期刊文献+
共找到906篇文章
< 1 2 46 >
每页显示 20 50 100
Research on runoff variations based on wavelet analysis and wavelet neural network model: A case study of the Heihe River drainage basin (1944-2005) 被引量:6
1
作者 WANG Jun MENG Jijun 《Journal of Geographical Sciences》 SCIE CSCD 2007年第3期327-338,共12页
The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in Chin... The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin. 展开更多
关键词 annual runoff variations wavelet analysis wavelet neural network model GIS spatial analysis HeiheRiver drainage basin
下载PDF
Tide Forecasting of Tides Around Taiwan by Artificial Neural Network Method and Wavelet Analysis
2
作者 Bang-Fuh CHEN 《China Ocean Engineering》 SCIE EI 2007年第4期659-675,共17页
In maltiresolution analysis (MRA) by wavelet function Daubechies (db), we decompose the signal to two parts, the low and high frequency content. The high-frequency content of the data is removed first and a new "... In maltiresolution analysis (MRA) by wavelet function Daubechies (db), we decompose the signal to two parts, the low and high frequency content. The high-frequency content of the data is removed first and a new "de-noise" signal is reconstructed by using inverse wavelet transform. The wavelet spectrum and harmonic analysis were used to analyze the characteristics of tidal data before constructing the input and output structure of ANN model. That is, the concept of tidal constituent phase-lags was introduced and the new "de-noise" signal was used as the input data set of ANN and the forecasting accuracy of ANN model is significantly improved. 展开更多
关键词 artificial neural network wavelet analysis tide prediction
下载PDF
Wavelet neural network based fault diagnosis in nonlinear analog circuits 被引量:16
3
作者 Yin Shirong Chen Guangju Xie Yongle 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期521-526,共6页
The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the ... The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility. 展开更多
关键词 fault diagnosis nonlinear analog circuits wavelet analysis neural networks.
下载PDF
Discrete Wavelet Transmission and Modified PSO with ACO Based Feed Forward Neural Network Model for Brain Tumour Detection
4
作者 Machiraju Jayalakshmi S.Nagaraja Rao 《Computers, Materials & Continua》 SCIE EI 2020年第11期1081-1096,共16页
In recent years,the development in the field of computer-aided diagnosis(CAD)has increased rapidly.Many traditional machine learning algorithms have been proposed for identifying the pathological brain using magnetic ... In recent years,the development in the field of computer-aided diagnosis(CAD)has increased rapidly.Many traditional machine learning algorithms have been proposed for identifying the pathological brain using magnetic resonance images.The existing algorithms have drawbacks with respect to their accuracy,efficiency,and limited learning processes.To address these issues,we propose a pathological brain tumour detection method that utilizes the Weiner filter to improve the image contrast,2D-discrete wavelet transformation(2D-DWT)to extract the features,probabilistic principal component analysis(PPCA)and linear discriminant analysis(LDA)to normalize and reduce the features,and a feed-forward neural network(FNN)and modified particle swarm optimization(MPSO)with ant colony optimization(ACO)to improve the accuracy,stability,and overcome fitting issues in the classification of brain magnetic resonance images.The proposed method achieves better results than other existing algorithms. 展开更多
