期刊文献+
共找到4,157篇文章
< 1 2 208 >
每页显示 20 50 100
Wavelet Multi-Resolution Interpolation Galerkin Method for Linear Singularly Perturbed Boundary Value Problems
1
作者 Jiaqun Wang Guanxu Pan +1 位作者 Youhe Zhou Xiaojing Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期297-318,共22页
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r... In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5. 展开更多
关键词 wavelet multi-resolution interpolation Galerkin singularly perturbed boundary value problems mesh-free method Shishkin node boundary layer
下载PDF
A Combined Method of Temporal Convolutional Mechanism and Wavelet Decomposition for State Estimation of Photovoltaic Power Plants
2
作者 Shaoxiong Wu Ruoxin Li +6 位作者 Xiaofeng Tao Hailong Wu Ping Miao Yang Lu Yanyan Lu Qi Liu Li Pan 《Computers, Materials & Continua》 SCIE EI 2024年第11期3063-3077,共15页
Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulati... Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies.Traditional power load forecasting often has poor feature extraction performance for long time series.In this paper,a new deep learning framework Residual Stacked Temporal Long Short-Term Memory(RST-LSTM)is proposed,which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences.The network framework of RST-LSTM consists of two parts:one is a stacked time convolutional memory unit module for global and local feature extraction,and the other is a residual combination optimization module to reduce model redundancy.Finally,this paper demonstrates through various experimental indicators that RST-LSTM achieves significant performance improvements in both overall and local prediction accuracy compared to some state-of-the-art baseline methods. 展开更多
关键词 Times series forecasting long short term memory network(LSTM) time convolutional network(TCN) wavelet decomposition
下载PDF
Enhanced Fourier Transform Using Wavelet Packet Decomposition
3
作者 Wouladje Cabrel Golden Tendekai Mumanikidzwa +1 位作者 Jianguo Shen Yutong Yan 《Journal of Sensor Technology》 2024年第1期1-15,共15页
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti... Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method. 展开更多
关键词 Fourier Transform wavelet Packet decomposition Time-Frequency Analysis Non-Stationary Signals
下载PDF
Variational Mode Decomposition-Informed Empirical Wavelet Transform for Electric Vibrator Noise Analysis
4
作者 Zhenyu Xu Zhangwei Chen 《Journal of Applied Mathematics and Physics》 2024年第6期2320-2332,共13页
Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition... Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method. 展开更多
关键词 Electric Vibrator Noise Analysis Signal Decomposing Variational Mode decomposition Empirical wavelet Transform
下载PDF
Morphological Undecimated Wavelet Decomposition Fusion Algorithm and Its Application on Fault Feature Extraction of Hydraulic Pump 被引量:3
5
作者 孙健 李洪儒 +1 位作者 王卫国 叶鹏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第3期268-278,共11页
Since vibration signals of hydraulic pump are mostly nonlinear and traditional fusion algorithm cannot satisfyingly process them,a morphological undecimated wavelet decomposition fusion(MUWDF)algorithm is proposed.Fir... Since vibration signals of hydraulic pump are mostly nonlinear and traditional fusion algorithm cannot satisfyingly process them,a morphological undecimated wavelet decomposition fusion(MUWDF)algorithm is proposed.Firstly,under the framework of morphological undecimated wavelet decomposition(MUWD),multi-channel signals are decomposed.Approximate signals of all decomposition layers are selected by feature energy factor and fused according to the presented fusion rules.Furthermore,specific method for optimal selection of MUWDF parameters is presented to avoid subjective influences.Finally,the proposed algorithm is verified by simulation signals and pump vibration signals. 展开更多
关键词 MORPHOLOGICAL undecimated wavelet decomposition(MU
下载PDF
Separation of closely spaced modes by combining complex envelope displacement analysis with method of generating intrinsic mode functions through filtering algorithm based on wavelet packet decomposition 被引量:3
6
作者 Y.S.KIM 陈立群 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第7期801-810,共10页
