DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately por...DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately portray the electrical characteristics of actual MGs while is controller design-friendly has kept the issue active. To this end, this paper establishes a large-signal model containing the comprehensive dynamical behavior of the DC MGs based on the theory of high-order fully actuated systems, and proposes distributed optimal control based on this. The proposed secondary control method can achieve the two goals of voltage recovery and current sharing for multi-bus DC MGs. Additionally, the simple structure of the proposed approach is similar to one based on droop control, which allows this control technique to be easily implemented in a variety of modern microgrids with different configurations. In contrast to existing studies, the process of controller design in this paper is closely tied to the actual dynamics of the MGs. It is a prominent feature that enables engineers to customize the performance metrics of the system. In addition, the analysis of the stability of the closed-loop DC microgrid system, as well as the optimality and consensus of current sharing are given. Finally, a scaled-down solar and battery-based microgrid prototype with maximum power point tracking controller is developed in the laboratory to experimentally test the efficacy of the proposed control method.展开更多
During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model...During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model of a DC microgrid,study the effects of the converter sag coefficient,input voltage,and load resistance on the microgrid stability,and reveal the oscillation mechanism of a DC microgrid caused by a single source.Then,a DC microgrid stability analysis method based on the combination of bifurcation and strobe is used to analyze how the aforementioned parameters influence the oscillation characteristics of the system.Finally,the stability region of the system is obtained by the Jacobi matrix eigenvalue method.Grid simulation verifies the feasibility and effectiveness of the proposed method.展开更多
This paper presents a peer-to-peer community cost optimization approach based on a single-prosumer energy management system.Its objective is to optimize energy costs for prosumers in the community by enhancing the con...This paper presents a peer-to-peer community cost optimization approach based on a single-prosumer energy management system.Its objective is to optimize energy costs for prosumers in the community by enhancing the consumption efficiency.This study was conducted along two main axes.The first axis focuses on designing a digital twin for a residential community microgrid platform.This phase involves data collection,cleaning,exploration,and interpretation.Moreover,it includes replicating the functionality of the real platform and validating the results.The second axis involves the development of a novel approach that incorporates two distinct prosumer behaviors within the same community microgrid,while maintaining the concept of peer-to-peer energy trading.Prosumers without storage utilize their individual PV systems to fulfill their energy requirements and inject excess energy into a local microgrid.Meanwhile,a single prosumer with a storage system actively engages in energy exchange to maximize the community’s profit.This is achieved by optimizing battery usage using a cost optimization solution.The proposed solution is validated using the developed digital twin.展开更多
To predict renewable energy sources such as solar power in microgrids more accurately,a hybrid power prediction method is presented in this paper.First,the self-attention mechanism is introduced based on a bidirection...To predict renewable energy sources such as solar power in microgrids more accurately,a hybrid power prediction method is presented in this paper.First,the self-attention mechanism is introduced based on a bidirectional gated recurrent neural network(BiGRU)to explore the time-series characteristics of solar power output and consider the influence of different time nodes on the prediction results.Subsequently,an improved quantum particle swarm optimization(QPSO)algorithm is proposed to optimize the hyperparameters of the combined prediction model.The final proposed LQPSO-BiGRU-self-attention hybrid model can predict solar power more effectively.In addition,considering the coordinated utilization of various energy sources such as electricity,hydrogen,and renewable energy,a multi-objective optimization model that considers both economic and environmental costs was constructed.A two-stage adaptive multi-objective quantum particle swarm optimization algorithm aided by a Lévy flight,named MO-LQPSO,was proposed for the comprehensive optimal scheduling of a multi-energy microgrid system.This algorithm effectively balances the global and local search capabilities and enhances the solution of complex nonlinear problems.The effectiveness and superiority of the proposed scheme are verified through comparative simulations.展开更多
The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order ...The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative(FOPID)controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration.To improve load frequency control,the proposed controllers are applied to a two-area interconnectedmicrogrid system incorporating diverse energy sources,such as wind turbines,photovoltaic cells,diesel generators,and various storage technologies.A novelmeta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers.The efficacy of the advanced FOPID controllers is demonstrated through comparative analyses against traditional proportional integral derivative(PID)and FOPID controllers,showcasing superior performance inmanaging systemfluctuations.The optimization algorithm is also evaluated against other artificial intelligent methods for parameter optimization,affirming the proposed solution’s efficiency.The robustness of the intelligent controllers against system uncertainties is further validated under extensive power disturbances,proving their capability to maintain grid stability.The dual-controller configuration ensures redundancy,allowing them to operate as mutual backups,enhancing system reliability.This research underlines the importance of sophisticated control strategies for future-proofing microgrid operations against the backdrop of evolving energy landscapes.展开更多
In this paper,an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load a...In this paper,an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load and PV power variations in a stand-alone DC microgrid.The strategy includes primary and secondary control.Among them,the primary control suppresses the DC microgrid voltage fluctuation through the I and II section control,and the secondary control aims to correct the P-U curve of the energy storage system and the PV system,thus reducing the steady-state bus voltage excursion.The simulation results demonstrate that the proposed control strategy effectively achieves SOC balancing and enhances the immunity of bus voltage.The proposed strategy improves the voltage fluctuation suppression ability by approximately 39.4%and 43.1%under the PV power and load power fluctuation conditions,respectively.Furthermore,the steady-state deviation of the bus voltage,△U_(dc) is only 0.01–0.1 V,ensuring stable operation of the DC microgrid in fluctuating power environments.展开更多