关键词 Discrete wavelet transformation ant colony optimization feed-forward neural network linear discriminant analysis
下载PDF
Wavelet Transform for Image Compression Using Multi-Resolution Analytics: Application to Wireless Sensors Data
5
作者 Wasiu Opeyemi Oduola Cajetan M. Akujuobi 《Advances in Pure Mathematics》 2017年第8期430-440,共11页
The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins includ... The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins include data from the various social media, footages from video cameras, wireless and wired sensor network measurements, data from the stock markets and other financial transaction data, supermarket transaction data and so on. The aforementioned data may be high dimensional and big in Volume, Value, Velocity, Variety, and Veracity. Hence one of the crucial challenges is the storage, processing and extraction of relevant information from the data. In the special case of image data, the technique of image compressions may be employed in reducing the dimension and volume of the data to ensure it is convenient for processing and analysis. In this work, we examine a proof-of-concept multiresolution analytics that uses wavelet transforms, that is one popular mathematical and analytical framework employed in signal processing and representations, and we study its applications to the area of compressing image data in wireless sensor networks. The proposed approach consists of the applications of wavelet transforms, threshold detections, quantization data encoding and ultimately apply the inverse transforms. The work specifically focuses on multi-resolution analysis with wavelet transforms by comparing 3 wavelets at the 5 decomposition levels. Simulation results are provided to demonstrate the effectiveness of the methodology. 展开更多
关键词 waveletS multi-resolution analysis Image Compressions WIRELESS Sensor networks MATHEMATICAL DATA ANALYTICS
下载PDF
A Study on Integrated Wavelet Neural Networks in Fault Diagnosis Based on Information Fusion
6
作者 ANG Xue-ye 《International Journal of Plant Engineering and Management》 2007年第1期42-48,共7页
The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and n... The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and neural networks. The integrated wavelet neural network fault diagnosis system was set up based on both the information fusion technology and actual fault diagnosis, which took the sub-wavelet neural network as primary diagnosis from different sides, then came to the conclusions through decision-making fusion. The realizable policy of the diagnosis system and established principle of the sub-wavelet neural networks were given. It can be deduced from the examples that it takes full advantage of diversified characteristic information, and improves the diagnosis rate. 展开更多
