hoc networks, a new multi-channel routing metric called Integrative Route Metric (IRM) is designed. It takes channel load, inter-flow, and intra-flow interference into consideration. In addition, an MR-MC routing protocol based on Interference-Aware and Channel-Load (MR-IACL) is also presented. The MR-IACL can assign channels and routings for nodes according to channel load and interference degree of links, and optimize channel distribution dynamically to satisfy the features of topology changing and traffic frequent fluctuation during network running. The simulation results show that the new protocol outperforms others in terms of network throughput, end-to-end delay, routing overhead, and network lifetime.展开更多
Employing multiple channels in wireless multihop networks is regarded as an effective approach to increas-ing network capacity. This paper presents a centralized quasi-static channel assignment for multi-radio multi-c...Employing multiple channels in wireless multihop networks is regarded as an effective approach to increas-ing network capacity. This paper presents a centralized quasi-static channel assignment for multi-radio multi-channel Wireless Mesh Networks (WMNs). The proposed channel assignment can efficiently utilize multiple channels with only 2 radios equipped on each mesh router. In the scheme, the network end-to-end traffics are first modeled by probing data at wireless access points, and then the traffic load between each pair of neighboring routers is further estimated using an interference-aware estimation algorithm. Having knowledge of the expected link load, the scheme assigns channels to each radio with the objective of mini-mizing network interference, which as a result greatly improves network capacity. The performance evalua-tion shows that the proposed scheme is highly responsive to varying traffic conditions, and the network per-formance under the channel assignment significantly outperforms the single-radio IEEE 802.11 network as well as the 2-radio WMN with static 2 channels.展开更多
This paper investigates the jammerassisted multi-channel covert wireless communication(CWC)by exploiting the randomness of sub-channel selection to confuse the warden.In particular,we propose two sub-channel selection...This paper investigates the jammerassisted multi-channel covert wireless communication(CWC)by exploiting the randomness of sub-channel selection to confuse the warden.In particular,we propose two sub-channel selection transmission schemes,named random sub-channel selection(RSS)scheme and maximum sub-channel selection(MSS)scheme,to enhance communication covertness.For each proposed scheme,we first derive closed-form expressions of the transmission outage probability(TOP),the average effective rate,and the minimum average detection error probability(DEP).Then,the average effective covert rate(ECR)is maximized by jointly optimizing the transmit power at the transmitter and the number of sub-channels.Numerical results show that there is an optimal value of the number of sub-channels that maximizes the average ECR.We also find that to achieve the maximum average ECR,a larger number of subchannels are needed facing a stricter covertness constraint.展开更多
An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced w...An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced when aiming to achieve elevated current densities.Herein,we employed a rapid and scalable laser texturing process to craft novel multi-channel porous electrodes.Particularly,the obtained electrodes exhibit the lowest Tafel slope of 79 mV dec^(-1)(HER)and 49 mV dec^(-1)(OER).As anticipated,the alkaline electrolyzer(AEL)cell incorporating multi-channel porous electrodes(NP-LT30)exhibited a remarkable improvement in cell efficiency,with voltage drops(from 2.28 to 1.97 V)exceeding 300 mV under 1 A cm^(-1),compared to conventional perforated Ni plate electrodes.This enhancement mainly stemmed from the employed multi-channel porous structure,facilitating mass transport and bubble dynamics through an innovative convection mode,surpassing the traditional convection mode.Furthermore,the NP-LT30-based AEL cell demonstrated exceptional durability for 300 h under 1.0 A cm^(-2).This study underscores the capability of the novel multi-channel porous electrodes to expedite mass transport in practical AWE applications.展开更多
Cold-junction compensation(CJC)and disconnection detection circuit design of various thermocouples(TC)and multi-channel TC interface circuits were designed.The CJC and disconnection detection circuit consists of a CJC...Cold-junction compensation(CJC)and disconnection detection circuit design of various thermocouples(TC)and multi-channel TC interface circuits were designed.The CJC and disconnection detection circuit consists of a CJC semiconductor device,an instrumentation amplifier(IA),two resistors,and a diode for disconnection detection.Based on the basic circuit,a multi-channel interface circuit was also implemented.The CJC was implemented using compensation semiconductor and IA,and disconnection detection was detected by using two resistors and a diode so that IA input voltage became-0.42 V.As a result of the experiment using R-type TC,the error of the designed circuit was reduced from 0.14 mV to 3μV after CJC in the temperature range of 0°C to 1400°C.In addition,it was confirmed that the output voltage of IA was saturated from 88 mV to-14.2 V when TC was disconnected from normal.The output voltage of the designed circuit was 0 V to 10 V in the temperature range of 0°C to 1400°C.The results of the 4-channel interface experiment using R-type TC were almost identical to the CJC and disconnection detection results for each channel.The implemented multi-channel interface has a feature that can be applied equally to E,J,K,T,R,and S-type TCs by changing the terminals of CJC semiconductor devices and adjusting the IA gain.展开更多