One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the mo... One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the modal identification by the empirical mode decomposition (EMD) method, because of the separating capability of the method, it is still a challenge to consistently and reliably identify the parameters of structures of which modes are not well separated. A new method is introduced to generate the intrin- sic mode functions (IMFs) through the filtering algorithm based on the wavelet packet decomposition (GIFWPD). In this paper, it is demonstrated that the CIFWPD method alone has a good capability of separating close modes, even under the severe condition beyond the critical frequency ratio limit which makes it impossible to separate two closely spaced harmonics by the EMD method. However, the GIFWPD-only based method is impelled to use a very fine sampling frequency with consequent prohibitive computational costs. Therefore, in order to decrease the computational load by reducing the amount of samples and improve the effectiveness of separation by increasing the frequency ratio, the present paper uses a combination of the complex envelope displacement analysis (CEDA) and the GIFWPD method. For the validation, two examples from the previous works are taken to show the results obtained by the GIFWPD-only based method and by combining the CEDA with the GIFWPD method. 展开更多
关键词 empirical mode decomposition (EMD) wavelet packet decomposition com- plex envelope displacement analysis (CEDA) closely spaced modes modal identification
下载PDF
Wind speed forecasting based on wavelet decomposition and wavelet neural networks optimized by the Cuckoo search algorithm 被引量:8
7
作者 ZHANG Ye YANG Shiping +2 位作者 GUO Zhenhai GUO Yanling ZHAO Jing 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第2期107-115,共9页
Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In... Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models. 展开更多
关键词 Wind speed forecast wavelet decomposition neural network Cuckoo search algorithm
下载PDF
A novel internet traffic identification approach using wavelet packet decomposition and neural network 被引量:6
8
作者 谭骏 陈兴蜀 +1 位作者 杜敏 朱锴 《Journal of Central South University》 SCIE EI CAS 2012年第8期2218-2230,共13页
Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network... Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network applications by optimized back-propagation (BP) neural network. Particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. And in order to increase the identification performance, wavelet packet decomposition (WPD) was used to extract several hidden features from the time-frequency information of network traffic. The experimental results show that the average classification accuracy of various network applications can reach 97%. Moreover, this approach optimized by BP neural network takes 50% of the training time compared with the traditional neural network. 展开更多
关键词 neural network particle swarm optimization statistical characteristic traffic identification wavelet packet decomposition
下载PDF
Phase space reconstruction of chaotic dynamical system based on wavelet decomposition 被引量:2
9
作者 游荣义 黄晓菁 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期114-118,共5页
In view of the disadvantages of the traditional phase space reconstruction method, this paper presents the method of phase space reconstruction based on the wavelet decomposition and indicates that the wavelet decompo... In view of the disadvantages of the traditional phase space reconstruction method, this paper presents the method of phase space reconstruction based on the wavelet decomposition and indicates that the wavelet decomposition of chaotic dynamical system is essentially a projection of chaotic attractor on the axes of space opened by the wavelet filter vectors, which corresponds to the time-delayed embedding method of phase space reconstruction proposed by Packard and Takens. The experimental results show that, the structure of dynamical trajectory of chaotic system on the wavelet space is much similar to the original system, and the nonlinear invariants such as correlation dimension, Lyapunov exponent and Kolmogorov entropy are still reserved. It demonstrates that wavelet decomposition is effective for characterizing chaotic dynamical system. 展开更多
关键词 chaotic dynamical system phase space reconstruction wavelet decomposition
下载PDF
Features of energy distribution for blast vibration signals based on wavelet packet decomposition 被引量:4
10
作者 LING Tong-hua LI Xi-bing DAI Ta-gen PENG Zhen-bin 《Journal of Central South University of Technology》 2005年第z1期135-140,共6页
Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time non... Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time nonstationary random signal, the laws of energy distribution are investigated for blasting vibration signals in different blasting conditions by means of the wavelet packet analysis technique. The characteristics of wavelet transform and wavelet packet analysis are introduced. Then, blasting vibration signals of different blasting conditions are analysed by the wavelet packet analysis technique using MATLAB; energy distribution for different frequency bands is obtained. It is concluded that the energy distribution of blasting vibration signals varies with maximum decking charge,millisecond delay time and distances between explosion and the measuring point. The results show that the wavelet packet analysis method is an effective means for studying blasting seismic effect in its entirety, especially for constituting velocity-frequency criteria. 展开更多