The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affec...The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affected.The control and operation of many small-distributed generation units with different performance characteristics create another challenge for the safe and efficient operation of the microgrid.In this paper,the optimum operation of distributed generation resources and heat and power storage in a microgrid,was performed based on real-time pricing through the proposed gray wolf optimization(GWO)algorithm to reduce the energy supply cost with the microgrid.Distributed generation resources such as solar panels,diesel generators with battery storage,and boiler thermal resources with thermal storage were used in the studied microgrid.Also,a combined heat and power(CHP)unit was used to produce thermal and electrical energy simultaneously.In the simulations,in addition to the gray wolf algorithm,some optimization algorithms have also been used.Then the results of 20 runs for each algorithm confirmed the high accuracy of the proposed GWO algorithm.The results of the simulations indicated that the CHP energy resources must be managed to have a minimum cost of energy supply in the microgrid,considering the demand response program.展开更多
Multi-energy microgrids(MEMG)play an important role in promoting carbon neutrality and achieving sustainable development.This study investigates an effective energy management strategy(EMS)for MEMG.First,an energy man...Multi-energy microgrids(MEMG)play an important role in promoting carbon neutrality and achieving sustainable development.This study investigates an effective energy management strategy(EMS)for MEMG.First,an energy management system model that allows for intra-microgrid energy conversion is developed,and the corresponding Markov decision process(MDP)problem is formulated.Subsequently,an improved double deep Q network(iDDQN)algorithm is proposed to enhance the exploration ability by modifying the calculation of the Q value,and a prioritized experience replay(PER)is introduced into the iDDQN to improve the training speed and effectiveness.Finally,taking advantage of the federated learning(FL)and iDDQN algorithms,a federated iDDQN is proposed to design an MEMG energy management strategy to enable each microgrid to share its experiences in the form of local neural network(NN)parameters with the federation layer,thus ensuring the privacy and security of data.The simulation results validate the superior performance of the proposed energy management strategy in minimizing the economic costs of the MEMG while reducing CO_2 emissions and protecting data privacy.展开更多
This paper presents the optimal scheduling of renewable resources using interior point optimization for grid-connected and islanded microgrids (MG) that operate with no energy storage systems. The German Jordanian Uni...This paper presents the optimal scheduling of renewable resources using interior point optimization for grid-connected and islanded microgrids (MG) that operate with no energy storage systems. The German Jordanian University (GJU) microgrid system is used for illustration. We present analyses for islanded and grid-connected MG with no storage. The results show a feasible islanded MG with a substantial operational cost reduction. We obtain an average of $1 k daily cost savings when operating an islanded compared to a grid-connected MG with capped grid energy prices. This cost saving is 10 times higher when considering varying grid energy prices during the day. Although the PV power is intermittent during the day, the MG continues to operate with a voltage variation that does not 10%. The results imply that MGs of GJU similar topology can optimally and safely operate with no energy storage requirements but considerable renewable generation capacity.展开更多
In the process of wind power,coal power,and energy storage equipment participating in the operation of industrial microgrids,the stable operation of wind-storage industrial microgrids is guaranteed by considering dema...In the process of wind power,coal power,and energy storage equipment participating in the operation of industrial microgrids,the stable operation of wind-storage industrial microgrids is guaranteed by considering demand response technology and user satisfaction.This paper firstly sorts out the status quo of microgrid operation optimization,and determines themain requirements for user satisfaction considering three types of load characteristics,demand response technology,power consumption benefit loss,user balance power purchase price and wind power consumption evaluation indicators in the system.Secondly,the operation architecture of the windstorage industrialmicrogrid is designed,and themulti-objective optimizationmodel of the wind-storage industrial microgrid is established with the comprehensive operating cost and user satisfaction as the target variables,and the corresponding solution method is mentioned.Finally,a typical wind-storage industrial microgrid is selected for simulation analysis,and the results showthat,(1)Considering the demand response technology,the comprehensive operating cost of the wind-storage industrial microgrid per day is 5292.63 yuan,the user satisfaction index is 0.953,and the wind power consumption rate reaches 100%.(2)By setting four scenarios,it highlights that the grid-connected operation mode is superior to the off-grid operation mode.Considering the demand response technology,the load curve can be optimized,and the time-of-use electricity price can be fully used to coordinate the operation of each unit,which enhances the wind power consumption capacity.The compromise solution of the system comprehensive operating cost and user satisfaction under the confidence level of 0.95 is obtained,namely(5343.22,0.94).(3)The frontier curve shows that in the process of model solving,it is impossible to optimize any sub-objective by changing the control variables,which proves that there is a close relationship between the comprehensive operating cost of the system and the confidence level,which can provide effective guidance for the optimal operation of industrial microgrids.展开更多
