Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassificatio...Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassification. A new segmentation method, called multi-resolution Ganssian mixture model method, is proposed. First, an image pyramid is constructed and son-father link relationship is built between each level of pyramid. Then the mixture model segmentation method is applied to the top level. The segmentation result on the top level is passed top-down to the bottom level according to the son-father link relationship between levels. The proposed method considers not only local but also global information of image, it overcomes the effect of noise and can obtain better segmentation result. Experimental result demonstrates its effectiveness.展开更多
An effective approach is proposed for 3D urban scene reconstruction in the form of point cloud with semantic labeling. Starting from high resolution oblique aerial images,our approach proceeds through three main stage...An effective approach is proposed for 3D urban scene reconstruction in the form of point cloud with semantic labeling. Starting from high resolution oblique aerial images,our approach proceeds through three main stages: geographic reconstruction, geometrical reconstruction and semantic reconstruction. The absolute position and orientation of all the cameras relative to the real world are recovered in the geographic reconstruction stage. Then, in the geometrical reconstruction stage,an improved multi-view stereo matching method is employed to produce 3D dense points with color and normal information by taking into account the prior knowledge of aerial imagery.Finally the point cloud is classified into three classes(building,vegetation, and ground) by a rule-based hierarchical approach in the semantic reconstruction step. Experiments on complex urban scene show that our proposed 3-stage approach could generate reasonable reconstruction result robustly and efficiently.By comparing our final semantic reconstruction result with the manually labeled ground truth, classification accuracies from86.75% to 93.02% are obtained.展开更多
Multi-sensor image registration has been widely used in remote sensing and medical image field, but registration performance is degenerated when heterogeneous images are involved. An image registration method based on...Multi-sensor image registration has been widely used in remote sensing and medical image field, but registration performance is degenerated when heterogeneous images are involved. An image registration method based on multi-resolution shape analysis is proposed in this paper, to deal with the problem that the shape of similar objects is always invariant. The contours of shapes are first detected as visual features using an extended contour search algorithm in order to reduce effects of noise, and the multi-resolution shape descriptor is constructed through Fourier curvature representation of the contour’s chain code. Then a minimum distance function is used to judge the similarity between two contours. To avoid the effect of different resolution and intensity distribution, suitable resolution of each image is selected by maximizing the consistency of its pyramid shapes. Finally, the transformation parameters are estimated based on the matched control-point pairs which are the centers of gravity of the closed contours. Multi-sensor Landsat TM imagery and infrared imagery have been used as experimental data for comparison with the classical contour-based registration. Our results have been shown to be superior to the classical ones.展开更多
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif...Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.展开更多
To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov rand...To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov random field(MRMRF)model.The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales.The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm,and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation.The results are then segmented by the improved MRMRF model.In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model,it is proposed to introduce variable weight parameters in the segmentation process of each scale.Furthermore,the final segmentation results are optimized.We name this algorithm the variable-weight multi-resolution Markov random field(VWMRMRF).The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness,and can accurately and stably achieve low signal-to-noise ratio,weak boundary MR image segmentation.展开更多
In order to effectively improve the pathological diagnosis capability and feature resolution of 3D human brain CT images,a threshold segmentation method of multi-resolution 3D human brain CT image based on edge pixel ...In order to effectively improve the pathological diagnosis capability and feature resolution of 3D human brain CT images,a threshold segmentation method of multi-resolution 3D human brain CT image based on edge pixel grayscale feature decomposition is proposed in this paper.In this method,first,original 3D human brain image information is collected,and CT image filtering is performed to the collected information through the gradient value decomposition method,and edge contour features of the 3D human brain CT image are extracted.Then,the threshold segmentation method is adopted to segment the regional pixel feature block of the 3D human brain CT image to segment the image into block vectors with high-resolution feature points,and the 3D human brain CT image is reconstructed with the salient feature point as center.Simulation results show that the method proposed in this paper can provide accuracy up to 100%when the signal-to-noise ratio is 0,and with the increase of signal-to-noise ratio,the accuracy provided by this method is stable at 100%.Comparison results show that the threshold segmentation method of multi-resolution 3D human brain CT image based on edge pixel grayscale feature decomposition is signicantly better than traditional methods in pathological feature estimation accuracy,and it effectively improves the rapid pathological diagnosis and positioning recognition abilities to CT images.展开更多