关键词 fault diagnosis wavelet analysis integrated neural network information fusion diagnosis rate
下载PDF
Data Fusion Fault Diagnosis Based on Wavelet Transform and Neural Network
7
作者 Ma Jiancang Luo Lei Wu Qibin P.O.Box 813,Northwestern Polytechnical University,Xi’an,710072,P.R.China 《International Journal of Plant Engineering and Management》 1997年第1期19-24,共6页
According to the time-frequency localization characteristic of the wavelet transform (WT)and the nonlinear reflection of the neural network,this paper presents the neural network data fusion fault diagnosis method bas... According to the time-frequency localization characteristic of the wavelet transform (WT)and the nonlinear reflection of the neural network,this paper presents the neural network data fusion fault diagnosis method based on wavelet transform.The network construction and the signal processing steps are introduced in detail.The correct result was attained by using this method in rotary machinery fault diagnosis.It proves the method efficient in fault diagnosis, which is expected to have a wide application. 展开更多
关键词 wavelet analysis neural network data fusion fault diagnosis
下载PDF
Wet Gas Meter Development Based on Slotted Orifice Couple and Neural Network Techniques 被引量:4
8
作者 耿艳峰 郑金吾 +1 位作者 石天明 石岗 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第2期281-285,共5页
A slotted orifice has many superiorities over a standard orifice. For single-phase flow measurement, its flow coefficient is insensitive to the upstream velocity profile. For two phase flow measurement, various charac... A slotted orifice has many superiorities over a standard orifice. For single-phase flow measurement, its flow coefficient is insensitive to the upstream velocity profile. For two phase flow measurement, various characteristics of its differential pressure (DP) are stable and closely correlated with the mass flow rate of gas and liquid. The complex relationships between the signal features and the two-phase flow rate are established through the use of a back propagation (BP) neural network. Experiments were carried out in the horizontal tubes with 50ram inner diameter, ooerated with water flow rate in the range of 0.2m^3·h^-1 to 4m3·h^-1, gas flow rate in the range of 100m^3·h^-1 to 1000m^3·h^-1, and pressure at 400kPa and 850kPa respectively, where the temperature is ambient temperature. This article includes the principle of wet gas meter development, the experimental matrix, the signal processing techniques and the achieved results. On the basis of the results it is suggested that the slotted orifice couple with a trained neural network may provide a simple but efficient solution to the wet gas meter development. 展开更多
关键词 wet gas meter two-phase flow slotted orifice neural network wavelet analysis principal component analysis
下载PDF
Fabric Defect Detection Technique Based on Two-double Neural Network 被引量:1
9
作者 谢春萍 徐伯俊 陈俊杰 《Journal of Donghua University(English Edition)》 EI CAS 2008年第3期345-348,共4页