The multi-radio multi-channel wireless mesh network (MRMC-WMN) draws general attention because of its excellent throughput performance, robustness and relative low cost. The closed interactions among power control ...The multi-radio multi-channel wireless mesh network (MRMC-WMN) draws general attention because of its excellent throughput performance, robustness and relative low cost. The closed interactions among power control (PC), channel assignment (CA) and routing is contributed to the performance of multi-radio multi-channel wireless mesh networks (MRMC-WMNs). However, the joint PC, CA and routing (JPCR) design, desired to achieve a global optimization, was poor addressed. The authors present a routing algorithm joint with PC and CA (JPCRA) to seek the routing, power and channel scheme for each flow, which can improve the fairness performance. Firstly, considering available channels and power levels, the routing metric, called minimum flow rate, is designed based on the physical interference and Shannon channel models. The JPCRA is presented based on the genetic algorithm (GA) with simulated annealing to maximize the minimum flow rate, an non-deterministic polynomial-time hard (NP-Hard) problem. Simulations show the JPCRA obtains better fairness among different flows and higher network throughput.展开更多
Opportunistic routing (OR) involves multiple candidate forwarders to relay packets by taking advantage of the broadcast nature and multi-user diversity of the wireless medium. Compared with traditional routing (TR...Opportunistic routing (OR) involves multiple candidate forwarders to relay packets by taking advantage of the broadcast nature and multi-user diversity of the wireless medium. Compared with traditional routing (TR), OR is more suitable for the unreliable wireless link, and can evidently improve the end to end throughput. At present, there are many achievements concerning OR in the single radio wireless network. However, the study of OR in multi-radio wireless network stays the beginning stage. To demonstrate the benefit of OR in multi-radio multi-channel network, we propose a new route metric -- multi-channel expected anypath transmission time (MEATT), which exploits the channel diversity and resource of multiple candidate forwarders for OR. Based on the new metric, a distributed Mgorithm named Channel Aware Opportunistic Routing (CAOR) is proposed. The simulation results demonstrate that MEATT improves 1.14 and 1.53 times of the average throughput than existing expected anypath transmission time (EATT)and metric of interference and channel switching cost (MIC) respectively. The average delay of MEATT is 17% and 40% lower than those of EATT, MIC, respectively.展开更多
This paper deals with the problem of joint multicast routing,scheduling,and call admission control in multiradio multi-channel wireless mesh networks.To heuristically solve this problem,we propose a cross-layer algori...This paper deals with the problem of joint multicast routing,scheduling,and call admission control in multiradio multi-channel wireless mesh networks.To heuristically solve this problem,we propose a cross-layer algorithm named“extended MIMCR with scheduling and call admission control phases(EMSC)”.Our model relies on the on-demand quality of service(QoS)multicast sessions,where each admitted session creates a unique tree with a required bandwidth.The proposed scheme extends the MIMCR algorithm to fairly schedule multiple non-interfering transmissions in the same time slot.It also exploits a call admission control mechanism to protect the QoS requirements of the multicast traffics.EMSC reduces the number of occupied time slots,with consideration of spatial reuse,both Intra-flow and Inter-flow interferences,and selecting the minimum-interference minimum-cost paths.This subsequently leads to better radio resource utilization and increases the network throughput.Simulation results show that the proposed algorithm outperforms the other algorithms and improves the network performance.展开更多
Most of existing metasurfaces usually have limited channel behavior,which seriouslyhinders their development and application.In this paper,we propose a multi-channel terahertz focused beam generator based on shared-ap...Most of existing metasurfaces usually have limited channel behavior,which seriouslyhinders their development and application.In this paper,we propose a multi-channel terahertz focused beam generator based on shared-aperture metasurface,and the generator consists of a top square metal strip,a middle layer of silica and a metal bottom plate.By changing the position and size of the shared-aperture array,the designed metasurface can generate any number of multi-channel focusing beams at different predicted positions.In addition,the energy intensity of focusing beams can be controlled.The full-wave simulation results show that the metasurface achieves four-channel vortex focused beam generation with different topological charges,and five-,six-,eight-channel focused beam generation with different energy intensities at a frequency of 1 THz,which are in good agreement with the theoretically calculated predictions.This work can provide a new idea for designing the terahertz multichannel devices.展开更多
Classical multi-channel technology can significantly reduce the pre-stack seismic inversion uncertainty, especially for complex geology such as high dipping structures. However, due to the consideration of complex str...Classical multi-channel technology can significantly reduce the pre-stack seismic inversion uncertainty, especially for complex geology such as high dipping structures. However, due to the consideration of complex structure or reflection features, the existing multi-channel inversion methods have to adopt the highly time-consuming strategy of arranging seismic data trace-by-trace, limiting its wide application in pre-stack inversion. A fast pre-stack multi-channel inversion constrained by seismic reflection features has been proposed to address this issue. The key to our method is to re-characterize the reflection features to directly constrain the pre-stack inversion through a Hadamard product operator without rearranging the seismic data. The seismic reflection features can reflect the distribution of the stratum reflection interface, and we obtained them from the post-stack profile by searching the shortest local Euclidean distance between adjacent seismic traces. Instead of directly constructing a large-size reflection features constraint operator advocated by the conventional methods, through decomposing the reflection features along the vertical and horizontal direction at a particular sampling point, we have constructed a computationally well-behaved constraint operator represented by the vertical and horizontal partial derivatives. Based on the Alternating Direction Method of Multipliers (ADMM) optimization, we have derived a fast algorithm for solving the objective function, including Hadamard product operators. Compared with the conventional reflection features constrained inversion, the proposed method is more efficient and accurate, proved on the Overthrust model and a field data set.展开更多
