A new model of multi-range fractals is proposed to explain the experimental results observed on the fractal dimensions of the fracture surfaces in materials.The relationship of multi-range fractals with multi-scaling ...A new model of multi-range fractals is proposed to explain the experimental results observed on the fractal dimensions of the fracture surfaces in materials.The relationship of multi-range fractals with multi-scaling fractals has been also discussed.展开更多
Some profile of a rock section and some isopleth of a fractured surface of the rock were divided each into three parts. Then three parts were measured by dividers method and lattice method. It was discovered that the...Some profile of a rock section and some isopleth of a fractured surface of the rock were divided each into three parts. Then three parts were measured by dividers method and lattice method. It was discovered that the fractal dimensions of the three parts were remarkably different, so the fractured surface of rock was not simple fractal but multi range fractals.展开更多
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal...As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.展开更多
Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature ...Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature treatment were conducted with a ϕ75 mm split Hopkinson tension bar (SHTB) to investigate the mesoscopic fracture and damage properties of rock. An improved scanning electron microscopy (SEM) experimental method was used to analyze the tensile fracture surfaces of rock samples. Qualitative and quantitative analyses were performed to assess evolution of mesoscopic damage of heat-damaged rock under tensile loading. A constitutive model describing the mesoscopic fractal damage under thermo-mechanical coupling was established. The results showed that the high temperatures significantly reduced the tensile strength and fracture surface roughness of the red sandstone. The three-dimensional (3D) reconstruction of the fracture surface of the samples that experienced tensile failure at 900 °C showed a flat surface. The standard deviation of elevation and slope angle of specimen fracture surface first increased and then decreased with increasing temperature. The threshold for brittle fracture of the heat-damaged red sandstone specimens was 600 °C. Beyond this threshold temperature, local ductile fracture occurred, resulting in plastic deformation of the fracture surface during tensile fracturing. With increase of temperature, the internal meso-structure of samples was strengthened slightly at first and then deteriorated gradually, which was consistent with the change of macroscopic mechanical properties of red sandstone. The mesoscopic characteristics, such as the number, mean side length, maximum area, porosity, and fractal dimension of crack, exhibited an initial decline, followed by a gradual increase. The development of microcracks in samples had significant influence on mesoscopic fractal dimension. The mesoscopic fractal characteristics were used to establish a mesoscopic fractal damage constitutive model for red sandstone, and the agreement between the theoretical and experimental results validated the proposed model.展开更多
Elemental concentration distributions in space have been analyzed using different approaches. These analyses are of great significance for the quantitative characterization of various kinds of distribution patterns. F...Elemental concentration distributions in space have been analyzed using different approaches. These analyses are of great significance for the quantitative characterization of various kinds of distribution patterns. Fractal and multi-fractal methods have been extensively applied to this topic. Traditionally, approximately linear-fractal laws have been regarded as useful tools for characterizing the self-similarities of element concentrations. But, in nature, it is not always easy to find perfect linear fractal laws. In this paper the parabolic fractal model is used. First a two dimensional multiplicative multi-fractal cascade model is used to study the concentration patterns. The results show the parabolic fractal (PF) properties of the concentrations and the validity of non-linear fractal analysis. By dividing the studied area into four sub-areas it was possible to show that each part follows a non-linear parabolic fractal law and that the dispersion within each part varies. The ratio of the polynomial coefficients of the fitted parabolic curves can reflect, to some degree, the relative concentration and dispersal distribution patterns. This can provide new insight into the ore-forming potential in space. The parabofic fractal evaluations of ore-forming potential for the four suhareas are in good agreement with field investigation work and geochemical mapping results based on analysis of the original data.展开更多
The main contents in this note are: 1. introduction; 2. locally compact groups and local fields; 3. calculus on fractals based upon local fields; 4. fractional calculus and fractals; 5. fractal function spaces and PDE...The main contents in this note are: 1. introduction; 2. locally compact groups and local fields; 3. calculus on fractals based upon local fields; 4. fractional calculus and fractals; 5. fractal function spaces and PDE on fractals.展开更多
At its most basic level physics starts with space-time topology and geometry. On the other hand topology’s and geometry’s simplest and most basic elements are random Cantor sets. It follows then that nonlinear dynam...At its most basic level physics starts with space-time topology and geometry. On the other hand topology’s and geometry’s simplest and most basic elements are random Cantor sets. It follows then that nonlinear dynamics i.e. deterministic chaos and fractal geometry is the best mathematical theory to apply to the problems of high energy particle physics and cosmology. In the present work we give a short survey of some recent achievements of applying nonlinear dynamics to notoriously difficult subjects such as quantum entanglement as well as the origin and true nature of dark energy, negative absolute temperature and the fractal meaning of the constancy of the speed of light.展开更多
