The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in Chin...The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.展开更多
In maltiresolution analysis (MRA) by wavelet function Daubechies (db), we decompose the signal to two parts, the low and high frequency content. The high-frequency content of the data is removed first and a new "...In maltiresolution analysis (MRA) by wavelet function Daubechies (db), we decompose the signal to two parts, the low and high frequency content. The high-frequency content of the data is removed first and a new "de-noise" signal is reconstructed by using inverse wavelet transform. The wavelet spectrum and harmonic analysis were used to analyze the characteristics of tidal data before constructing the input and output structure of ANN model. That is, the concept of tidal constituent phase-lags was introduced and the new "de-noise" signal was used as the input data set of ANN and the forecasting accuracy of ANN model is significantly improved.展开更多
The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the ...The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.展开更多
In recent years,the development in the field of computer-aided diagnosis(CAD)has increased rapidly.Many traditional machine learning algorithms have been proposed for identifying the pathological brain using magnetic ...In recent years,the development in the field of computer-aided diagnosis(CAD)has increased rapidly.Many traditional machine learning algorithms have been proposed for identifying the pathological brain using magnetic resonance images.The existing algorithms have drawbacks with respect to their accuracy,efficiency,and limited learning processes.To address these issues,we propose a pathological brain tumour detection method that utilizes the Weiner filter to improve the image contrast,2D-discrete wavelet transformation(2D-DWT)to extract the features,probabilistic principal component analysis(PPCA)and linear discriminant analysis(LDA)to normalize and reduce the features,and a feed-forward neural network(FNN)and modified particle swarm optimization(MPSO)with ant colony optimization(ACO)to improve the accuracy,stability,and overcome fitting issues in the classification of brain magnetic resonance images.The proposed method achieves better results than other existing algorithms.展开更多
The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins includ...The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins include data from the various social media, footages from video cameras, wireless and wired sensor network measurements, data from the stock markets and other financial transaction data, supermarket transaction data and so on. The aforementioned data may be high dimensional and big in Volume, Value, Velocity, Variety, and Veracity. Hence one of the crucial challenges is the storage, processing and extraction of relevant information from the data. In the special case of image data, the technique of image compressions may be employed in reducing the dimension and volume of the data to ensure it is convenient for processing and analysis. In this work, we examine a proof-of-concept multiresolution analytics that uses wavelet transforms, that is one popular mathematical and analytical framework employed in signal processing and representations, and we study its applications to the area of compressing image data in wireless sensor networks. The proposed approach consists of the applications of wavelet transforms, threshold detections, quantization data encoding and ultimately apply the inverse transforms. The work specifically focuses on multi-resolution analysis with wavelet transforms by comparing 3 wavelets at the 5 decomposition levels. Simulation results are provided to demonstrate the effectiveness of the methodology.展开更多
The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and n...The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and neural networks. The integrated wavelet neural network fault diagnosis system was set up based on both the information fusion technology and actual fault diagnosis, which took the sub-wavelet neural network as primary diagnosis from different sides, then came to the conclusions through decision-making fusion. The realizable policy of the diagnosis system and established principle of the sub-wavelet neural networks were given. It can be deduced from the examples that it takes full advantage of diversified characteristic information, and improves the diagnosis rate.展开更多
According to the time-frequency localization characteristic of the wavelet transform (WT)and the nonlinear reflection of the neural network,this paper presents the neural network data fusion fault diagnosis method bas...According to the time-frequency localization characteristic of the wavelet transform (WT)and the nonlinear reflection of the neural network,this paper presents the neural network data fusion fault diagnosis method based on wavelet transform.The network construction and the signal processing steps are introduced in detail.The correct result was attained by using this method in rotary machinery fault diagnosis.It proves the method efficient in fault diagnosis, which is expected to have a wide application.展开更多
A slotted orifice has many superiorities over a standard orifice. For single-phase flow measurement, its flow coefficient is insensitive to the upstream velocity profile. For two phase flow measurement, various charac...A slotted orifice has many superiorities over a standard orifice. For single-phase flow measurement, its flow coefficient is insensitive to the upstream velocity profile. For two phase flow measurement, various characteristics of its differential pressure (DP) are stable and closely correlated with the mass flow rate of gas and liquid. The complex relationships between the signal features and the two-phase flow rate are established through the use of a back propagation (BP) neural network. Experiments were carried out in the horizontal tubes with 50ram inner diameter, ooerated with water flow rate in the range of 0.2m^3·h^-1 to 4m3·h^-1, gas flow rate in the range of 100m^3·h^-1 to 1000m^3·h^-1, and pressure at 400kPa and 850kPa respectively, where the temperature is ambient temperature. This article includes the principle of wet gas meter development, the experimental matrix, the signal processing techniques and the achieved results. On the basis of the results it is suggested that the slotted orifice couple with a trained neural network may provide a simple but efficient solution to the wet gas meter development.展开更多