Due to the scattered nature of the network,data transmission in a dis-tributed Mobile Ad-hoc Network(MANET)consumes more energy resources(ER)than in a centralized network,resulting in a shorter network lifespan(NL).As...Due to the scattered nature of the network,data transmission in a dis-tributed Mobile Ad-hoc Network(MANET)consumes more energy resources(ER)than in a centralized network,resulting in a shorter network lifespan(NL).As a result,we build an Enhanced Opportunistic Routing(EORP)protocol architecture in order to address the issues raised before.This proposed routing protocol goal is to manage the routing cost by employing power,load,and delay to manage the routing energy consumption based on theflooding of control pack-ets from the target node.According to the goal of the proposed protocol techni-que,it is possible to manage the routing cost by applying power,load,and delay.The proposed technique also manage the routing energy consumption based on theflooding of control packets from the destination node in order to reduce the routing cost.Control packet exchange between the target and all the nodes,on the other hand,is capable of having an influence on the overall efficiency of the system.The EORP protocol and the Multi-channel Cooperative Neighbour Discovery(MCCND)protocol have been designed to detect the cooperative adja-cent nodes for each node in the routing route as part of the routing path discovery process,which occurs during control packet transmission.While control packet transmission is taking place during the routing path discovery process,the EORP protocol and the Multi-channel Cooperative Neighbour Discovery(MCCND)protocol have been designed to detect the cooperative adjacent nodes for each node in the routing.Also included is a simulation of these protocols in order to evaluate their performance across a wide range of packet speeds using Constant Bit Rate(CBR).When the packet rate of the CBR is 20 packets per second,the results reveal that the EORP-MCCND is 0.6 s quicker than the state-of-the-art protocols,according to thefindings.Assuming that the CBR packet rate is 20 packets per second,the EORP-MCCND achieves 0.6 s of End 2 End Delay,0.05 s of Routing Overhead Delay,120 s of Network Lifetime,and 20 J of Energy Consumption efficiency,which is much better than that of the state-of-the-art protocols.展开更多
In order to improve the exploration effect of deep non-ferrous mineral resources, multi-channel observation methods for induced polarization (IP) electrical sounding data and their inversion imaging technology are s...In order to improve the exploration effect of deep non-ferrous mineral resources, multi-channel observation methods for induced polarization (IP) electrical sounding data and their inversion imaging technology are studied. First of all, four multi-channel observation methods are developed based on conventional IP electrical method, namely three-electrode and four-electrode arrays of unilateral and bilateral current transmitting. Then the maximum smoothness constrained inversion method of the least squares sense for IP electrical sounding data is proposed, and the inversion software is programmed. Finally, the simulation and inversion results of geo-electrical model for the proposed observation methods are analyzed. And the comparison results show that three-electrode array of bilateral current transmitting gives the best result, but the intensity in field work is larger than others; unilateral three-electrode and four-electrode arrays give the better results. Taking detection results and convenience of field exploration work into consideration, these two methods are more suitable for practical application; bilateral observation method of four-electrode array is not suitable for the detection of the steep ore bodies.展开更多
A data acquisition system based on LabVIEW and NI PXI-5105 is presented for multi-channel data acquisition. It can realize the functions of parameter setting, data acquisition and storage, waveform display and data an...A data acquisition system based on LabVIEW and NI PXI-5105 is presented for multi-channel data acquisition. It can realize the functions of parameter setting, data acquisition and storage, waveform display and data analysis using LabVIEW and NI-SCOPE device driver. The advantages of the system are that the setting is convenient, the operation is easy, the interface is friendly and the functions are practical. The experiment results show that the system has good stability and high reliability and is a powerful tool for multi-channel data acquisition.展开更多