This paper introduces the identification of the defects on the fabric by using two-double neural network and wavelet analysis. The purpose is to fit for the automatic cloth inspection system and to avoid the disadvant... This paper introduces the identification of the defects on the fabric by using two-double neural network and wavelet analysis. The purpose is to fit for the automatic cloth inspection system and to avoid the disadvantages of traditional human inspection. Firstly, training the normal fabric to acquire its characteristics and then using the BP neural network to tell the normal fabric apart from the one with defects. Secondly, doing the two-dimeusional discrete wavelet transformation based on the image of the defects, then wiping off the proper characteristics of the fabric, and identifying the defects utilizing the trained BP neural network. It is proved that this method is of high speed and accuracy. It comes up to the requirement of automatic cloth inspection. 展开更多
关键词 defect identification wavelet analysis neural network quality inspection
下载PDF
Underwater Acoustic Signal Noise Reduction Based on a Fully Convolutional Encoder-Decoder Neural Network
10
作者 SONG Yongqiang CHU Qian +2 位作者 LIU Feng WANG Tao SHEN Tongsheng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1487-1496,共10页
Noise reduction analysis of signals is essential for modern underwater acoustic detection systems.The traditional noise reduction techniques gradually lose efficacy because the target signal is masked by biological an... Noise reduction analysis of signals is essential for modern underwater acoustic detection systems.The traditional noise reduction techniques gradually lose efficacy because the target signal is masked by biological and natural noise in the marine environ-ment.The feature extraction method combining time-frequency spectrograms and deep learning can effectively achieve the separation of noise and target signals.A fully convolutional encoder-decoder neural network(FCEDN)is proposed to address the issue of noise reduc-tion in underwater acoustic signals.The time-domain waveform map of underwater acoustic signals is converted into a wavelet low-frequency analysis recording spectrogram during the denoising process to preserve as many underwater acoustic signal characteristics as possible.The FCEDN is built to learn the spectrogram mapping between noise and target signals that can be learned at each time level.The transposed convolution transforms are introduced,which can transform the spectrogram features of the signals into listenable audio files.After evaluating the systems on the ShipsEar Dataset,the proposed method can increase SNR and SI-SNR by 10.02 and 9.5dB,re-spectively. 展开更多
关键词 deep learning convolutional encoder-decoder neural network wavelet low-frequency analysis recording spectrogram
下载PDF
基于两维WAVELET分解的纹理图像分割方法 被引量:3
11
作者 王庆元 赵昕 《西安交通大学学报》 EI CAS CSCD 北大核心 1995年第1期52-58,共7页
提出了一种纹理图像的分割方法,主要利用WAVELET变换的多分辨率分析的特性,通过两维分解抽取图像的纹理特征,并对图像小窗口区域的特征进行聚类,该聚类结果可作为多层BP(Backpropagation)网权值学习的训... 提出了一种纹理图像的分割方法,主要利用WAVELET变换的多分辨率分析的特性,通过两维分解抽取图像的纹理特征,并对图像小窗口区域的特征进行聚类,该聚类结果可作为多层BP(Backpropagation)网权值学习的训练样本,进而利用BP网对各小窗口的特征进行分类以实现纹理图像的分割,实验证明,该方法对于纹理图像具有较好的分割效果。 展开更多
关键词 小波分析 图像分割 纹理分析 神经网络
下载PDF
三维荧光光谱融合小波包分解融合Fisher判别分析及支持向量机识别紫苏 被引量:3
12
作者 任永杰 殷勇 +1 位作者 于慧春 袁云霞 《食品科学》 EI CAS CSCD 北大核心 2024年第1期198-203,共6页