With the penetration of a large number of photovoltaic power generation units and power electronic converters,the DC microgrid shows low inertia characteristics,which might affect the stable operation of the microgrid...With the penetration of a large number of photovoltaic power generation units and power electronic converters,the DC microgrid shows low inertia characteristics,which might affect the stable operation of the microgrid in extreme cases.In order to enhance the“flexible features”of the interface converter connected to the DC bus,a control strategy of DCmicrogrid with photovoltaic and energy storage based on the virtual DC generator(VDCG)is proposed in this paper.The interface converters of the photovoltaic power generation system and the energy storage system simulates the inertia and damping characteristics of the DC generator to improve the stability of the DC bus voltage.The impedance ratio of DC microgrid was obtained by establishing the small-signal model of photovoltaic power generation system and energy storage system,and the Nyquist curves was applied to analyze the small-signal stability of the system.Finally,the simulation results were verified with MATLAB/Simulink.The results show that the proposed control strategy can slow down the fluctuation of bus voltage under the conditions of photovoltaic power fluctuation and load mutation,thus enhancing the system stability.展开更多
Complex microgrid structures and time-varying conditions, among other factors, cause problems in the mechanical modeling of microgrids, making model-based controller optimization difficult. Therefore, this study propo...Complex microgrid structures and time-varying conditions, among other factors, cause problems in the mechanical modeling of microgrids, making model-based controller optimization difficult. Therefore, this study proposed a secondary frequency adaptive control strategy based on parameter identification, which uses an online parameter identification method to identify the parameters in the microgrid in real-time. The identified parameters are then used in the secondary frequency adaptive controller to optimize the real-time controller performance. The proposed method realizes adaptive optimization of the controller in the microgrid operation state and is applied to a microgrid with unknown parameters to adjust the controller parameters. Finally, a simulation experiment was conducted to verify the model accuracy and the frequency regulation effect of the proposed adaptive control strategy.展开更多
In light of the growing integration of renewable energy sources in power systems,the adoption of DC microgrids has become increasingly popular,due to its simple structure,having no frequency,power factor concerns.Howe...In light of the growing integration of renewable energy sources in power systems,the adoption of DC microgrids has become increasingly popular,due to its simple structure,having no frequency,power factor concerns.However,the dependence of DC microgrids on cyber-networks also makes them susceptible to cyber-attacks.Potential cyberattacks can disrupt power system facilities and result in significant economic and loss of life.To address this concern,this paper presents an attack-resilient control strategy for microgrids to ensure voltage regulation and power sharing with stable operation under cyber-attack on the actuators.This paper first formulates the cyber-security problem considering a distributed generation based microgrid using the converter model,after which an attack-resilient control is proposed to eliminate the actuator attack impact on the system.Steady state analysis and root locus validation illustrate the feasibility of the proposed method.The effectiveness of the proposed control scheme is demonstrated through simulation results.展开更多
In the context of both the Virtual Power Plant (VPP) and microgrid(MG), the Energy Management System (EMS) is a key decision-maker forintegrating Distributed renewable Energy Resources (DERs) efficiently. TheEMS is re...In the context of both the Virtual Power Plant (VPP) and microgrid(MG), the Energy Management System (EMS) is a key decision-maker forintegrating Distributed renewable Energy Resources (DERs) efficiently. TheEMS is regarded as a strong enabler of providing the optimized schedulingcontrol in operation and management of usage of disperse DERs and RenewableEnergy reSources (RES) such as a small-size wind-turbine (WT) andphotovoltaic (PV) energies. The main objective to be pursued by the EMSis the minimization of the overall operating cost of the MG integrated VPPnetwork. However, the minimization of the power peaks is a new objective andopen issue to a well-functional EMS, along with the maximization of profitin the energy market. Thus, both objectives have to be taken into accountat the same time. Thus, this paper proposes the EMS application incorporatingpower offering strategy applying a nature-inspired algorithm such asParticle Swarm Optimization (PSO) algorithm, in order to find the optimalsolution of the objective function in the context of the overall operating cost,the coordination of DERs, and the energy losses in a MG integrated VPPnetwork. For a fair DERs coordination with minimized power fluctuationsin the power flow, the power offering strategies with an active power controland re-distribution are proposed. Simulation results show that the proposedMG integrated VPP model with PSO-based EMS employing EgalitarianreDistribution (ED) power offering strategy is most feasible option for theoverall operating cost of VPP revenue. The total operating cost of the proposedEMS with ED strategy is 40.98$ compared to 432.8$ of MGs only withoutEMS. It is concluded that each MGs in the proposed VPP model intelligentlyparticipates in energy trading market compliant with the objective function,to minimize the overall cost and the power fluctuation.展开更多
The growing interest in energy conservation has inspired companies to seek alternatives to highly polluting fuel electricity generation. This study designed an optimised solar wind power generation system to fulfil th...The growing interest in energy conservation has inspired companies to seek alternatives to highly polluting fuel electricity generation. This study designed an optimised solar wind power generation system to fulfil the energy requirement of a cold chain logistics centre. This study first conducted a thorough analysis of the clarity indicators and daily temperature positions of the cold chain logistics centre, determined the average daily electricity demand, and proposed an effective design scheme. The energy simulation software, RETScreen 8.0, was used to determine the scale of solar photovoltaic and wind power projects that meet the expected energy needs of the cold chain logistics centre. The results indicated that the estimated annual total energy demand was 833689.2 kWh. The annual power generation of 6 kW from solar photovoltaic projects and 150 kW from wind power projects was found to be enough to meet the expected electricity demand. Solar photovoltaic power generation and wind power generation account for 2.44% and 97.56%, respectively. The hybrid energy system achieved a 96.6% reduction in carbon emissions and provides a reasonable payback period of 6.1 years and an electricity generation of 904368.674 kWh per year. The feasibility of the project and the calculated period of investment return are very reasonable. Therefore, this hybrid renewable energy system provides reliable power by combining energy sources.展开更多