This paper introduces the identification of the defects on the fabric by using two-double neural network and wavelet analysis. The purpose is to fit for the automatic cloth inspection system and to avoid the disadvant...This paper introduces the identification of the defects on the fabric by using two-double neural network and wavelet analysis. The purpose is to fit for the automatic cloth inspection system and to avoid the disadvantages of traditional human inspection. Firstly, training the normal fabric to acquire its characteristics and then using the BP neural network to tell the normal fabric apart from the one with defects. Secondly, doing the two-dimeusional discrete wavelet transformation based on the image of the defects, then wiping off the proper characteristics of the fabric, and identifying the defects utilizing the trained BP neural network. It is proved that this method is of high speed and accuracy. It comes up to the requirement of automatic cloth inspection.展开更多
Noise reduction analysis of signals is essential for modern underwater acoustic detection systems.The traditional noise reduction techniques gradually lose efficacy because the target signal is masked by biological an...Noise reduction analysis of signals is essential for modern underwater acoustic detection systems.The traditional noise reduction techniques gradually lose efficacy because the target signal is masked by biological and natural noise in the marine environ-ment.The feature extraction method combining time-frequency spectrograms and deep learning can effectively achieve the separation of noise and target signals.A fully convolutional encoder-decoder neural network(FCEDN)is proposed to address the issue of noise reduc-tion in underwater acoustic signals.The time-domain waveform map of underwater acoustic signals is converted into a wavelet low-frequency analysis recording spectrogram during the denoising process to preserve as many underwater acoustic signal characteristics as possible.The FCEDN is built to learn the spectrogram mapping between noise and target signals that can be learned at each time level.The transposed convolution transforms are introduced,which can transform the spectrogram features of the signals into listenable audio files.After evaluating the systems on the ShipsEar Dataset,the proposed method can increase SNR and SI-SNR by 10.02 and 9.5dB,re-spectively.展开更多
Using the hydrological and meteorological data in the Kaidu River Basin during 1957-2008, we simulated the hydro-climatic process by back-propagation artificial neural network (BPANN) based on wavelet analysis (WA...Using the hydrological and meteorological data in the Kaidu River Basin during 1957-2008, we simulated the hydro-climatic process by back-propagation artificial neural network (BPANN) based on wavelet analysis (WA), and then compared the simulated results with those from a multiple linear regression (MLR). The results show that the variation of runoff responded to regional climate change. The annual runoff (AR) was mainly affected by annual average temperature (AAT) and annual precipitation (AP), which revealed different varia- tion patterns at five time scales. At the time scale of 32-years, AR presented a monotonically increasing trend with the similar trend of AAT and AP. But at the 2-year, 4- year, 8-year, and 16-year time-scale, AR presented non-linear variation with fluctuations of AAT and AP. Both MLR and BPANN successfully simulated the hydro- climatic process based on WA at each time scale, but the simulated effect from BPANN is better than that from MLR.展开更多
基金National Natural Science Foundation of China, No.40335046
文摘The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.
基金This work was financially supported by the Science Council of Taiwan(Grant No.NSC90-2611-M-110-012)
文摘In maltiresolution analysis (MRA) by wavelet function Daubechies (db), we decompose the signal to two parts, the low and high frequency content. The high-frequency content of the data is removed first and a new "de-noise" signal is reconstructed by using inverse wavelet transform. The wavelet spectrum and harmonic analysis were used to analyze the characteristics of tidal data before constructing the input and output structure of ANN model. That is, the concept of tidal constituent phase-lags was introduced and the new "de-noise" signal was used as the input data set of ANN and the forecasting accuracy of ANN model is significantly improved.
基金This project was supported by the National Nature Science Foundation of China(60372001)
文摘The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.
文摘In recent years,the development in the field of computer-aided diagnosis(CAD)has increased rapidly.Many traditional machine learning algorithms have been proposed for identifying the pathological brain using magnetic resonance images.The existing algorithms have drawbacks with respect to their accuracy,efficiency,and limited learning processes.To address these issues,we propose a pathological brain tumour detection method that utilizes the Weiner filter to improve the image contrast,2D-discrete wavelet transformation(2D-DWT)to extract the features,probabilistic principal component analysis(PPCA)and linear discriminant analysis(LDA)to normalize and reduce the features,and a feed-forward neural network(FNN)and modified particle swarm optimization(MPSO)with ant colony optimization(ACO)to improve the accuracy,stability,and overcome fitting issues in the classification of brain magnetic resonance images.The proposed method achieves better results than other existing algorithms.