为实现紫苏品种的快速鉴别,避免以次充好,选取4个品种的紫苏采集三维荧光数据,提出了一种基于小波包分解融合Fisher判别分析(Fisher discriminant analysis,FDA)的荧光数据特征选择策略,并实施了4种紫苏的有效鉴别。首先,对三维荧光数... 为实现紫苏品种的快速鉴别,避免以次充好,选取4个品种的紫苏采集三维荧光数据,提出了一种基于小波包分解融合Fisher判别分析(Fisher discriminant analysis,FDA)的荧光数据特征选择策略,并实施了4种紫苏的有效鉴别。首先,对三维荧光数据进行预处理,采用Delaunay三角形内插值法去除瑞利散射和拉曼散射,以消除它们的不利影响;运用Savitzky-Golar卷积平滑对数据进行平滑处理,以减少噪声的干扰。同时,对三维荧光数据进行初步筛选,去除了荧光强度小于0.01的发射波长。然后,对各激发波长对应的发射光谱进行3层sym4小波包分解,计算得到最低频段的小波包能量值,作为各激发波长光谱数据表征量。接着,再利用FDA对小波包能量进行判别分析,将其所包含的差异性信息进行融合,得到FDA生成的新变量,并选取累计判别能力达到99%的前3个FD变量作为不同品种差异性信息的表征变量,提出三维荧光数据的表征策略。最后,利用BP神经网络(backpropagation neural network,BPNN)和支持向量机(support vector machine,SVM)两种模式识别算法对表征变量进行分析,得到FDA+BPNN和FDA+SVM两种鉴别结果。FDA+BPNN的训练集正确率为97.5%,测试集正确率为95%;FDA+SVM的训练集和测试集的正确率均达到98.33%。结果表明,三维荧光光谱技术结合小波包分解、FDA和SVM算法基本上能够实现紫苏品种的鉴别。这为后续有关紫苏的进一步检测研究(如某些有效成分的定量检测)提供了研究基础。 展开更多
关键词 紫苏 三维荧光 小波包分解 FISHER判别分析 BP神经网络 支持向量机
下载PDF
基于小波变换与神经网络的非侵入式家电负荷监测研究
13
作者 张媛 王飞 +2 位作者 张照锋 崔秀华 翟琳 《电子器件》 CAS 2024年第3期749-756,共8页
智能家电智能化程度越来越高,同一电器对应的工作模式也越来越多。目前家电的非侵入式负荷监测仅仅采用传统家电单一负荷曲线进行研究,极大局限了非侵入式负荷监测技术的应用推广。为此,以智能洗衣机不同工作模式为例,研究了同一家电不... 智能家电智能化程度越来越高,同一电器对应的工作模式也越来越多。目前家电的非侵入式负荷监测仅仅采用传统家电单一负荷曲线进行研究,极大局限了非侵入式负荷监测技术的应用推广。为此,以智能洗衣机不同工作模式为例,研究了同一家电不同模式下的用电负荷特征,采集了智能家电中洗衣机不同工作模式下的用电负荷数据,通过小波变换的方法对负荷曲线进行平滑与特征信息提取,并基于统计学思想对表征特征信息的特征向量进行了评价,建立神经网络模型对不同工作模式的负荷曲线进行了识别,通过MATLAB平台仿真,证明了基于小波分析特征提取及神经网络特征识别的方法在非侵入式智能家电负荷监测中的可行性,识别准确率较高,具有良好的应用推广价值。 展开更多
关键词 非侵入式 负荷监测 小波分析 神经网络
下载PDF
基于小波分析的智能轮胎磨损和载荷的检测方法
14
作者 吴金伟 陶海涛 +1 位作者 张峰 张士文 《电气自动化》 2024年第1期104-107,共4页
为了获取轮胎运行状态下的状态信息,提出了一种基于小波变换的智能轮胎磨损和载荷检测方法,用于实时检测轮胎的载荷和磨损状态。为研究轮胎在运行时胎面的震动情况,通过贴装于轮胎内壁中央的三轴加速度传感器获取加速度波形,再通过莫尔... 为了获取轮胎运行状态下的状态信息,提出了一种基于小波变换的智能轮胎磨损和载荷检测方法,用于实时检测轮胎的载荷和磨损状态。为研究轮胎在运行时胎面的震动情况,通过贴装于轮胎内壁中央的三轴加速度传感器获取加速度波形,再通过莫尔斯小波多尺度分析轮胎接地点处的胎面震动情况,提取特征,输入BP神经网络,获取检测结果。结果表明:所提出的算法可以较为精确地监测轮胎的磨损和载荷状态;在90%以上的情况下,可以实现磨损绝对误差在0.3 mm以内,载荷绝对误差在12 kg以内。为车辆提供关键轮胎信息,助力安全驾驶,有广泛的应用前景。 展开更多
关键词 智能轮胎 磨损检测 载荷检测 小波分析 BP神经网络
下载PDF
基于遗传优化小波网络的随机载况下裂纹扩展预报
15
作者 张明宇 孙力 黄小平 《船舶力学》 EI CSCD 北大核心 2024年第9期1430-1440,共11页
疲劳问题作为工程领域常见的破坏形式受到了广泛关注。基于断裂力学的疲劳分析方法可以获取可无损检测的疲劳损伤-裂纹尺寸,但计算较为复杂。针对海洋工程结构物疲劳分析中的谱分析法,本文通过遗传优化的小波神经网络建立一种同一热点... 疲劳问题作为工程领域常见的破坏形式受到了广泛关注。基于断裂力学的疲劳分析方法可以获取可无损检测的疲劳损伤-裂纹尺寸,但计算较为复杂。针对海洋工程结构物疲劳分析中的谱分析法,本文通过遗传优化的小波神经网络建立一种同一热点下各随机载况的应力强度因子谱,结合有限元分析获取的应力强度因子进行网络训练。结果表明,该模型可对各随机载况下的SIF谱进行较好的预测。本文所提出的方法可大幅减少重复性有限元计算,为裂纹扩展方法应用于随机载况下工程结构的疲劳寿命预报提供一种思路。最后,结合裂纹扩展单一曲线模型实现随机载况下裂纹扩展量的快速预报。 展开更多
关键词 疲劳裂纹扩展 随机载况 应力强度因子谱 小波神经网络 有限元分析
下载PDF
基于卷积神经网络的肌电信号人体运动模式识别技术
16
作者 刘亚丽 鲁妍池 +1 位作者 马勋举 宋遒志 《兵工学报》 EI CAS CSCD 北大核心 2024年第7期2144-2158,共15页
随着外骨骼机器人等肌电控制设备的快速发展,表面肌电信号此类非平稳、非周期信号在高性能运动识别系统中的应用已成为相关研究领域的重点。为实现肌电信号跨域特征融合,提出一种基于肌电信号的双卷积链神经网络模型,采集7块关键肌肉的... 随着外骨骼机器人等肌电控制设备的快速发展,表面肌电信号此类非平稳、非周期信号在高性能运动识别系统中的应用已成为相关研究领域的重点。为实现肌电信号跨域特征融合,提出一种基于肌电信号的双卷积链神经网络模型,采集7块关键肌肉的原始肌电信号,经特征提取,转化为能量核相图和离散小波变换系数特征图,分别输入双卷积链神经网络的卷积神经网络分支和MobileNetV2分支,利用融合模块提取高层隐藏特征并进行充分交互。制备包括以上两种特征图像和传统肌电信号图谱在内的3种数据集。3组交叉实验结果表明:所提方法对6种自测下肢运动的平均识别准确率达94.19%,显著优于其他特征组合与网络架构;在ENABL3S开源数据集识别7种下肢运动中取得98.32%的稳态识别准确率,进一步验证了所提方法优良的肌电特征捕捉能力和模式识别准确性。 展开更多
关键词 外骨骼机器人 表面肌电信号 运动模式识别 双卷积链神经网络 能量核 小波变换分析
下载PDF
Combining BPANN and wavelet analysis to simulate hydro-climatic processes a case study of the Kaidu River, North-west China 被引量:4