Based on Witten’s T-duality and mirror symmetry we show, following earlier work, the fundamental complimentarity of the Casimir energy and dark energy. Such a conclusion opens new vistas in cold fusion technology in ...Based on Witten’s T-duality and mirror symmetry we show, following earlier work, the fundamental complimentarity of the Casimir energy and dark energy. Such a conclusion opens new vistas in cold fusion technology in the wider sense of the word which we tackle via fractal nano technologies leading to some design proposals for a nano Casimir-dark energy reactor.展开更多
A new model of multirange fractals is proposed to explain the experimental results observed on the fractal dimensions of the fractured surfaces in materials. A new explanation to the Williford's multifractal curve...A new model of multirange fractals is proposed to explain the experimental results observed on the fractal dimensions of the fractured surfaces in materials. A new explanation to the Williford's multifractal curve on the relationship of fractal dimension with fracture properties in materials has been given. It shows the importance of fractorizing out the effect of fractal structure from other physical causes and separating the appropriate range of scale from multirange fractals. Mechanical alloying process under ball milling as a non-equilibrium dynamical system has been also analyzed.展开更多
Based on fractal super fibers and binary fractal fibers, the following objectives are approached in this paper: First, the concept of multiple-cell elements is induced and abstracted. Second, through multiple-cell el...Based on fractal super fibers and binary fractal fibers, the following objectives are approached in this paper: First, the concept of multiple-cell elements is induced and abstracted. Second, through multiple-cell elements, the constructability of regular multifractals with strict self-similarities is confirmed, and the universality of the con- struction mode for regular multifractals is proved. Third, through the construction mode and multiple-cell elements, regular multifractals are demonstrated to be equivalent to generalized regular single fractals with multilayer fine structures. On the basis of such equivalence, the dimension formula of the regular single fractal is extended to that of the regular multifractal, and the geometry of regular single fractals is extended to that of regular multifractals. Fourth, through regular multifractals, a few golden fractals are constructed.展开更多
Nd∶YAG precursor powders were synthesized by homogeneous precipitation and Nd∶YAG transparent ceramics were prepared by vacuum sintering at 1700 ℃ for 5 h. The ceramic materials were characterized by light transmit...Nd∶YAG precursor powders were synthesized by homogeneous precipitation and Nd∶YAG transparent ceramics were prepared by vacuum sintering at 1700 ℃ for 5 h. The ceramic materials were characterized by light transmittance, field emission gun-environment scanning microscope. Fractal geometry was used to study the quantitative relationships between light transmittance and fractal dimensions of Nd∶YAG transparent ceramics. It was found that the transmittance of Nd∶YAG with 1 mm in thickness was about 45% and 58% in visible and near-infrared region respectively. The microstructures of Nd∶YAG transparent ceramics were obvious fractal characteristic and fractal dimensions depart a little from two-dimension. The light transmittance decreased with increasing of fractal dimension and nonlinear fit curve was y=1350-1185x+269x2 between fractal dimension and light transmittance of Nd∶YAG transparent ceramics.展开更多
Ths paper,based on the principles of geometric self-similarity of fractal theory and some research results of rotein chemistry,improved the method of comput-ing protein fractal dimensions,and computed fractal dime...Ths paper,based on the principles of geometric self-similarity of fractal theory and some research results of rotein chemistry,improved the method of comput-ing protein fractal dimensions,and computed fractal dimensions of some protein back bone,secondary and assumed folding structures.The relationship between protein back-bone strucrural fractal dimensions and its spatial structures was investigated.The results indicated that protein backbone fractal dimensions not only have a close relation with protein secondary structure,but also with its folding.In addition,the folding of protein Polypeptide chains in 3-D space may be similar to the other macromolecular chain be haviour described by the self-avoiding walks(SAW)model.展开更多
A review of the concepts developed about mathematical and physical fractals is presented followed by experimental results of the latter, considered to be a fourth state of matter which pervades the universe from galax...A review of the concepts developed about mathematical and physical fractals is presented followed by experimental results of the latter, considered to be a fourth state of matter which pervades the universe from galaxies to submicroscopic systems. A model of multiple fractal aggregation via a computer code is shown to closely simulate physical fractals experiments carried out in simulated and in real low gravity.展开更多
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes...A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.展开更多
In the theory of random fractal, there are two important classes of random sets, one is the class of fractals generated by the paths of stochastic processes and another one is the class of factals generated by statist...In the theory of random fractal, there are two important classes of random sets, one is the class of fractals generated by the paths of stochastic processes and another one is the class of factals generated by statistical contraction operators. Now we will introduce some things about the probability basis and fractal properties of fractals in the last class. The probability basis contains (1) the convergence and measurability of a random recursive setK(ω) as a random element, (2) martingals property. The fractal properties include (3) the character of various similarity, (4) the separability property, (5) the support and zero-one law of distributionP k =P·K ?1, (6) the Hausdorff dimension and Hausdorff exact measure function.展开更多