With the escalating flow of information and digital communication,information security has become an increasingly important issue.Traditional cryptographic methods are being threatened by advancing progress in computi...With the escalating flow of information and digital communication,information security has become an increasingly important issue.Traditional cryptographic methods are being threatened by advancing progress in computing,while physical encryption methods are favored as a viable and compelling avenue.Metasurfaces,which are known for their extraordinary ability to manipulate optical parameters at the nanoscale,exhibit significant potential for the revolution of optical devices,making them a highly promising candidate for optical encryption applications.Here,a single-sized metasurface with four independent channels is proposed for conducting steganography and multi-key information encryption.More specifically,plaintext is transformed into a ciphertext image,which is encoded into a metasurface,while the decryption key is discretely integrated into another channel within the same metasurface.Two different keys for steganographic image unveiling are also encoded into the metasurface and can be retrieved with different channels and spatial positions.This distributed multi-key encryption approach can enhance security,while strategically distributing images across distinct spatial zones serves as an additional measure to reduce the risk of information leakage.This minimalist designed metasurface,with its advantages of high information density and robust security,holds promise across applications including portable encryption,high-camouflaged image display,and high-density optical storage.展开更多
With the growth of requirements for data sharing,a novel business model of digital assets trading has emerged that allows data owners to sell their data for monetary gain.In the distributed ledger of blockchain,howeve...With the growth of requirements for data sharing,a novel business model of digital assets trading has emerged that allows data owners to sell their data for monetary gain.In the distributed ledger of blockchain,however,the privacy of stakeholder's identity and the confidentiality of data content are threatened.Therefore,we proposed a blockchainenabled privacy-preserving and access control scheme to address the above problems.First,the multi-channel mechanism is introduced to provide the privacy protection of distributed ledger inside the channel and achieve coarse-grained access control to digital assets.Then,we use multi-authority attribute-based encryption(MAABE)algorithm to build a fine-grained access control model for data trading in a single channel and describe its instantiation in detail.Security analysis shows that the scheme has IND-CPA secure and can provide privacy protection and collusion resistance.Compared with other schemes,our solution has better performance in privacy protection and access control.The evaluation results demonstrate its effectiveness and practicability.展开更多
A new muon beam facility,called the Experimental Muon Source(EMuS),was proposed for construction at the China Spallation Neutron Source(CSNS).The design of the complex muon beamlines for the EMuS baseline scheme,which...A new muon beam facility,called the Experimental Muon Source(EMuS),was proposed for construction at the China Spallation Neutron Source(CSNS).The design of the complex muon beamlines for the EMuS baseline scheme,which is based on superconducting solenoids,superferric dipoles and room-temperature magnets,is presented herein.Various muon beams,including surface muons,decay muons and low energy muons,have been developed for multipurpose applications.The optics design and simulation results of the trunk beamline and branch beamlines are presented.With a proton beam power of 25 kW at a standalone target station that consists of a conical graphite target and high-field superconducting solenoids,the muon beam intensity in the trunk beamline varies from 10^(7)/s for surface muons to 10^(10)/s for high-momentum decay muons.And at the endstations,these values vary from 10^(5)/s for surface muons to 10^(8)/s for decay muons.展开更多
A channel allocation algorithm based on the maximum independent set is proposed to decrease network conflict and improve network performance. First, a channel allocation model is formulated and a series of the maximum...A channel allocation algorithm based on the maximum independent set is proposed to decrease network conflict and improve network performance. First, a channel allocation model is formulated and a series of the maximum independent sets (MISs) are obtained from a contention graph by the proposed approximation algorithm with low complexity. Then, a weighted contention graph is obtained using the number of contention vertices between two MISs as a weighted value. Links are allocated to channels by the weighted contention graph to minimize conflicts between independent sets. Finally, after channel allocation, each node allocates network interface cards (NICs) to links that are allocated channels according to the queue lengths of NICs. Simulations are conducted to evaluate the proposed algorithm. The results show that the proposed algorithm significantly improves the network throughput and decreases the end to end delay.展开更多
基金supported by the National Natural Science Foundationof China (60873195 61070220)+3 种基金the Natural Science Foundation of Anhui Province (070412049)the Outstanding Young Teacher Foundation of Anhui Higher Education Institutions of China (2009SQRZ167)the Natural Science Foundation of Anhui Higher Education Institutions of China (KJ2009B114)the Open Project Program of Engineering Research Center of Safety Critical Industry Measure and Control Technology (SCIMCT0802)
文摘To study multi-radio multi-channel (MR-MC) Ad Hoc networks based on 802.11, an efficient cross-layer routing protocol with the function of joint channel assignment, called joint channel assignment and cross-layer routing (JCACR), is presented. Firstly, this paper introduces a new concept called channel utilization percentage (CUP), which is for measuring the contention level of different channels in a node’s neighborhood, and deduces its optimal value for determining whether a channel is overloaded or not. Then, a metric parameter named channel selection metric (CSM) is designed, which actually reffects not only the channel status but also corresponding node’s capacity to seize it. JCACR evaluates channel assignment by CSM, performs a local optimization by assigning each node a channel with the smaller CSM value, and changes the working channel dynamically when the channel is overloaded. Therefore, the network load balancing can be achieved. In addition, simulation shows that, when compared with the protocol of weighted cumulative expected transfer time (WCETT), the new protocol can improve the network throughput and reduce the end-to-end average delay with fewer overheads.
