There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capaci...There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved.展开更多
Background Despite the recent progress in 3D point cloud processing using deep convolutional neural networks,the inability to extract local features remains a challenging problem.In addition,existing methods consider ...Background Despite the recent progress in 3D point cloud processing using deep convolutional neural networks,the inability to extract local features remains a challenging problem.In addition,existing methods consider only the spatial domain in the feature extraction process.Methods In this paper,we propose a spectral and spatial aggregation convolutional network(S^(2)ANet),which combines spectral and spatial features for point cloud processing.First,we calculate the local frequency of the point cloud in the spectral domain.Then,we use the local frequency to group points and provide a spectral aggregation convolution module to extract the features of the points grouped by the local frequency.We simultaneously extract the local features in the spatial domain to supplement the final features.Results S^(2)ANet was applied in several point cloud analysis tasks;it achieved stateof-the-art classification accuracies of 93.8%,88.0%,and 83.1%on the ModelNet40,ShapeNetCore,and ScanObjectNN datasets,respectively.For indoor scene segmentation,training and testing were performed on the S3DIS dataset,and the mean intersection over union was 62.4%.Conclusions The proposed S^(2)ANet can effectively capture the local geometric information of point clouds,thereby improving accuracy on various tasks.展开更多
目的通过机器学习分析“舌边白涎”舌象特性,对舌象进行局部特征识别研究,探讨卷积神经网络算法在舌象识别应用中的性能。方法使用Python进行图像预处理,搭建用于舌象识别的视觉几何组16层(visual geometry group 16,VGG16)卷积神经网...目的通过机器学习分析“舌边白涎”舌象特性,对舌象进行局部特征识别研究,探讨卷积神经网络算法在舌象识别应用中的性能。方法使用Python进行图像预处理,搭建用于舌象识别的视觉几何组16层(visual geometry group 16,VGG16)卷积神经网络模型,分析其对“舌边白涎”舌象鉴别分析的效果,并结合热力图分析“舌边白涎”典型舌象表现。结果基于PyTorch框架,进行卷积神经网络的舌象鉴别研究,VGG16及残差网络50层(residual network 50,ResNet50)模型验证准确率均较高,达到80%以上,且ResNet50模型优于VGG16模型,可为舌象识别提供一定参考。基于加权梯度类激活映射(gradient-weighted class activation mapping,Grad-CAM)技术,通过舌苔舌色差异分布的网络可视化,有助于直观进行模型评估分析。结论基于卷积神经网络模型对舌象数据库进行分析,实现“舌边白涎”舌象识别,有助于临床诊疗的客观化辅助分析,为舌诊智能化发展提供一定借鉴。展开更多
为了解决寻常型银屑病在样本分布不平衡的数据中可能会导致的深度学习模型诊断效果下降等问题,通过结合改进模糊KMeans聚类算法对高聚类复杂度数据的处理能力以及Visual Geometry Group 13(VGG13)深度卷积神经网络模型的预测能力,提出...为了解决寻常型银屑病在样本分布不平衡的数据中可能会导致的深度学习模型诊断效果下降等问题,通过结合改进模糊KMeans聚类算法对高聚类复杂度数据的处理能力以及Visual Geometry Group 13(VGG13)深度卷积神经网络模型的预测能力,提出一种基于改进模糊KMeans聚类算法的VGG13深度卷积神经网络(VGG13-KMeans)模型,并将其应用于寻常型银屑病的诊断任务中。实验结果表明,相较于VGG13以及ResNet18两种方法,本文方法更适用于对银屑病特征的识别。展开更多
基金supported by State Grid Corporation Limited Science and Technology Project Funding(Contract No.SGCQSQ00YJJS2200380).
文摘There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved.
文摘Background Despite the recent progress in 3D point cloud processing using deep convolutional neural networks,the inability to extract local features remains a challenging problem.In addition,existing methods consider only the spatial domain in the feature extraction process.Methods In this paper,we propose a spectral and spatial aggregation convolutional network(S^(2)ANet),which combines spectral and spatial features for point cloud processing.First,we calculate the local frequency of the point cloud in the spectral domain.Then,we use the local frequency to group points and provide a spectral aggregation convolution module to extract the features of the points grouped by the local frequency.We simultaneously extract the local features in the spatial domain to supplement the final features.Results S^(2)ANet was applied in several point cloud analysis tasks;it achieved stateof-the-art classification accuracies of 93.8%,88.0%,and 83.1%on the ModelNet40,ShapeNetCore,and ScanObjectNN datasets,respectively.For indoor scene segmentation,training and testing were performed on the S3DIS dataset,and the mean intersection over union was 62.4%.Conclusions The proposed S^(2)ANet can effectively capture the local geometric information of point clouds,thereby improving accuracy on various tasks.
文摘目的通过机器学习分析“舌边白涎”舌象特性,对舌象进行局部特征识别研究,探讨卷积神经网络算法在舌象识别应用中的性能。方法使用Python进行图像预处理,搭建用于舌象识别的视觉几何组16层(visual geometry group 16,VGG16)卷积神经网络模型,分析其对“舌边白涎”舌象鉴别分析的效果,并结合热力图分析“舌边白涎”典型舌象表现。结果基于PyTorch框架,进行卷积神经网络的舌象鉴别研究,VGG16及残差网络50层(residual network 50,ResNet50)模型验证准确率均较高,达到80%以上,且ResNet50模型优于VGG16模型,可为舌象识别提供一定参考。基于加权梯度类激活映射(gradient-weighted class activation mapping,Grad-CAM)技术,通过舌苔舌色差异分布的网络可视化,有助于直观进行模型评估分析。结论基于卷积神经网络模型对舌象数据库进行分析,实现“舌边白涎”舌象识别,有助于临床诊疗的客观化辅助分析,为舌诊智能化发展提供一定借鉴。
文摘为了解决寻常型银屑病在样本分布不平衡的数据中可能会导致的深度学习模型诊断效果下降等问题,通过结合改进模糊KMeans聚类算法对高聚类复杂度数据的处理能力以及Visual Geometry Group 13(VGG13)深度卷积神经网络模型的预测能力,提出一种基于改进模糊KMeans聚类算法的VGG13深度卷积神经网络(VGG13-KMeans)模型,并将其应用于寻常型银屑病的诊断任务中。实验结果表明,相较于VGG13以及ResNet18两种方法,本文方法更适用于对银屑病特征的识别。