Combined with the printing application,an image registration method based on the multi-resolution morphology contour detection was proposed.First,a direction based multi-resolution gray morphology in the scheme was pr...Combined with the printing application,an image registration method based on the multi-resolution morphology contour detection was proposed.First,a direction based multi-resolution gray morphology in the scheme was proposed to realize the contour extraction.Then,based on the contour features,the subspace image registration was proposed to deal with issues of the computing complexity appeared in the traditional image registration methods.The proposed image registration was efficiently applied in the defect inspection of printing images.展开更多
The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins includ...The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins include data from the various social media, footages from video cameras, wireless and wired sensor network measurements, data from the stock markets and other financial transaction data, supermarket transaction data and so on. The aforementioned data may be high dimensional and big in Volume, Value, Velocity, Variety, and Veracity. Hence one of the crucial challenges is the storage, processing and extraction of relevant information from the data. In the special case of image data, the technique of image compressions may be employed in reducing the dimension and volume of the data to ensure it is convenient for processing and analysis. In this work, we examine a proof-of-concept multiresolution analytics that uses wavelet transforms, that is one popular mathematical and analytical framework employed in signal processing and representations, and we study its applications to the area of compressing image data in wireless sensor networks. The proposed approach consists of the applications of wavelet transforms, threshold detections, quantization data encoding and ultimately apply the inverse transforms. The work specifically focuses on multi-resolution analysis with wavelet transforms by comparing 3 wavelets at the 5 decomposition levels. Simulation results are provided to demonstrate the effectiveness of the methodology.展开更多
In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, whi...In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, which will make the energy expression insufficient to reflect the local clarity. Therefore,in this paper,a novel construction method for activity measurement is proposed. Firstly,it uses the wavelet decomposition for the fusion resource image, and then utilizes the high and low frequency wavelet coefficients synthetically. Meantime,it takes the normalized variance as the weight of high-frequency energy. Secondly,it calculates the measurement by the weighted energy,which can be used to measure the local character. Finally,the fusion coefficients can be got. In order to illustrate the superiority of this new method,three kinds of assessing indicators are provided. The experiment results show that,comparing with the traditional methods,this new method weakens the fuzzy and promotes the indicator value. Therefore,it has much more advantages for practical application.展开更多
The image segmentation difficulties of small objects which are much smaller than their background often occur in target detection and recognition. The existing threshold segmentation methods almost fail under the circ...The image segmentation difficulties of small objects which are much smaller than their background often occur in target detection and recognition. The existing threshold segmentation methods almost fail under the circumstances. Thus, a threshold selection method is proposed on the basis of area difference between background and object and intra-class variance. The threshold selection formulae based on one-dimensional (1-D) histogram, two-dimensional (2-D) histogram vertical segmentation and 2-D histogram oblique segmentation are given. A fast recursive algorithm of threshold selection in 2-D histogram oblique segmentation is derived. The segmented images and processing time of the proposed method are given in experiments. It is compared with some fast algorithms, such as Otsu, maximum entropy and Fisher threshold selection methods. The experimental results show that the proposed method can effectively segment the small object images and has better anti-noise property.展开更多