文摘为降低通信冲突和信道干扰,对Mult-i Radio Mult-i Channel传感器网络无冲突信道进行研究,结果证实在网络通信半径大于3倍的网络最大功率通信半径的前提下,Sensor节点规模满足2倍网络功率级数加1的环境下,网络无冲突信道分配的信道数达到网络信道冲突图的最大值。文章通过对无冲突信道算法的运用,最终证实其可以有效地提高传感器网络的工作效率,大幅度提升网络的吞吐量。
基金Supported by the National Natural Science Foundation of China (No. 60873195, No. 61070220)the Research Fund for the Doctoral Program of Higher Education of China (No. 20090111110002)
文摘Improving capacity and reducing delay are the most challenging topics in wireless ad hoc networks. Nodes that equip multiple radios working on different channels simultaneously permit ef-fective utility of frequency spectrum and can also reduce interference. In this paper, after analyzing several current protocols in Multi-Radio Multi-Channel (MR-MC) ad hoc networks, a new multi-channel routing metric called Integrative Route Metric (IRM) is designed. It takes channel load, inter-flow, and intra-flow interference into consideration. In addition, an MR-MC routing protocol based on Interference-Aware and Channel-Load (MR-IACL) is also presented. The MR-IACL can assign channels and routings for nodes according to channel load and interference degree of links, and optimize channel distribution dynamically to satisfy the features of topology changing and traffic frequent fluctuation during network running. The simulation results show that the new protocol outperforms others in terms of network throughput, end-to-end delay, routing overhead, and network lifetime.
文摘Employing multiple channels in wireless multihop networks is regarded as an effective approach to increas-ing network capacity. This paper presents a centralized quasi-static channel assignment for multi-radio multi-channel Wireless Mesh Networks (WMNs). The proposed channel assignment can efficiently utilize multiple channels with only 2 radios equipped on each mesh router. In the scheme, the network end-to-end traffics are first modeled by probing data at wireless access points, and then the traffic load between each pair of neighboring routers is further estimated using an interference-aware estimation algorithm. Having knowledge of the expected link load, the scheme assigns channels to each radio with the objective of mini-mizing network interference, which as a result greatly improves network capacity. The performance evalua-tion shows that the proposed scheme is highly responsive to varying traffic conditions, and the network per-formance under the channel assignment significantly outperforms the single-radio IEEE 802.11 network as well as the 2-radio WMN with static 2 channels.
文摘This paper investigates the jammerassisted multi-channel covert wireless communication(CWC)by exploiting the randomness of sub-channel selection to confuse the warden.In particular,we propose two sub-channel selection transmission schemes,named random sub-channel selection(RSS)scheme and maximum sub-channel selection(MSS)scheme,to enhance communication covertness.For each proposed scheme,we first derive closed-form expressions of the transmission outage probability(TOP),the average effective rate,and the minimum average detection error probability(DEP).Then,the average effective covert rate(ECR)is maximized by jointly optimizing the transmit power at the transmitter and the number of sub-channels.Numerical results show that there is an optimal value of the number of sub-channels that maximizes the average ECR.We also find that to achieve the maximum average ECR,a larger number of subchannels are needed facing a stricter covertness constraint.
基金financial support from the National Key R&D Program(2023YFE0108000)the Academy of Sciences Project of Guangdong Province(2019GDASYL-0102007,2021GDASYL-20210103063)+1 种基金GDAS’Project of Science and Technology Development(2022GDASZH-2022010203-003)financial support from the China Scholarship Council(202108210128)。
文摘An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced when aiming to achieve elevated current densities.Herein,we employed a rapid and scalable laser texturing process to craft novel multi-channel porous electrodes.Particularly,the obtained electrodes exhibit the lowest Tafel slope of 79 mV dec^(-1)(HER)and 49 mV dec^(-1)(OER).As anticipated,the alkaline electrolyzer(AEL)cell incorporating multi-channel porous electrodes(NP-LT30)exhibited a remarkable improvement in cell efficiency,with voltage drops(from 2.28 to 1.97 V)exceeding 300 mV under 1 A cm^(-1),compared to conventional perforated Ni plate electrodes.This enhancement mainly stemmed from the employed multi-channel porous structure,facilitating mass transport and bubble dynamics through an innovative convection mode,surpassing the traditional convection mode.Furthermore,the NP-LT30-based AEL cell demonstrated exceptional durability for 300 h under 1.0 A cm^(-2).This study underscores the capability of the novel multi-channel porous electrodes to expedite mass transport in practical AWE applications.