文摘The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins include data from the various social media, footages from video cameras, wireless and wired sensor network measurements, data from the stock markets and other financial transaction data, supermarket transaction data and so on. The aforementioned data may be high dimensional and big in Volume, Value, Velocity, Variety, and Veracity. Hence one of the crucial challenges is the storage, processing and extraction of relevant information from the data. In the special case of image data, the technique of image compressions may be employed in reducing the dimension and volume of the data to ensure it is convenient for processing and analysis. In this work, we examine a proof-of-concept multiresolution analytics that uses wavelet transforms, that is one popular mathematical and analytical framework employed in signal processing and representations, and we study its applications to the area of compressing image data in wireless sensor networks. The proposed approach consists of the applications of wavelet transforms, threshold detections, quantization data encoding and ultimately apply the inverse transforms. The work specifically focuses on multi-resolution analysis with wavelet transforms by comparing 3 wavelets at the 5 decomposition levels. Simulation results are provided to demonstrate the effectiveness of the methodology.
文摘The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and neural networks. The integrated wavelet neural network fault diagnosis system was set up based on both the information fusion technology and actual fault diagnosis, which took the sub-wavelet neural network as primary diagnosis from different sides, then came to the conclusions through decision-making fusion. The realizable policy of the diagnosis system and established principle of the sub-wavelet neural networks were given. It can be deduced from the examples that it takes full advantage of diversified characteristic information, and improves the diagnosis rate.
文摘According to the time-frequency localization characteristic of the wavelet transform (WT)and the nonlinear reflection of the neural network,this paper presents the neural network data fusion fault diagnosis method based on wavelet transform.The network construction and the signal processing steps are introduced in detail.The correct result was attained by using this method in rotary machinery fault diagnosis.It proves the method efficient in fault diagnosis, which is expected to have a wide application.
基金Supported by the National Natural Science Foundation of China (No.60672003)Shandong Key Technology R&D Program (2004GG2205016).
文摘A slotted orifice has many superiorities over a standard orifice. For single-phase flow measurement, its flow coefficient is insensitive to the upstream velocity profile. For two phase flow measurement, various characteristics of its differential pressure (DP) are stable and closely correlated with the mass flow rate of gas and liquid. The complex relationships between the signal features and the two-phase flow rate are established through the use of a back propagation (BP) neural network. Experiments were carried out in the horizontal tubes with 50ram inner diameter, ooerated with water flow rate in the range of 0.2m^3·h^-1 to 4m3·h^-1, gas flow rate in the range of 100m^3·h^-1 to 1000m^3·h^-1, and pressure at 400kPa and 850kPa respectively, where the temperature is ambient temperature. This article includes the principle of wet gas meter development, the experimental matrix, the signal processing techniques and the achieved results. On the basis of the results it is suggested that the slotted orifice couple with a trained neural network may provide a simple but efficient solution to the wet gas meter development.
文摘This paper introduces the identification of the defects on the fabric by using two-double neural network and wavelet analysis. The purpose is to fit for the automatic cloth inspection system and to avoid the disadvantages of traditional human inspection. Firstly, training the normal fabric to acquire its characteristics and then using the BP neural network to tell the normal fabric apart from the one with defects. Secondly, doing the two-dimeusional discrete wavelet transformation based on the image of the defects, then wiping off the proper characteristics of the fabric, and identifying the defects utilizing the trained BP neural network. It is proved that this method is of high speed and accuracy. It comes up to the requirement of automatic cloth inspection.
基金supported by the National Natural Science Foundation of China(No.41906169)the PLA Academy of Military Sciences.
文摘Noise reduction analysis of signals is essential for modern underwater acoustic detection systems.The traditional noise reduction techniques gradually lose efficacy because the target signal is masked by biological and natural noise in the marine environ-ment.The feature extraction method combining time-frequency spectrograms and deep learning can effectively achieve the separation of noise and target signals.A fully convolutional encoder-decoder neural network(FCEDN)is proposed to address the issue of noise reduc-tion in underwater acoustic signals.The time-domain waveform map of underwater acoustic signals is converted into a wavelet low-frequency analysis recording spectrogram during the denoising process to preserve as many underwater acoustic signal characteristics as possible.The FCEDN is built to learn the spectrogram mapping between noise and target signals that can be learned at each time level.The transposed convolution transforms are introduced,which can transform the spectrogram features of the signals into listenable audio files.After evaluating the systems on the ShipsEar Dataset,the proposed method can increase SNR and SI-SNR by 10.02 and 9.5dB,re-spectively.
文摘Using the hydrological and meteorological data in the Kaidu River Basin during 1957-2008, we simulated the hydro-climatic process by back-propagation artificial neural network (BPANN) based on wavelet analysis (WA), and then compared the simulated results with those from a multiple linear regression (MLR). The results show that the variation of runoff responded to regional climate change. The annual runoff (AR) was mainly affected by annual average temperature (AAT) and annual precipitation (AP), which revealed different varia- tion patterns at five time scales. At the time scale of 32-years, AR presented a monotonically increasing trend with the similar trend of AAT and AP. But at the 2-year, 4- year, 8-year, and 16-year time-scale, AR presented non-linear variation with fluctuations of AAT and AP. Both MLR and BPANN successfully simulated the hydro- climatic process based on WA at each time scale, but the simulated effect from BPANN is better than that from MLR.