IHS (Intensity, Hue and Saturation) transform is one of the most commonly used tusion algonthm. But the matching error causes spectral distortion and degradation in processing of image fusion with IHS method. A stud...IHS (Intensity, Hue and Saturation) transform is one of the most commonly used tusion algonthm. But the matching error causes spectral distortion and degradation in processing of image fusion with IHS method. A study on IHS fusion indicates that the color distortion can't be avoided. Meanwhile, the statistical property of wavelet coefficient with wavelet decomposition reflects those significant features, such as edges, lines and regions. So, a united optimal fusion method, which uses the statistical property and IHS transform on pixel and feature levels, is proposed. That is, the high frequency of intensity component Ⅰ is fused on feature level with multi-resolution wavelet in IHS space. And the low frequency of intensity component Ⅰ is fused on pixel level with optimal weight coefficients. Spectral information and spatial resolution are two performance indexes of optimal weight coefficients. Experiment results with QuickBird data of Shanghai show that it is a practical and effective method.展开更多
Recently, many steganalysis approaches improve their feature extraction ability through addingconvolutional layers. However, it often leads to a decrease of resolution in the feature map during downsampling,which make...Recently, many steganalysis approaches improve their feature extraction ability through addingconvolutional layers. However, it often leads to a decrease of resolution in the feature map during downsampling,which makes it challenging to extract weak steganographic signals accurately. To address this issue, this paperproposes a multi-resolution steganalysis net (MRS-Net). MRS-Net adopts a multi-resolution network to extract globalimage information, fusing the output feature map to ensure high-dimensional semantic information andsupplementing low-level detail information. Furthermore, the model incorporates an attention module which cananalyze image sensitivity based on different channel and spatial information, thus effectively focusing on areas withrich steganographic signals. Multiple benchmark experiments on the BOSSBase 1.01 dataset demonstrate that theaccuracy of MRS-Net significantly improves by 9.9% and 3.3% compared with YeNet and SRNet, respectively,demonstrating its exceptional steganalysis capability.展开更多
基金This project was supported by the National Natural Foundation of China (60404022) and the Foundation of Department ofEducation of Hebei Province (2002209).
文摘Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassification. A new segmentation method, called multi-resolution Ganssian mixture model method, is proposed. First, an image pyramid is constructed and son-father link relationship is built between each level of pyramid. Then the mixture model segmentation method is applied to the top level. The segmentation result on the top level is passed top-down to the bottom level according to the son-father link relationship between levels. The proposed method considers not only local but also global information of image, it overcomes the effect of noise and can obtain better segmentation result. Experimental result demonstrates its effectiveness.
基金supported in part by the National Natural Science Foundation of China (61421004,61402316,61333015,61632003)Doctoral Research Fund of Taiyuan University of Science and Technology under grant (20162009)National Key Technologies R&D Program(2016YFB0502002)
文摘An effective approach is proposed for 3D urban scene reconstruction in the form of point cloud with semantic labeling. Starting from high resolution oblique aerial images,our approach proceeds through three main stages: geographic reconstruction, geometrical reconstruction and semantic reconstruction. The absolute position and orientation of all the cameras relative to the real world are recovered in the geographic reconstruction stage. Then, in the geometrical reconstruction stage,an improved multi-view stereo matching method is employed to produce 3D dense points with color and normal information by taking into account the prior knowledge of aerial imagery.Finally the point cloud is classified into three classes(building,vegetation, and ground) by a rule-based hierarchical approach in the semantic reconstruction step. Experiments on complex urban scene show that our proposed 3-stage approach could generate reasonable reconstruction result robustly and efficiently.By comparing our final semantic reconstruction result with the manually labeled ground truth, classification accuracies from86.75% to 93.02% are obtained.
基金Project supported by the National Natural Science Foundation of China (No. 60272031), the Hi-Tech Research and Development Program (863) of China (No. 2003AA131032-2), and the Natural Science Foundation of Zhejiang Province (No. M603202), China
文摘Multi-sensor image registration has been widely used in remote sensing and medical image field, but registration performance is degenerated when heterogeneous images are involved. An image registration method based on multi-resolution shape analysis is proposed in this paper, to deal with the problem that the shape of similar objects is always invariant. The contours of shapes are first detected as visual features using an extended contour search algorithm in order to reduce effects of noise, and the multi-resolution shape descriptor is constructed through Fourier curvature representation of the contour’s chain code. Then a minimum distance function is used to judge the similarity between two contours. To avoid the effect of different resolution and intensity distribution, suitable resolution of each image is selected by maximizing the consistency of its pyramid shapes. Finally, the transformation parameters are estimated based on the matched control-point pairs which are the centers of gravity of the closed contours. Multi-sensor Landsat TM imagery and infrared imagery have been used as experimental data for comparison with the classical contour-based registration. Our results have been shown to be superior to the classical ones.