文摘Cold-junction compensation(CJC)and disconnection detection circuit design of various thermocouples(TC)and multi-channel TC interface circuits were designed.The CJC and disconnection detection circuit consists of a CJC semiconductor device,an instrumentation amplifier(IA),two resistors,and a diode for disconnection detection.Based on the basic circuit,a multi-channel interface circuit was also implemented.The CJC was implemented using compensation semiconductor and IA,and disconnection detection was detected by using two resistors and a diode so that IA input voltage became-0.42 V.As a result of the experiment using R-type TC,the error of the designed circuit was reduced from 0.14 mV to 3μV after CJC in the temperature range of 0°C to 1400°C.In addition,it was confirmed that the output voltage of IA was saturated from 88 mV to-14.2 V when TC was disconnected from normal.The output voltage of the designed circuit was 0 V to 10 V in the temperature range of 0°C to 1400°C.The results of the 4-channel interface experiment using R-type TC were almost identical to the CJC and disconnection detection results for each channel.The implemented multi-channel interface has a feature that can be applied equally to E,J,K,T,R,and S-type TCs by changing the terminals of CJC semiconductor devices and adjusting the IA gain.
基金supported by the National Science and Technology Major Project of (2012ZX03003001-004)the Beijing Higher Education Young Elite Teacher Projectthe National Natural Science Foundation of China (61272516, 61272518 and 61302083)
文摘The multi-radio multi-channel wireless mesh network (MRMC-WMN) draws general attention because of its excellent throughput performance, robustness and relative low cost. The closed interactions among power control (PC), channel assignment (CA) and routing is contributed to the performance of multi-radio multi-channel wireless mesh networks (MRMC-WMNs). However, the joint PC, CA and routing (JPCR) design, desired to achieve a global optimization, was poor addressed. The authors present a routing algorithm joint with PC and CA (JPCRA) to seek the routing, power and channel scheme for each flow, which can improve the fairness performance. Firstly, considering available channels and power levels, the routing metric, called minimum flow rate, is designed based on the physical interference and Shannon channel models. The JPCRA is presented based on the genetic algorithm (GA) with simulated annealing to maximize the minimum flow rate, an non-deterministic polynomial-time hard (NP-Hard) problem. Simulations show the JPCRA obtains better fairness among different flows and higher network throughput.
基金supported by the National Basic Research 973 Program of China under Grant No.2012CB315805the National Natural Science Foundation of China under Grant Nos.61173167,61003305,and 61173168the National Science and Technology Major Project of China under Grant No.2011ZX03002-005-02
文摘Opportunistic routing (OR) involves multiple candidate forwarders to relay packets by taking advantage of the broadcast nature and multi-user diversity of the wireless medium. Compared with traditional routing (TR), OR is more suitable for the unreliable wireless link, and can evidently improve the end to end throughput. At present, there are many achievements concerning OR in the single radio wireless network. However, the study of OR in multi-radio wireless network stays the beginning stage. To demonstrate the benefit of OR in multi-radio multi-channel network, we propose a new route metric -- multi-channel expected anypath transmission time (MEATT), which exploits the channel diversity and resource of multiple candidate forwarders for OR. Based on the new metric, a distributed Mgorithm named Channel Aware Opportunistic Routing (CAOR) is proposed. The simulation results demonstrate that MEATT improves 1.14 and 1.53 times of the average throughput than existing expected anypath transmission time (EATT)and metric of interference and channel switching cost (MIC) respectively. The average delay of MEATT is 17% and 40% lower than those of EATT, MIC, respectively.
文摘This paper deals with the problem of joint multicast routing,scheduling,and call admission control in multiradio multi-channel wireless mesh networks.To heuristically solve this problem,we propose a cross-layer algorithm named“extended MIMCR with scheduling and call admission control phases(EMSC)”.Our model relies on the on-demand quality of service(QoS)multicast sessions,where each admitted session creates a unique tree with a required bandwidth.The proposed scheme extends the MIMCR algorithm to fairly schedule multiple non-interfering transmissions in the same time slot.It also exploits a call admission control mechanism to protect the QoS requirements of the multicast traffics.EMSC reduces the number of occupied time slots,with consideration of spatial reuse,both Intra-flow and Inter-flow interferences,and selecting the minimum-interference minimum-cost paths.This subsequently leads to better radio resource utilization and increases the network throughput.Simulation results show that the proposed algorithm outperforms the other algorithms and improves the network performance.