To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing confi...To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing configuration method of hybrid energy storage microgrid based on improved grey wolf optimization(IGWO)is proposed.Firstly,building a microgrid system containing a wind-solar power station and electric-hydrogen coupling hybrid energy storage system.Secondly,the minimum comprehensive cost of the construction and operation of the microgrid is taken as the outer objective function,and the minimum peak-to-valley of the microgrid’s daily output is taken as the inner objective function.By iterating through the outer and inner layers,the system improves operational stability while achieving economic configuration.Then,using the energy-self-smoothness of the microgrid as the evaluation index,a double-layer optimizing configuration method of the microgrid is constructed.Finally,to improve the disadvantages of grey wolf optimization(GWO),such as slow convergence in the later period and easy falling into local optima,by introducing the convergence factor nonlinear adjustment strategy and Cauchy mutation operator,an IGWO with excellent global performance is proposed.After testing with the typical test functions,the superiority of IGWO is verified.Next,using IGWO to solve the double-layer model.The case analysis shows that compared to GWO and particle swarm optimization(PSO),the IGWO reduced the comprehensive cost by 15.6%and 18.8%,respectively.Therefore,the proposed double-layer optimizationmethod of capacity configuration ofmicrogrid with wind-solar-hybrid energy storage based on IGWO could effectively improve the independence and stability of the microgrid and significantly reduce the comprehensive cost.展开更多
As an effective carrier of integrated clean energy,the microgrid has attracted wide attention.The randomness of renewable energies such as wind and solar power output brings a significant cost and impact on the econom...As an effective carrier of integrated clean energy,the microgrid has attracted wide attention.The randomness of renewable energies such as wind and solar power output brings a significant cost and impact on the economics and reliability of microgrids.This paper proposes an optimization scheme based on the distributionally robust optimization(DRO)model for a microgrid considering solar-wind correlation.Firstly,scenarios of wind and solar power output scenarios are generated based on non-parametric kernel density estimation and the Frank-Copula function;then the generated scenario results are reduced by K-means clustering;finally,the probability confidence interval of scenario distribution is constrained by 1-norm and∞-norm.The model is solved by a column-and-constraint generation algorithm.Experimental studies are conducted on a microgrid system in Jiangsu,China and the obtained scheduling solution turned out to be superior under wind and solar power uncertainties,which verifies the effectiveness of the proposed DRO model.展开更多
Reducing the impact of power outages and maintaining the power supply duration must be considered in implementing emergency energy dispatching in micro-networks.This paper studies a new emergency energy treatment meth...Reducing the impact of power outages and maintaining the power supply duration must be considered in implementing emergency energy dispatching in micro-networks.This paper studies a new emergency energy treatment method based on the robust optimal method and the industrial park micro-network with the optical energy storage system.After controlling the load input,a control strategy of adjusting and removing is proposed.Rolling optimal theory is applied to emergency energy scheduling based on a robust optimal mathematical model.A weighting factor is introduced into the optimal model to balance the importance of reducing and retaining the power supply.Uncertainty is designed to adjust the effect of uncertainty on the problem.The example shows that this method can flexibly set the weight coefficient and uncertainty value according to the actual situation so that the input of the control load can be optimized.展开更多
Microgrids are revolutionary power systems that interconnect a mix of renewable power generation, load, storage systems, and inverters in a small-scale grid network. Operating microgrids while maintaining a consistent...Microgrids are revolutionary power systems that interconnect a mix of renewable power generation, load, storage systems, and inverters in a small-scale grid network. Operating microgrids while maintaining a consistent grid voltage and frequency during the islanding and disruption of renewables has been a challenging research problem. In this paper, a preliminary microgrid agent implementation is presented using SPADE (Smart Python Agent Development Environment) as a powerful development framework that has been used extensively in many application domains. Agents autonomously managed and operated microgrid individual components. A multiagent microgrid system was modeled to seamlessly operate and optimize energy balance by coordinating the actions of agents. Agents were built to forecast energy demand and solar power and coordinate to balance generation with load while maintaining optimal power flow and adequate network voltage and frequency.展开更多
基金supported in part by the National Natural Science Foundation of China(62173255, 62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems,(ZDSYS20220330161800001)。
文摘DC-DC converter-based multi-bus DC microgrids(MGs) in series have received much attention, where the conflict between voltage recovery and current balancing has been a hot topic. The lack of models that accurately portray the electrical characteristics of actual MGs while is controller design-friendly has kept the issue active. To this end, this paper establishes a large-signal model containing the comprehensive dynamical behavior of the DC MGs based on the theory of high-order fully actuated systems, and proposes distributed optimal control based on this. The proposed secondary control method can achieve the two goals of voltage recovery and current sharing for multi-bus DC MGs. Additionally, the simple structure of the proposed approach is similar to one based on droop control, which allows this control technique to be easily implemented in a variety of modern microgrids with different configurations. In contrast to existing studies, the process of controller design in this paper is closely tied to the actual dynamics of the MGs. It is a prominent feature that enables engineers to customize the performance metrics of the system. In addition, the analysis of the stability of the closed-loop DC microgrid system, as well as the optimality and consensus of current sharing are given. Finally, a scaled-down solar and battery-based microgrid prototype with maximum power point tracking controller is developed in the laboratory to experimentally test the efficacy of the proposed control method.