17
作者 Jianhua XU Yaning CHEN +5 位作者 Weihong LI Paul Y. PENG Yang YANG Chunan SONG Chunmeng-WEI Yulian HONG 《Frontiers of Earth Science》 SCIE CAS CSCD 2013年第2期227-237,共11页
Using the hydrological and meteorological data in the Kaidu River Basin during 1957-2008, we simulated the hydro-climatic process by back-propagation artificial neural network (BPANN) based on wavelet analysis (WA... Using the hydrological and meteorological data in the Kaidu River Basin during 1957-2008, we simulated the hydro-climatic process by back-propagation artificial neural network (BPANN) based on wavelet analysis (WA), and then compared the simulated results with those from a multiple linear regression (MLR). The results show that the variation of runoff responded to regional climate change. The annual runoff (AR) was mainly affected by annual average temperature (AAT) and annual precipitation (AP), which revealed different varia- tion patterns at five time scales. At the time scale of 32-years, AR presented a monotonically increasing trend with the similar trend of AAT and AP. But at the 2-year, 4- year, 8-year, and 16-year time-scale, AR presented non-linear variation with fluctuations of AAT and AP. Both MLR and BPANN successfully simulated the hydro- climatic process based on WA at each time scale, but the simulated effect from BPANN is better than that from MLR. 展开更多
关键词 hydro-climatic process Kaidu River simulation wavelet analysis (WA) back-propagation artificial neural network (BPANN) multiple linear regression (MLR)
原文传递
小波降噪及改进遗传算法的BP神经网络在基坑变形中的组合应用
18
作者 朱志成 靳海亮 《测绘与空间地理信息》 2024年第7期169-173,共5页
以某市人民医院基坑工程为例,针对实测数据建立实测数据结合BP神经网络预测模型,小波降噪结合BP神经网络模型和小波降噪结合改进遗传算法优化的BP神经网络模型,并利用误差分析理论对基坑变形数据预测效果评价。结果表明:对比3种模型实... 以某市人民医院基坑工程为例,针对实测数据建立实测数据结合BP神经网络预测模型,小波降噪结合BP神经网络模型和小波降噪结合改进遗传算法优化的BP神经网络模型,并利用误差分析理论对基坑变形数据预测效果评价。结果表明:对比3种模型实际处理、预测数据能力,实测数据结合BP神经网络模型预测精度在1%-4%之间,小波降噪结合BP神经网络模型预测精度1%-2%之间,小波降噪结合改进遗传算法优化的BP神经网络模型预测精度在1%以内,小波降噪结合改进遗传算法优化的BP神经网络模型的预测准确率最高。针对基坑变形监测,小波降噪结合改进遗传算法优化的BP神经网络模型具有更高预测精度,可为类似工程提供实际参考。 展开更多
关键词 基坑监测 组合模型 BP神经网络 小波分析 改进遗传算法
下载PDF
基于小波分析的高压隔离开关故障检测方法研究 被引量:1
19
作者 公多虎 詹仲强 +2 位作者 葛志杰 吴天博 陈文涛 《自动化技术与应用》 2024年第3期19-22,42,共5页
高压隔离开关在高压配电网中起到了重要的故障切断作用,能有效避免故障影响范围。该装置的工作状态直接关系到配电网工作的可靠性。为此研究一种基于小波分析的高压隔离开关故障检测方法。该方法利用加速度传感器采集高压隔离开关振动信... 高压隔离开关在高压配电网中起到了重要的故障切断作用,能有效避免故障影响范围。该装置的工作状态直接关系到配电网工作的可靠性。为此研究一种基于小波分析的高压隔离开关故障检测方法。该方法利用加速度传感器采集高压隔离开关振动信号,利用小波分析分解振动信号,实现去噪同时,提取信号的能量熵特征。以特征为输入,利用优化BP神经网络构建检测模型,实现高压隔离开关故障检测。结果表明:所研究方法应用下,得出20个高压隔离开关中4个存在故障,其中3号开关存在拒动故障、10号开关和15号开关存在绝缘故障、19号开关存在拒动故障,证明了检测方法的有效性。 展开更多
关键词 小波分析 振动信号 高压隔离开关 能量熵 优化BP神经网络 故障检测方法
下载PDF
基于小波基函数的BP神经网络优化方法
20
作者 周勇 《测绘与空间地理信息》 2024年第8期221-224,共4页
目前,BP神经网络在变形预报中应用广泛,但其容易受到局部极值的影响而致收敛速度缓慢。针对BP神经网络的这一缺点,本文将BP神经网络的激活函数更换为小波基函数,并对BP神经网络的权重及临界值实施改进,形成小波神经网络。小波神经网络... 目前,BP神经网络在变形预报中应用广泛,但其容易受到局部极值的影响而致收敛速度缓慢。针对BP神经网络的这一缺点,本文将BP神经网络的激活函数更换为小波基函数,并对BP神经网络的权重及临界值实施改进,形成小波神经网络。小波神经网络拥有优质的时频局域化性质以及自我学习本领,经小波分解实行缩放和平移变换后,可获取与逼近函数性质一致的级数,可以用来做变形预报。同时,经采用缩放和平移两项新的变量后,小波神经网络将比小波分解具备更多的自由度,进而数值模拟精度更佳。实验结果表明,与BP神经网络相比,小波神经网络在变形预报方面收敛效率更高,误差更小,可以达到更好的预测效果。 展开更多
关键词 BP神经网络 小波基函数 小波神经网络 变形预报 质量分析
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部