文摘Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.
基金the National Natural Science Foundation of China(Grant No.11471004)the Key Research and Development Program of Shaanxi Province,China(Grant No.2018SF-251)。
文摘To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov random field(MRMRF)model.The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales.The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm,and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation.The results are then segmented by the improved MRMRF model.In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model,it is proposed to introduce variable weight parameters in the segmentation process of each scale.Furthermore,the final segmentation results are optimized.We name this algorithm the variable-weight multi-resolution Markov random field(VWMRMRF).The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness,and can accurately and stably achieve low signal-to-noise ratio,weak boundary MR image segmentation.
文摘In order to effectively improve the pathological diagnosis capability and feature resolution of 3D human brain CT images,a threshold segmentation method of multi-resolution 3D human brain CT image based on edge pixel grayscale feature decomposition is proposed in this paper.In this method,first,original 3D human brain image information is collected,and CT image filtering is performed to the collected information through the gradient value decomposition method,and edge contour features of the 3D human brain CT image are extracted.Then,the threshold segmentation method is adopted to segment the regional pixel feature block of the 3D human brain CT image to segment the image into block vectors with high-resolution feature points,and the 3D human brain CT image is reconstructed with the salient feature point as center.Simulation results show that the method proposed in this paper can provide accuracy up to 100%when the signal-to-noise ratio is 0,and with the increase of signal-to-noise ratio,the accuracy provided by this method is stable at 100%.Comparison results show that the threshold segmentation method of multi-resolution 3D human brain CT image based on edge pixel grayscale feature decomposition is signicantly better than traditional methods in pathological feature estimation accuracy,and it effectively improves the rapid pathological diagnosis and positioning recognition abilities to CT images.
基金Funded by the National Natural Science Foundation of China(General Program,Key Program,Major Research Plan) (Grant No.60474021)China Postdoctoral Science Foundation (Grant No.20100471180)the Freedom Explore Program of Central South University (Grant No. 2012QNZT017)
文摘Combined with the printing application,an image registration method based on the multi-resolution morphology contour detection was proposed.First,a direction based multi-resolution gray morphology in the scheme was proposed to realize the contour extraction.Then,based on the contour features,the subspace image registration was proposed to deal with issues of the computing complexity appeared in the traditional image registration methods.The proposed image registration was efficiently applied in the defect inspection of printing images.
文摘The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins include data from the various social media, footages from video cameras, wireless and wired sensor network measurements, data from the stock markets and other financial transaction data, supermarket transaction data and so on. The aforementioned data may be high dimensional and big in Volume, Value, Velocity, Variety, and Veracity. Hence one of the crucial challenges is the storage, processing and extraction of relevant information from the data. In the special case of image data, the technique of image compressions may be employed in reducing the dimension and volume of the data to ensure it is convenient for processing and analysis. In this work, we examine a proof-of-concept multiresolution analytics that uses wavelet transforms, that is one popular mathematical and analytical framework employed in signal processing and representations, and we study its applications to the area of compressing image data in wireless sensor networks. The proposed approach consists of the applications of wavelet transforms, threshold detections, quantization data encoding and ultimately apply the inverse transforms. The work specifically focuses on multi-resolution analysis with wavelet transforms by comparing 3 wavelets at the 5 decomposition levels. Simulation results are provided to demonstrate the effectiveness of the methodology.