基金National Natural Science Foundation of China(Nos.51767017,51867015,62063016)Fundamental Research Innovation Group Project of Gansu Province(18JR3RA133)Gansu Provincial Science and Technology Program(20JR5RA048,20JR10RA177).
文摘During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model of a DC microgrid,study the effects of the converter sag coefficient,input voltage,and load resistance on the microgrid stability,and reveal the oscillation mechanism of a DC microgrid caused by a single source.Then,a DC microgrid stability analysis method based on the combination of bifurcation and strobe is used to analyze how the aforementioned parameters influence the oscillation characteristics of the system.Finally,the stability region of the system is obtained by the Jacobi matrix eigenvalue method.Grid simulation verifies the feasibility and effectiveness of the proposed method.
基金supported by the Tunisian Ministry of Higher Education and Scientific Research under Grant LSE-ENIT-LR 11ES15funded in part by the PAQ-Collabora(PAR&I-Tk)program。
文摘This paper presents a peer-to-peer community cost optimization approach based on a single-prosumer energy management system.Its objective is to optimize energy costs for prosumers in the community by enhancing the consumption efficiency.This study was conducted along two main axes.The first axis focuses on designing a digital twin for a residential community microgrid platform.This phase involves data collection,cleaning,exploration,and interpretation.Moreover,it includes replicating the functionality of the real platform and validating the results.The second axis involves the development of a novel approach that incorporates two distinct prosumer behaviors within the same community microgrid,while maintaining the concept of peer-to-peer energy trading.Prosumers without storage utilize their individual PV systems to fulfill their energy requirements and inject excess energy into a local microgrid.Meanwhile,a single prosumer with a storage system actively engages in energy exchange to maximize the community’s profit.This is achieved by optimizing battery usage using a cost optimization solution.The proposed solution is validated using the developed digital twin.
基金supported by the National Natural Science Foundation of China under Grant 51977004the Beijing Natural Science Foundation under Grant 4212042.
文摘To predict renewable energy sources such as solar power in microgrids more accurately,a hybrid power prediction method is presented in this paper.First,the self-attention mechanism is introduced based on a bidirectional gated recurrent neural network(BiGRU)to explore the time-series characteristics of solar power output and consider the influence of different time nodes on the prediction results.Subsequently,an improved quantum particle swarm optimization(QPSO)algorithm is proposed to optimize the hyperparameters of the combined prediction model.The final proposed LQPSO-BiGRU-self-attention hybrid model can predict solar power more effectively.In addition,considering the coordinated utilization of various energy sources such as electricity,hydrogen,and renewable energy,a multi-objective optimization model that considers both economic and environmental costs was constructed.A two-stage adaptive multi-objective quantum particle swarm optimization algorithm aided by a Lévy flight,named MO-LQPSO,was proposed for the comprehensive optimal scheduling of a multi-energy microgrid system.This algorithm effectively balances the global and local search capabilities and enhances the solution of complex nonlinear problems.The effectiveness and superiority of the proposed scheme are verified through comparative simulations.
文摘The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative(FOPID)controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration.To improve load frequency control,the proposed controllers are applied to a two-area interconnectedmicrogrid system incorporating diverse energy sources,such as wind turbines,photovoltaic cells,diesel generators,and various storage technologies.A novelmeta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers.The efficacy of the advanced FOPID controllers is demonstrated through comparative analyses against traditional proportional integral derivative(PID)and FOPID controllers,showcasing superior performance inmanaging systemfluctuations.The optimization algorithm is also evaluated against other artificial intelligent methods for parameter optimization,affirming the proposed solution’s efficiency.The robustness of the intelligent controllers against system uncertainties is further validated under extensive power disturbances,proving their capability to maintain grid stability.The dual-controller configuration ensures redundancy,allowing them to operate as mutual backups,enhancing system reliability.This research underlines the importance of sophisticated control strategies for future-proofing microgrid operations against the backdrop of evolving energy landscapes.