基金Project supported by the National Natural Science Foundation of China (Grant No.62271460)the Zhejiang Key Research and Development Project,China (Grant Nos.2021C03153 and 2022C03166)。
文摘Most of existing metasurfaces usually have limited channel behavior,which seriouslyhinders their development and application.In this paper,we propose a multi-channel terahertz focused beam generator based on shared-aperture metasurface,and the generator consists of a top square metal strip,a middle layer of silica and a metal bottom plate.By changing the position and size of the shared-aperture array,the designed metasurface can generate any number of multi-channel focusing beams at different predicted positions.In addition,the energy intensity of focusing beams can be controlled.The full-wave simulation results show that the metasurface achieves four-channel vortex focused beam generation with different topological charges,and five-,six-,eight-channel focused beam generation with different energy intensities at a frequency of 1 THz,which are in good agreement with the theoretically calculated predictions.This work can provide a new idea for designing the terahertz multichannel devices.
基金We would like to acknowledge the sponsorship of the National Natural Science Foundation of China(42004092,42030103,41974119)Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(Grant No.2021QNLM020001-6)Young Elite Scientists Sponsorship Program by CAST(2021QNRC001).
文摘Classical multi-channel technology can significantly reduce the pre-stack seismic inversion uncertainty, especially for complex geology such as high dipping structures. However, due to the consideration of complex structure or reflection features, the existing multi-channel inversion methods have to adopt the highly time-consuming strategy of arranging seismic data trace-by-trace, limiting its wide application in pre-stack inversion. A fast pre-stack multi-channel inversion constrained by seismic reflection features has been proposed to address this issue. The key to our method is to re-characterize the reflection features to directly constrain the pre-stack inversion through a Hadamard product operator without rearranging the seismic data. The seismic reflection features can reflect the distribution of the stratum reflection interface, and we obtained them from the post-stack profile by searching the shortest local Euclidean distance between adjacent seismic traces. Instead of directly constructing a large-size reflection features constraint operator advocated by the conventional methods, through decomposing the reflection features along the vertical and horizontal direction at a particular sampling point, we have constructed a computationally well-behaved constraint operator represented by the vertical and horizontal partial derivatives. Based on the Alternating Direction Method of Multipliers (ADMM) optimization, we have derived a fast algorithm for solving the objective function, including Hadamard product operators. Compared with the conventional reflection features constrained inversion, the proposed method is more efficient and accurate, proved on the Overthrust model and a field data set.
文摘Due to the scattered nature of the network,data transmission in a dis-tributed Mobile Ad-hoc Network(MANET)consumes more energy resources(ER)than in a centralized network,resulting in a shorter network lifespan(NL).As a result,we build an Enhanced Opportunistic Routing(EORP)protocol architecture in order to address the issues raised before.This proposed routing protocol goal is to manage the routing cost by employing power,load,and delay to manage the routing energy consumption based on theflooding of control pack-ets from the target node.According to the goal of the proposed protocol techni-que,it is possible to manage the routing cost by applying power,load,and delay.The proposed technique also manage the routing energy consumption based on theflooding of control packets from the destination node in order to reduce the routing cost.Control packet exchange between the target and all the nodes,on the other hand,is capable of having an influence on the overall efficiency of the system.The EORP protocol and the Multi-channel Cooperative Neighbour Discovery(MCCND)protocol have been designed to detect the cooperative adja-cent nodes for each node in the routing route as part of the routing path discovery process,which occurs during control packet transmission.While control packet transmission is taking place during the routing path discovery process,the EORP protocol and the Multi-channel Cooperative Neighbour Discovery(MCCND)protocol have been designed to detect the cooperative adjacent nodes for each node in the routing.Also included is a simulation of these protocols in order to evaluate their performance across a wide range of packet speeds using Constant Bit Rate(CBR).When the packet rate of the CBR is 20 packets per second,the results reveal that the EORP-MCCND is 0.6 s quicker than the state-of-the-art protocols,according to thefindings.Assuming that the CBR packet rate is 20 packets per second,the EORP-MCCND achieves 0.6 s of End 2 End Delay,0.05 s of Routing Overhead Delay,120 s of Network Lifetime,and 20 J of Energy Consumption efficiency,which is much better than that of the state-of-the-art protocols.
基金Project(41174102)supported by the National Natural Science Foundation of China
文摘In order to improve the exploration effect of deep non-ferrous mineral resources, multi-channel observation methods for induced polarization (IP) electrical sounding data and their inversion imaging technology are studied. First of all, four multi-channel observation methods are developed based on conventional IP electrical method, namely three-electrode and four-electrode arrays of unilateral and bilateral current transmitting. Then the maximum smoothness constrained inversion method of the least squares sense for IP electrical sounding data is proposed, and the inversion software is programmed. Finally, the simulation and inversion results of geo-electrical model for the proposed observation methods are analyzed. And the comparison results show that three-electrode array of bilateral current transmitting gives the best result, but the intensity in field work is larger than others; unilateral three-electrode and four-electrode arrays give the better results. Taking detection results and convenience of field exploration work into consideration, these two methods are more suitable for practical application; bilateral observation method of four-electrode array is not suitable for the detection of the steep ore bodies.