关键词 BLASTING vibration NON-STATIONARY RANDOM signal energy distribution wavelet TRANSFORM wavelet PACKET decomposition
下载PDF
Time Domain Signal Analysis Using Wavelet Packet Decomposition Approach 被引量:3
11
作者 M. Y. Gokhale Daljeet Kaur Khanduja 《International Journal of Communications, Network and System Sciences》 2010年第3期321-329,共9页
This paper explains a study conducted based on wavelet packet transform techniques. In this paper the key idea underlying the construction of wavelet packet analysis (WPA) with various wavelet basis sets is elaborated... This paper explains a study conducted based on wavelet packet transform techniques. In this paper the key idea underlying the construction of wavelet packet analysis (WPA) with various wavelet basis sets is elaborated. Since wavelet packet decomposition can provide more precise frequency resolution than wavelet decomposition the implementation of one dimensional wavelet packet transform and their usefulness in time signal analysis and synthesis is illustrated. A mother or basis wavelet is first chosen for five wavelet filter families such as Haar, Daubechies (Db4), Coiflet, Symlet and dmey. The signal is then decomposed to a set of scaled and translated versions of the mother wavelet also known as time and frequency parameters. Analysis and synthesis of the time signal is performed around 8 seconds to 25 seconds. This was conducted to determine the effect of the choice of mother wavelet on the time signals. Results are also prepared for the comparison of the signal at each decomposition level. The physical changes that are occurred during each decomposition level can be observed from the results. The results show that wavelet filter with WPA are useful for analysis and synthesis purpose. In terms of signal quality and the time required for the analysis and synthesis, the Haar wavelet has been seen to be the best mother wavelet. This is taken from the analysis of the signal to noise ratio (SNR) value which is around 300 dB to 315 dB for the four decomposition levels. 展开更多
关键词 WPA wavelet PACKET decomposition (WPD) SNR HAAR
下载PDF
MULTI-RESOLUTION MOTION ESTIMATION AND COMPENSATION BASED ON ADJACENT PREDICTION OF FRAME DIFFERENCE IN WAVELET DOMAIN 被引量:3
12
作者 Tang Guowei Gu Guochang 《Journal of Electronics(China)》 2009年第3期412-416,共5页
Aiming at the higher bit-rate occupation of motion vector encoding and more time load of full-searching strategies, a multi-resolution motion estimation and compensation algorithm based on adjacent prediction of frame... Aiming at the higher bit-rate occupation of motion vector encoding and more time load of full-searching strategies, a multi-resolution motion estimation and compensation algorithm based on adjacent prediction of frame difference was proposed.Differential motion detection was employed to image sequences and proper threshold was adopted to identify the connected region.Then the motion region was extracted to carry out motion estimation and motion compensation on it.The experiment results show that the encoding efficiency of motion vector is promoted, the complexity of motion estimation is reduced and the quality of the reconstruction image at the same bit-rate as Multi-Resolution Motion Estimation(MRME) is improved. 展开更多
关键词 wavelet transforms Motion estimation Motion compensation multi-resolution analysis Video coding
下载PDF
Low Bit Rate Underwater Video Image Compression and Coding Method Based on Wavelet Decomposition 被引量:3
13
作者 Yonggang He Xiongzhu Bu +1 位作者 Ming Jiang Maojun Fan 《China Communications》 SCIE CSCD 2020年第9期210-219,共10页
In view of the limited bandwidth of underwater video image transmission,a low bit rate underwater video compression coding method is proposed.Based on the preprocessing process of wavelet transform and coefficient dow... In view of the limited bandwidth of underwater video image transmission,a low bit rate underwater video compression coding method is proposed.Based on the preprocessing process of wavelet transform and coefficient down-sampling,the visual redundancy of underwater image is removed and the computational coefficients and coding bits are reduced.At the same time,combined with multi-level wavelet decomposition,inter frame motion compensation,entropy coding and other methods,according to the characteristics of different types of frame image data,reduce the number of calculations and improve the coding efficiency.The experimental results show that the reconstructed image quality can meet the visual requirements,and the average compression ratio of underwater video can meet the requirements of underwater acoustic channel transmission rate. 展开更多