基金supported by the NationalNatural Science Foundation of China(No.52067013)the Natural Science Foundation of Gansu Province(No.20JR5RA395)as well as the Tianyou Innovation Team of Lanzhou Jiaotong University(TY202010).
文摘In this paper,an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load and PV power variations in a stand-alone DC microgrid.The strategy includes primary and secondary control.Among them,the primary control suppresses the DC microgrid voltage fluctuation through the I and II section control,and the secondary control aims to correct the P-U curve of the energy storage system and the PV system,thus reducing the steady-state bus voltage excursion.The simulation results demonstrate that the proposed control strategy effectively achieves SOC balancing and enhances the immunity of bus voltage.The proposed strategy improves the voltage fluctuation suppression ability by approximately 39.4%and 43.1%under the PV power and load power fluctuation conditions,respectively.Furthermore,the steady-state deviation of the bus voltage,△U_(dc) is only 0.01–0.1 V,ensuring stable operation of the DC microgrid in fluctuating power environments.
基金This work was supported in part by an International Research Partnership“Electrical Engineering—Thai French Research Center(EE-TFRC)”under the project framework of the Lorraine Universitéd’Excellence(LUE)in cooperation between Universitéde Lorraine and King Mongkut’s University of Technology North Bangkok and in part by the National Research Council of Thailand(NRCT)under Senior Research Scholar Program under Grant No.N42A640328.
文摘The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affected.The control and operation of many small-distributed generation units with different performance characteristics create another challenge for the safe and efficient operation of the microgrid.In this paper,the optimum operation of distributed generation resources and heat and power storage in a microgrid,was performed based on real-time pricing through the proposed gray wolf optimization(GWO)algorithm to reduce the energy supply cost with the microgrid.Distributed generation resources such as solar panels,diesel generators with battery storage,and boiler thermal resources with thermal storage were used in the studied microgrid.Also,a combined heat and power(CHP)unit was used to produce thermal and electrical energy simultaneously.In the simulations,in addition to the gray wolf algorithm,some optimization algorithms have also been used.Then the results of 20 runs for each algorithm confirmed the high accuracy of the proposed GWO algorithm.The results of the simulations indicated that the CHP energy resources must be managed to have a minimum cost of energy supply in the microgrid,considering the demand response program.
基金supported by the Research and Development of Key Technologies of the Regional Energy Internet based on Multi-Energy Complementary and Collaborative Optimization(BE2020081)。
文摘Multi-energy microgrids(MEMG)play an important role in promoting carbon neutrality and achieving sustainable development.This study investigates an effective energy management strategy(EMS)for MEMG.First,an energy management system model that allows for intra-microgrid energy conversion is developed,and the corresponding Markov decision process(MDP)problem is formulated.Subsequently,an improved double deep Q network(iDDQN)algorithm is proposed to enhance the exploration ability by modifying the calculation of the Q value,and a prioritized experience replay(PER)is introduced into the iDDQN to improve the training speed and effectiveness.Finally,taking advantage of the federated learning(FL)and iDDQN algorithms,a federated iDDQN is proposed to design an MEMG energy management strategy to enable each microgrid to share its experiences in the form of local neural network(NN)parameters with the federation layer,thus ensuring the privacy and security of data.The simulation results validate the superior performance of the proposed energy management strategy in minimizing the economic costs of the MEMG while reducing CO_2 emissions and protecting data privacy.
文摘This paper presents the optimal scheduling of renewable resources using interior point optimization for grid-connected and islanded microgrids (MG) that operate with no energy storage systems. The German Jordanian University (GJU) microgrid system is used for illustration. We present analyses for islanded and grid-connected MG with no storage. The results show a feasible islanded MG with a substantial operational cost reduction. We obtain an average of $1 k daily cost savings when operating an islanded compared to a grid-connected MG with capped grid energy prices. This cost saving is 10 times higher when considering varying grid energy prices during the day. Although the PV power is intermittent during the day, the MG continues to operate with a voltage variation that does not 10%. The results imply that MGs of GJU similar topology can optimally and safely operate with no energy storage requirements but considerable renewable generation capacity.
文摘In the process of wind power,coal power,and energy storage equipment participating in the operation of industrial microgrids,the stable operation of wind-storage industrial microgrids is guaranteed by considering demand response technology and user satisfaction.This paper firstly sorts out the status quo of microgrid operation optimization,and determines themain requirements for user satisfaction considering three types of load characteristics,demand response technology,power consumption benefit loss,user balance power purchase price and wind power consumption evaluation indicators in the system.Secondly,the operation architecture of the windstorage industrialmicrogrid is designed,and themulti-objective optimizationmodel of the wind-storage industrial microgrid is established with the comprehensive operating cost and user satisfaction as the target variables,and the corresponding solution method is mentioned.Finally,a typical wind-storage industrial microgrid is selected for simulation analysis,and the results showthat,(1)Considering the demand response technology,the comprehensive operating cost of the wind-storage industrial microgrid per day is 5292.63 yuan,the user satisfaction index is 0.953,and the wind power consumption rate reaches 100%.(2)By setting four scenarios,it highlights that the grid-connected operation mode is superior to the off-grid operation mode.Considering the demand response technology,the load curve can be optimized,and the time-of-use electricity price can be fully used to coordinate the operation of each unit,which enhances the wind power consumption capacity.The compromise solution of the system comprehensive operating cost and user satisfaction under the confidence level of 0.95 is obtained,namely(5343.22,0.94).(3)The frontier curve shows that in the process of model solving,it is impossible to optimize any sub-objective by changing the control variables,which proves that there is a close relationship between the comprehensive operating cost of the system and the confidence level,which can provide effective guidance for the optimal operation of industrial microgrids.