we present a few unique animal-like fractal patterns in ionized-clnster-beam deposited fullerene-tetracyanoquinodimethane thin films.The fractal patterns consisting of animal-like aggregates such as"fishes"a...we present a few unique animal-like fractal patterns in ionized-clnster-beam deposited fullerene-tetracyanoquinodimethane thin films.The fractal patterns consisting of animal-like aggregates such as"fishes"and"quasi-seahorses"have been characterized by transnission electron microscopy.The results indicate that the sall aggregates ofthe aninmal-like body are composed of many single crystals whose crystalline directions are generally different.The formation of tle fractal patterns can be attributed to the cluster-diffusion-lirnited aggregation.展开更多
In the recent work of Kiss et al.[Phys.Rev.Lett.107(2011)100501],the evolvement of two-qubit quantum states in a measurement-based purification process is studied.As they pointed out,the purification results manifest ...In the recent work of Kiss et al.[Phys.Rev.Lett.107(2011)100501],the evolvement of two-qubit quantum states in a measurement-based purification process is studied.As they pointed out,the purification results manifest sensitivity to the applied initial states.The convergence regions to different stable circles are depicted on a complex plane.Because of the result patterns'likeness to typical fractals,we make further study on the interesting patterns'connection to fractals.Finally,through a numerical method we conclude that the boundaries of different islands of the patterns are fractals,which possess a non-integral fractal dimension.Also,we show that the fractal dimension would vary with the change of the portion of the noise added to the initial states.展开更多
In this paper, the box-counting dimension is used to derive an explicit formula for the dimension of a fractal constructed using several contractions or by combining fractals. This dimension agrees with the Hausdorff ...In this paper, the box-counting dimension is used to derive an explicit formula for the dimension of a fractal constructed using several contractions or by combining fractals. This dimension agrees with the Hausdorff dimension in the particular case when the scales factors considered are all the same. A more general sufficient condition for the box-counting dimension and the Hausdorff dimension to be the same is given. It is also shown that the dimension of the fractal obtained by combining two fractals is the weighted average of the dimensions of the two fractals.展开更多
Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal...Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.展开更多
文摘A new model of multi-range fractals is proposed to explain the experimental results observed on the fractal dimensions of the fracture surfaces in materials.The relationship of multi-range fractals with multi-scaling fractals has been also discussed.
文摘Some profile of a rock section and some isopleth of a fractured surface of the rock were divided each into three parts. Then three parts were measured by dividers method and lattice method. It was discovered that the fractal dimensions of the three parts were remarkably different, so the fractured surface of rock was not simple fractal but multi range fractals.
基金financially supported by the National Key R&D Program of China(No.2022YFE0121300)the National Natural Science Foundation of China(No.52374376)the Introduction Plan for High-end Foreign Experts(No.G2023105001L)。
文摘As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.
基金supported by The National Natural Science Foundation of China(Grant Nos.12272411 and 42007259).
文摘Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature treatment were conducted with a ϕ75 mm split Hopkinson tension bar (SHTB) to investigate the mesoscopic fracture and damage properties of rock. An improved scanning electron microscopy (SEM) experimental method was used to analyze the tensile fracture surfaces of rock samples. Qualitative and quantitative analyses were performed to assess evolution of mesoscopic damage of heat-damaged rock under tensile loading. A constitutive model describing the mesoscopic fractal damage under thermo-mechanical coupling was established. The results showed that the high temperatures significantly reduced the tensile strength and fracture surface roughness of the red sandstone. The three-dimensional (3D) reconstruction of the fracture surface of the samples that experienced tensile failure at 900 °C showed a flat surface. The standard deviation of elevation and slope angle of specimen fracture surface first increased and then decreased with increasing temperature. The threshold for brittle fracture of the heat-damaged red sandstone specimens was 600 °C. Beyond this threshold temperature, local ductile fracture occurred, resulting in plastic deformation of the fracture surface during tensile fracturing. With increase of temperature, the internal meso-structure of samples was strengthened slightly at first and then deteriorated gradually, which was consistent with the change of macroscopic mechanical properties of red sandstone. The mesoscopic characteristics, such as the number, mean side length, maximum area, porosity, and fractal dimension of crack, exhibited an initial decline, followed by a gradual increase. The development of microcracks in samples had significant influence on mesoscopic fractal dimension. The mesoscopic fractal characteristics were used to establish a mesoscopic fractal damage constitutive model for red sandstone, and the agreement between the theoretical and experimental results validated the proposed model.