关键词 low bit rate DOWN-SAMPLING wavelet decomposition underwater video coding
下载PDF
Domain Decomposition for Wavelet Single Layer on Geometries with Patches 被引量:3
14
作者 Maharavo Randrianarivony 《Applied Mathematics》 2016年第15期1798-1823,共27页
We focus on the single layer formulation which provides an integral equation of the first kind that is very badly conditioned. The condition number of the unpreconditioned system increases exponentially with the multi... We focus on the single layer formulation which provides an integral equation of the first kind that is very badly conditioned. The condition number of the unpreconditioned system increases exponentially with the multiscale levels. A remedy utilizing overlapping domain decompositions applied to the Boundary Element Method by means of wavelets is examined. The width of the overlapping of the subdomains plays an important role in the estimation of the eigenvalues as well as the condition number of the additive domain decomposition operator. We examine the convergence analysis of the domain decomposition method which depends on the wavelet levels and on the size of the subdomain overlaps. Our theoretical results related to the additive Schwarz method are corroborated by numerical outputs. 展开更多
关键词 wavelet Single Layer PATCH Domain decomposition Convergence Graph Partitioning Condition Number
下载PDF
Hybrid Model Based on Wavelet Decomposition for Electricity Consumption Prediction 被引量:1
15
作者 XIA Chenxia WANG Zilong JHONY Choon Yeong Ng 《Journal of Donghua University(English Edition)》 EI CAS 2019年第1期77-87,共11页
The effective supply of electricity is the basis of ensuring economic development and people's normal life. It is difficult to store electricity, as leading to the production and consumption must be completed simu... The effective supply of electricity is the basis of ensuring economic development and people's normal life. It is difficult to store electricity, as leading to the production and consumption must be completed simultaneously. Therefore, it is of great significance to accurately predict the demand for electricity consumption for the production planning of electricity and the normal operation of the society. In this paper, a hybrid model is constructed to predict the electricity consumption in China. The structural breaks test of monthly electricity consumption in China from January 2010 to December 2016 is carried out by using the structural breaks unit root test. Based on the existence of structura breaks, the electricity consumption data are decomposed into low-frequency and high-frequency components by wavelet model, and the separated low frequency signal and high frequency signal are predicted by autoregressive integrated moving average(ARIMA) and nonlinear autoregressive neural network(NAR), respectively. Therefore the wavelet-ARIMA-NAR hybrid model is constructed. In order to compare the effect of the hybrid model, the structural time series(STS) model is applied to predicting the electricity consumption. The results of prediction error test show that the hybrid model is more accurate for electricity consumption prediction. 展开更多
关键词 ELECTRICITY CONSUMPTION forecasting wavelet decomposition STRUCTURAL BREAKS STRUCTURAL time series(STS) model
下载PDF
Audio Zero-Watermark Scheme Based on Discrete Cosine Transform-Discrete Wavelet TransformSingular Value Decomposition 被引量:7
16
作者 Min Lei Yu Yang +2 位作者 XiaoMing Liu MingZhi Cheng Rui Wang 《China Communications》 SCIE CSCD 2016年第7期117-121,共5页
Traditional watermark embedding schemes inevitably modify the data in a host audio signal and lead to the degradation of the host signal.In this paper,a novel audio zero-watermarking algorithm based on discrete wavele... Traditional watermark embedding schemes inevitably modify the data in a host audio signal and lead to the degradation of the host signal.In this paper,a novel audio zero-watermarking algorithm based on discrete wavelet transform(DWT),discrete cosine transform(DCT),and singular value decomposition(SVD) is presented.The watermark is registered by performing SVD on the coefficients generated through DWT and DCT to avoid data modification and host signal degradation.Simulation results show that the proposed zero-watermarking algorithm is strongly robust to common signal processing methods such as requantization,MP3 compression,resampling,addition of white Gaussian noise,and low-pass filtering. 展开更多
关键词 zero-watermark discrete wavelet transform discrete cosine transform singular value decomposition