基金funded by the National Natural Science Foundation of China(52067013)the Provincial Natural Science Foundation of Gansu(20JR5RA395).
文摘With the penetration of a large number of photovoltaic power generation units and power electronic converters,the DC microgrid shows low inertia characteristics,which might affect the stable operation of the microgrid in extreme cases.In order to enhance the“flexible features”of the interface converter connected to the DC bus,a control strategy of DCmicrogrid with photovoltaic and energy storage based on the virtual DC generator(VDCG)is proposed in this paper.The interface converters of the photovoltaic power generation system and the energy storage system simulates the inertia and damping characteristics of the DC generator to improve the stability of the DC bus voltage.The impedance ratio of DC microgrid was obtained by establishing the small-signal model of photovoltaic power generation system and energy storage system,and the Nyquist curves was applied to analyze the small-signal stability of the system.Finally,the simulation results were verified with MATLAB/Simulink.The results show that the proposed control strategy can slow down the fluctuation of bus voltage under the conditions of photovoltaic power fluctuation and load mutation,thus enhancing the system stability.
基金This work was supported by“the Fundamental Research Funds for the Central Universities”(Grant No.PA2022GDGP0032)National Natural Science Foundation of China(51907045).
文摘Complex microgrid structures and time-varying conditions, among other factors, cause problems in the mechanical modeling of microgrids, making model-based controller optimization difficult. Therefore, this study proposed a secondary frequency adaptive control strategy based on parameter identification, which uses an online parameter identification method to identify the parameters in the microgrid in real-time. The identified parameters are then used in the secondary frequency adaptive controller to optimize the real-time controller performance. The proposed method realizes adaptive optimization of the controller in the microgrid operation state and is applied to a microgrid with unknown parameters to adjust the controller parameters. Finally, a simulation experiment was conducted to verify the model accuracy and the frequency regulation effect of the proposed adaptive control strategy.
基金supported by VILLUM FONDEN,Denmark under the VILLUM Investigator Grant(No.25920):Center for Research on Microgrids(CROM)。
文摘In light of the growing integration of renewable energy sources in power systems,the adoption of DC microgrids has become increasingly popular,due to its simple structure,having no frequency,power factor concerns.However,the dependence of DC microgrids on cyber-networks also makes them susceptible to cyber-attacks.Potential cyberattacks can disrupt power system facilities and result in significant economic and loss of life.To address this concern,this paper presents an attack-resilient control strategy for microgrids to ensure voltage regulation and power sharing with stable operation under cyber-attack on the actuators.This paper first formulates the cyber-security problem considering a distributed generation based microgrid using the converter model,after which an attack-resilient control is proposed to eliminate the actuator attack impact on the system.Steady state analysis and root locus validation illustrate the feasibility of the proposed method.The effectiveness of the proposed control scheme is demonstrated through simulation results.
文摘In the context of both the Virtual Power Plant (VPP) and microgrid(MG), the Energy Management System (EMS) is a key decision-maker forintegrating Distributed renewable Energy Resources (DERs) efficiently. TheEMS is regarded as a strong enabler of providing the optimized schedulingcontrol in operation and management of usage of disperse DERs and RenewableEnergy reSources (RES) such as a small-size wind-turbine (WT) andphotovoltaic (PV) energies. The main objective to be pursued by the EMSis the minimization of the overall operating cost of the MG integrated VPPnetwork. However, the minimization of the power peaks is a new objective andopen issue to a well-functional EMS, along with the maximization of profitin the energy market. Thus, both objectives have to be taken into accountat the same time. Thus, this paper proposes the EMS application incorporatingpower offering strategy applying a nature-inspired algorithm such asParticle Swarm Optimization (PSO) algorithm, in order to find the optimalsolution of the objective function in the context of the overall operating cost,the coordination of DERs, and the energy losses in a MG integrated VPPnetwork. For a fair DERs coordination with minimized power fluctuationsin the power flow, the power offering strategies with an active power controland re-distribution are proposed. Simulation results show that the proposedMG integrated VPP model with PSO-based EMS employing EgalitarianreDistribution (ED) power offering strategy is most feasible option for theoverall operating cost of VPP revenue. The total operating cost of the proposedEMS with ED strategy is 40.98$ compared to 432.8$ of MGs only withoutEMS. It is concluded that each MGs in the proposed VPP model intelligentlyparticipates in energy trading market compliant with the objective function,to minimize the overall cost and the power fluctuation.