基金Projects 40502029, 40472146 and 40373003 supported by the Natural Science Foundation of ChinaGPMR2007-11 by the Key Lab of GeologicalProcesses and Mineral Resources
文摘Elemental concentration distributions in space have been analyzed using different approaches. These analyses are of great significance for the quantitative characterization of various kinds of distribution patterns. Fractal and multi-fractal methods have been extensively applied to this topic. Traditionally, approximately linear-fractal laws have been regarded as useful tools for characterizing the self-similarities of element concentrations. But, in nature, it is not always easy to find perfect linear fractal laws. In this paper the parabolic fractal model is used. First a two dimensional multiplicative multi-fractal cascade model is used to study the concentration patterns. The results show the parabolic fractal (PF) properties of the concentrations and the validity of non-linear fractal analysis. By dividing the studied area into four sub-areas it was possible to show that each part follows a non-linear parabolic fractal law and that the dispersion within each part varies. The ratio of the polynomial coefficients of the fitted parabolic curves can reflect, to some degree, the relative concentration and dispersal distribution patterns. This can provide new insight into the ore-forming potential in space. The parabofic fractal evaluations of ore-forming potential for the four suhareas are in good agreement with field investigation work and geochemical mapping results based on analysis of the original data.
文摘The main contents in this note are: 1. introduction; 2. locally compact groups and local fields; 3. calculus on fractals based upon local fields; 4. fractional calculus and fractals; 5. fractal function spaces and PDE on fractals.
文摘At its most basic level physics starts with space-time topology and geometry. On the other hand topology’s and geometry’s simplest and most basic elements are random Cantor sets. It follows then that nonlinear dynamics i.e. deterministic chaos and fractal geometry is the best mathematical theory to apply to the problems of high energy particle physics and cosmology. In the present work we give a short survey of some recent achievements of applying nonlinear dynamics to notoriously difficult subjects such as quantum entanglement as well as the origin and true nature of dark energy, negative absolute temperature and the fractal meaning of the constancy of the speed of light.
文摘Based on Witten’s T-duality and mirror symmetry we show, following earlier work, the fundamental complimentarity of the Casimir energy and dark energy. Such a conclusion opens new vistas in cold fusion technology in the wider sense of the word which we tackle via fractal nano technologies leading to some design proposals for a nano Casimir-dark energy reactor.
文摘A new model of multirange fractals is proposed to explain the experimental results observed on the fractal dimensions of the fractured surfaces in materials. A new explanation to the Williford's multifractal curve on the relationship of fractal dimension with fracture properties in materials has been given. It shows the importance of fractorizing out the effect of fractal structure from other physical causes and separating the appropriate range of scale from multirange fractals. Mechanical alloying process under ball milling as a non-equilibrium dynamical system has been also analyzed.
基金supported by the National Natural Science Foundation of China (No. 10872114)the Natural Science Foundation of Jiangsu Province (No. BK2008370)
文摘Based on fractal super fibers and binary fractal fibers, the following objectives are approached in this paper: First, the concept of multiple-cell elements is induced and abstracted. Second, through multiple-cell elements, the constructability of regular multifractals with strict self-similarities is confirmed, and the universality of the con- struction mode for regular multifractals is proved. Third, through the construction mode and multiple-cell elements, regular multifractals are demonstrated to be equivalent to generalized regular single fractals with multilayer fine structures. On the basis of such equivalence, the dimension formula of the regular single fractal is extended to that of the regular multifractal, and the geometry of regular single fractals is extended to that of regular multifractals. Fourth, through regular multifractals, a few golden fractals are constructed.