文摘A data acquisition system based on LabVIEW and NI PXI-5105 is presented for multi-channel data acquisition. It can realize the functions of parameter setting, data acquisition and storage, waveform display and data analysis using LabVIEW and NI-SCOPE device driver. The advantages of the system are that the setting is convenient, the operation is easy, the interface is friendly and the functions are practical. The experiment results show that the system has good stability and high reliability and is a powerful tool for multi-channel data acquisition.
基金supported by the National Natural Science Foundation of China(12204359 and 12174292)the China Postdoctoral Science Foundation(2022TQ0243 and 2022M722448)+1 种基金the Natural Science Foundation of Hubei Province(2022CFB641)the Natural Science Foundation of Jiangsu Province(BK20231210).
文摘With the escalating flow of information and digital communication,information security has become an increasingly important issue.Traditional cryptographic methods are being threatened by advancing progress in computing,while physical encryption methods are favored as a viable and compelling avenue.Metasurfaces,which are known for their extraordinary ability to manipulate optical parameters at the nanoscale,exhibit significant potential for the revolution of optical devices,making them a highly promising candidate for optical encryption applications.Here,a single-sized metasurface with four independent channels is proposed for conducting steganography and multi-key information encryption.More specifically,plaintext is transformed into a ciphertext image,which is encoded into a metasurface,while the decryption key is discretely integrated into another channel within the same metasurface.Two different keys for steganographic image unveiling are also encoded into the metasurface and can be retrieved with different channels and spatial positions.This distributed multi-key encryption approach can enhance security,while strategically distributing images across distinct spatial zones serves as an additional measure to reduce the risk of information leakage.This minimalist designed metasurface,with its advantages of high information density and robust security,holds promise across applications including portable encryption,high-camouflaged image display,and high-density optical storage.
基金supported by National Key Research and Development Plan in China(Grant No.2020YFB1005500)Beijing Natural Science Foundation(Grant No.M21034)BUPT Excellent Ph.D Students Foundation(Grant No.CX2023218)。
文摘With the growth of requirements for data sharing,a novel business model of digital assets trading has emerged that allows data owners to sell their data for monetary gain.In the distributed ledger of blockchain,however,the privacy of stakeholder's identity and the confidentiality of data content are threatened.Therefore,we proposed a blockchainenabled privacy-preserving and access control scheme to address the above problems.First,the multi-channel mechanism is introduced to provide the privacy protection of distributed ledger inside the channel and achieve coarse-grained access control to digital assets.Then,we use multi-authority attribute-based encryption(MAABE)algorithm to build a fine-grained access control model for data trading in a single channel and describe its instantiation in detail.Security analysis shows that the scheme has IND-CPA secure and can provide privacy protection and collusion resistance.Compared with other schemes,our solution has better performance in privacy protection and access control.The evaluation results demonstrate its effectiveness and practicability.
基金supported by the National Natural Science Foundation of China(Nos.11527811 and 12035017).
文摘A new muon beam facility,called the Experimental Muon Source(EMuS),was proposed for construction at the China Spallation Neutron Source(CSNS).The design of the complex muon beamlines for the EMuS baseline scheme,which is based on superconducting solenoids,superferric dipoles and room-temperature magnets,is presented herein.Various muon beams,including surface muons,decay muons and low energy muons,have been developed for multipurpose applications.The optics design and simulation results of the trunk beamline and branch beamlines are presented.With a proton beam power of 25 kW at a standalone target station that consists of a conical graphite target and high-field superconducting solenoids,the muon beam intensity in the trunk beamline varies from 10^(7)/s for surface muons to 10^(10)/s for high-momentum decay muons.And at the endstations,these values vary from 10^(5)/s for surface muons to 10^(8)/s for decay muons.
基金The National High Technology Research and Development Program of China(863 Program)(No.2013AA013601)Prospective Research Project on Future Netw orks of Jiangsu Future Netw orks Innovation Institute(No.BY2013095-1-18)
文摘A channel allocation algorithm based on the maximum independent set is proposed to decrease network conflict and improve network performance. First, a channel allocation model is formulated and a series of the maximum independent sets (MISs) are obtained from a contention graph by the proposed approximation algorithm with low complexity. Then, a weighted contention graph is obtained using the number of contention vertices between two MISs as a weighted value. Links are allocated to channels by the weighted contention graph to minimize conflicts between independent sets. Finally, after channel allocation, each node allocates network interface cards (NICs) to links that are allocated channels according to the queue lengths of NICs. Simulations are conducted to evaluate the proposed algorithm. The results show that the proposed algorithm significantly improves the network throughput and decreases the end to end delay.