文摘The growing interest in energy conservation has inspired companies to seek alternatives to highly polluting fuel electricity generation. This study designed an optimised solar wind power generation system to fulfil the energy requirement of a cold chain logistics centre. This study first conducted a thorough analysis of the clarity indicators and daily temperature positions of the cold chain logistics centre, determined the average daily electricity demand, and proposed an effective design scheme. The energy simulation software, RETScreen 8.0, was used to determine the scale of solar photovoltaic and wind power projects that meet the expected energy needs of the cold chain logistics centre. The results indicated that the estimated annual total energy demand was 833689.2 kWh. The annual power generation of 6 kW from solar photovoltaic projects and 150 kW from wind power projects was found to be enough to meet the expected electricity demand. Solar photovoltaic power generation and wind power generation account for 2.44% and 97.56%, respectively. The hybrid energy system achieved a 96.6% reduction in carbon emissions and provides a reasonable payback period of 6.1 years and an electricity generation of 904368.674 kWh per year. The feasibility of the project and the calculated period of investment return are very reasonable. Therefore, this hybrid renewable energy system provides reliable power by combining energy sources.
基金supported by the NationalNatural Science Foundation of China Under Grant 61961017Key R&D Plan Projects in Hubei Province 2022BAA060.
文摘To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing configuration method of hybrid energy storage microgrid based on improved grey wolf optimization(IGWO)is proposed.Firstly,building a microgrid system containing a wind-solar power station and electric-hydrogen coupling hybrid energy storage system.Secondly,the minimum comprehensive cost of the construction and operation of the microgrid is taken as the outer objective function,and the minimum peak-to-valley of the microgrid’s daily output is taken as the inner objective function.By iterating through the outer and inner layers,the system improves operational stability while achieving economic configuration.Then,using the energy-self-smoothness of the microgrid as the evaluation index,a double-layer optimizing configuration method of the microgrid is constructed.Finally,to improve the disadvantages of grey wolf optimization(GWO),such as slow convergence in the later period and easy falling into local optima,by introducing the convergence factor nonlinear adjustment strategy and Cauchy mutation operator,an IGWO with excellent global performance is proposed.After testing with the typical test functions,the superiority of IGWO is verified.Next,using IGWO to solve the double-layer model.The case analysis shows that compared to GWO and particle swarm optimization(PSO),the IGWO reduced the comprehensive cost by 15.6%and 18.8%,respectively.Therefore,the proposed double-layer optimizationmethod of capacity configuration ofmicrogrid with wind-solar-hybrid energy storage based on IGWO could effectively improve the independence and stability of the microgrid and significantly reduce the comprehensive cost.
基金supported in part by the National Natural Science Foundation of China(51977127)in part by the ShanghaiMunicipal Science and in part by the Technology Commission(19020500800)“Shuguang Program”(20SG52)Shanghai Education Development Foundation and Shanghai Municipal Education Commission.
文摘As an effective carrier of integrated clean energy,the microgrid has attracted wide attention.The randomness of renewable energies such as wind and solar power output brings a significant cost and impact on the economics and reliability of microgrids.This paper proposes an optimization scheme based on the distributionally robust optimization(DRO)model for a microgrid considering solar-wind correlation.Firstly,scenarios of wind and solar power output scenarios are generated based on non-parametric kernel density estimation and the Frank-Copula function;then the generated scenario results are reduced by K-means clustering;finally,the probability confidence interval of scenario distribution is constrained by 1-norm and∞-norm.The model is solved by a column-and-constraint generation algorithm.Experimental studies are conducted on a microgrid system in Jiangsu,China and the obtained scheduling solution turned out to be superior under wind and solar power uncertainties,which verifies the effectiveness of the proposed DRO model.
文摘Reducing the impact of power outages and maintaining the power supply duration must be considered in implementing emergency energy dispatching in micro-networks.This paper studies a new emergency energy treatment method based on the robust optimal method and the industrial park micro-network with the optical energy storage system.After controlling the load input,a control strategy of adjusting and removing is proposed.Rolling optimal theory is applied to emergency energy scheduling based on a robust optimal mathematical model.A weighting factor is introduced into the optimal model to balance the importance of reducing and retaining the power supply.Uncertainty is designed to adjust the effect of uncertainty on the problem.The example shows that this method can flexibly set the weight coefficient and uncertainty value according to the actual situation so that the input of the control load can be optimized.
文摘Microgrids are revolutionary power systems that interconnect a mix of renewable power generation, load, storage systems, and inverters in a small-scale grid network. Operating microgrids while maintaining a consistent grid voltage and frequency during the islanding and disruption of renewables has been a challenging research problem. In this paper, a preliminary microgrid agent implementation is presented using SPADE (Smart Python Agent Development Environment) as a powerful development framework that has been used extensively in many application domains. Agents autonomously managed and operated microgrid individual components. A multiagent microgrid system was modeled to seamlessly operate and optimize energy balance by coordinating the actions of agents. Agents were built to forecast energy demand and solar power and coordinate to balance generation with load while maintaining optimal power flow and adequate network voltage and frequency.