基金Study on Optical Properties and Structure of Transparent Ceramics,Chinese Education Ministry Excellent Teachers Project (KB200226)
文摘Nd∶YAG precursor powders were synthesized by homogeneous precipitation and Nd∶YAG transparent ceramics were prepared by vacuum sintering at 1700 ℃ for 5 h. The ceramic materials were characterized by light transmittance, field emission gun-environment scanning microscope. Fractal geometry was used to study the quantitative relationships between light transmittance and fractal dimensions of Nd∶YAG transparent ceramics. It was found that the transmittance of Nd∶YAG with 1 mm in thickness was about 45% and 58% in visible and near-infrared region respectively. The microstructures of Nd∶YAG transparent ceramics were obvious fractal characteristic and fractal dimensions depart a little from two-dimension. The light transmittance decreased with increasing of fractal dimension and nonlinear fit curve was y=1350-1185x+269x2 between fractal dimension and light transmittance of Nd∶YAG transparent ceramics.
文摘Ths paper,based on the principles of geometric self-similarity of fractal theory and some research results of rotein chemistry,improved the method of comput-ing protein fractal dimensions,and computed fractal dimensions of some protein back bone,secondary and assumed folding structures.The relationship between protein back-bone strucrural fractal dimensions and its spatial structures was investigated.The results indicated that protein backbone fractal dimensions not only have a close relation with protein secondary structure,but also with its folding.In addition,the folding of protein Polypeptide chains in 3-D space may be similar to the other macromolecular chain be haviour described by the self-avoiding walks(SAW)model.
文摘A review of the concepts developed about mathematical and physical fractals is presented followed by experimental results of the latter, considered to be a fourth state of matter which pervades the universe from galaxies to submicroscopic systems. A model of multiple fractal aggregation via a computer code is shown to closely simulate physical fractals experiments carried out in simulated and in real low gravity.
基金This study was supported by the National Natural Science Foundation of China(U22B2075,52274056,51974356).
文摘A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.
文摘In the theory of random fractal, there are two important classes of random sets, one is the class of fractals generated by the paths of stochastic processes and another one is the class of factals generated by statistical contraction operators. Now we will introduce some things about the probability basis and fractal properties of fractals in the last class. The probability basis contains (1) the convergence and measurability of a random recursive setK(ω) as a random element, (2) martingals property. The fractal properties include (3) the character of various similarity, (4) the separability property, (5) the support and zero-one law of distributionP k =P·K ?1, (6) the Hausdorff dimension and Hausdorff exact measure function.
基金Supported in part by the Doctoral Programme Foundation of Higli Education Commissionthe National Natural Science Foundation of China.
文摘we present a few unique animal-like fractal patterns in ionized-clnster-beam deposited fullerene-tetracyanoquinodimethane thin films.The fractal patterns consisting of animal-like aggregates such as"fishes"and"quasi-seahorses"have been characterized by transnission electron microscopy.The results indicate that the sall aggregates ofthe aninmal-like body are composed of many single crystals whose crystalline directions are generally different.The formation of tle fractal patterns can be attributed to the cluster-diffusion-lirnited aggregation.
基金Supported by the National Basic Research Program(2011CB921200)the National Natural Science Foundation of China under Grant Nos 60921091 and 11274289the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China(No J1103207).
文摘In the recent work of Kiss et al.[Phys.Rev.Lett.107(2011)100501],the evolvement of two-qubit quantum states in a measurement-based purification process is studied.As they pointed out,the purification results manifest sensitivity to the applied initial states.The convergence regions to different stable circles are depicted on a complex plane.Because of the result patterns'likeness to typical fractals,we make further study on the interesting patterns'connection to fractals.Finally,through a numerical method we conclude that the boundaries of different islands of the patterns are fractals,which possess a non-integral fractal dimension.Also,we show that the fractal dimension would vary with the change of the portion of the noise added to the initial states.
文摘In this paper, the box-counting dimension is used to derive an explicit formula for the dimension of a fractal constructed using several contractions or by combining fractals. This dimension agrees with the Hausdorff dimension in the particular case when the scales factors considered are all the same. A more general sufficient condition for the box-counting dimension and the Hausdorff dimension to be the same is given. It is also shown that the dimension of the fractal obtained by combining two fractals is the weighted average of the dimensions of the two fractals.
基金financially supported by National Natural Science Foundation of China(No.52274171)Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining Fund(No.EC2023015)+1 种基金Excellent Youth Project of Universities in Anhui Province(No.2023AH030042)Unveiled List of Bidding Projects of Shanxi Province(No.20201101001)。
文摘Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.