基金Sponsored by the Nation Nature Science Foundation of China(Grant No.61275010,61201237)the Fundamental Research Funds for the Central Universities(Grant No.HEUCFZ1129,No.HEUCF120805)
文摘In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, which will make the energy expression insufficient to reflect the local clarity. Therefore,in this paper,a novel construction method for activity measurement is proposed. Firstly,it uses the wavelet decomposition for the fusion resource image, and then utilizes the high and low frequency wavelet coefficients synthetically. Meantime,it takes the normalized variance as the weight of high-frequency energy. Secondly,it calculates the measurement by the weighted energy,which can be used to measure the local character. Finally,the fusion coefficients can be got. In order to illustrate the superiority of this new method,three kinds of assessing indicators are provided. The experiment results show that,comparing with the traditional methods,this new method weakens the fuzzy and promotes the indicator value. Therefore,it has much more advantages for practical application.
基金Sponsored by The National Natural Science Foundation of China(60872065)Science and Technology on Electro-optic Control Laboratory and Aviation Science Foundation(20105152026)State Key Laboratory Open Fund of Novel Software Technology,Nanjing University(KFKT2010B17)
文摘The image segmentation difficulties of small objects which are much smaller than their background often occur in target detection and recognition. The existing threshold segmentation methods almost fail under the circumstances. Thus, a threshold selection method is proposed on the basis of area difference between background and object and intra-class variance. The threshold selection formulae based on one-dimensional (1-D) histogram, two-dimensional (2-D) histogram vertical segmentation and 2-D histogram oblique segmentation are given. A fast recursive algorithm of threshold selection in 2-D histogram oblique segmentation is derived. The segmented images and processing time of the proposed method are given in experiments. It is compared with some fast algorithms, such as Otsu, maximum entropy and Fisher threshold selection methods. The experimental results show that the proposed method can effectively segment the small object images and has better anti-noise property.
基金Supported by the High Technology Research and Development Programme of China (2001AA135091) and the National Natural Science Foundation of China (60375008).
文摘IHS (Intensity, Hue and Saturation) transform is one of the most commonly used tusion algonthm. But the matching error causes spectral distortion and degradation in processing of image fusion with IHS method. A study on IHS fusion indicates that the color distortion can't be avoided. Meanwhile, the statistical property of wavelet coefficient with wavelet decomposition reflects those significant features, such as edges, lines and regions. So, a united optimal fusion method, which uses the statistical property and IHS transform on pixel and feature levels, is proposed. That is, the high frequency of intensity component Ⅰ is fused on feature level with multi-resolution wavelet in IHS space. And the low frequency of intensity component Ⅰ is fused on pixel level with optimal weight coefficients. Spectral information and spatial resolution are two performance indexes of optimal weight coefficients. Experiment results with QuickBird data of Shanghai show that it is a practical and effective method.
基金supported in part by the China Guangxi Science and Technology Plan Project(Guangxi Science and Technology Base and Talent Special Project)(No.2022AC20001)Chile CONICYT FONDECYT Regular Project(No.1181809)the Chile CONICYT FONDEF Program(No.ID16I10466).
文摘Recently, many steganalysis approaches improve their feature extraction ability through addingconvolutional layers. However, it often leads to a decrease of resolution in the feature map during downsampling,which makes it challenging to extract weak steganographic signals accurately. To address this issue, this paperproposes a multi-resolution steganalysis net (MRS-Net). MRS-Net adopts a multi-resolution network to extract globalimage information, fusing the output feature map to ensure high-dimensional semantic information andsupplementing low-level detail information. Furthermore, the model incorporates an attention module which cananalyze image sensitivity based on different channel and spatial information, thus effectively focusing on areas withrich steganographic signals. Multiple benchmark experiments on the BOSSBase 1.01 dataset demonstrate that theaccuracy of MRS-Net significantly improves by 9.9% and 3.3% compared with YeNet and SRNet, respectively,demonstrating its exceptional steganalysis capability.