下载PDF
A Robust Image Watermarking Scheme Using Z-Transform, Discrete Wavelet Transform and Bidiagonal Singular Value Decomposition 被引量:2
17
作者 N.Jayashree R.S.Bhuvaneswaran 《Computers, Materials & Continua》 SCIE EI 2019年第1期263-285,共23页
Watermarking is a widely used solution to the problems of authentication and copyright protection of digital media especially for images,videos,and audio data.Chaos is one of the emerging techniques adopted in image w... Watermarking is a widely used solution to the problems of authentication and copyright protection of digital media especially for images,videos,and audio data.Chaos is one of the emerging techniques adopted in image watermarking schemes due to its intrinsic cryptographic properties.This paper proposes a new chaotic hybrid watermarking method combining Discrete Wavelet Transform(DWT),Z-transform(ZT)and Bidiagonal Singular Value Decomposition(BSVD).The original image is decomposed into 3-level DWT,and then,ZT is applied on the HH3 and HL3 sub-bands.The watermark image is encrypted using Arnold Cat Map.BSVD for the watermark and transformed original image were computed,and the watermark was embedded by modifying singular values of the host image with the singular values of the watermark image.Robustness of the proposed scheme was examined using standard test images and assessed against common signal processing and geometric attacks.Experiments indicated that the proposed method is transparent and highly robust. 展开更多
关键词 Digital WATERMARKING chaotic mapping Z-TRANSFORM ARNOLD cat map discrete wavelet transform(DWT) bidiagonal SINGULAR value decomposition(BSVD)
下载PDF
Sea-water-level prediction via combined wavelet decomposition,neuro-fuzzy and neural networks using SLA and wind information 被引量:1
18
作者 Bao Wang Bin Wang +2 位作者 Wenzhou Wu Changbai Xi Jiechen Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第5期157-167,共11页
Sea-water-level(SWL)prediction significantly impacts human lives and maritime activities in coastal regions,particularly at offshore locations with shallow water levels.Long-term SWL forecasts,which are conventionally... Sea-water-level(SWL)prediction significantly impacts human lives and maritime activities in coastal regions,particularly at offshore locations with shallow water levels.Long-term SWL forecasts,which are conventionally obtained via harmonic analysis,become ineffective when nonperiodic meteorological events predominate.Artificial intelligence combined with other data-processing methods can effectively forecast highly nonlinear and nonstationary inflow patterns by recognizing historical relationships between input and output.These techniques are considerably useful in time-series data predictions.This paper reports the development of a hybrid model to realize accurate multihour SWL forecasting by combining an adaptive neuro-fuzzy inference system(ANFIS)with wavelet decomposition while using sea-level anomaly(SLA)and wind-shear-velocity components as inputs.Numerous wavelet-ANFIS(WANFIS)models have been tested using different inputs to assess their applicability as alternatives to the artificial neural network(ANN),wavelet ANN(WANN),and ANFIS models.Different error definitions have been used to evaluate results,which indicate that integrated wavelet-decomposition and ANFIS models improve the accuracy of SWL prediction and that the inputs of SLA and wind-shear velocity exhibit superior prediction capability compared to conventional SWL-only models. 展开更多
关键词 sea-water level PREDICTION ANFIS wavelet decomposition WIND
下载PDF
Magnetic-resonance image segmentation based on improved variable weight multi-resolution Markov random field in undecimated complex wavelet domain 被引量:1
19
作者 Hong Fan Yiman Sun +3 位作者 Xiaojuan Zhang Chengcheng Zhang Xiangjun Li Yi Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第7期655-667,共13页
To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov rand... To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov random field(MRMRF)model.The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales.The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm,and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation.The results are then segmented by the improved MRMRF model.In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model,it is proposed to introduce variable weight parameters in the segmentation process of each scale.Furthermore,the final segmentation results are optimized.We name this algorithm the variable-weight multi-resolution Markov random field(VWMRMRF).The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness,and can accurately and stably achieve low signal-to-noise ratio,weak boundary MR image segmentation. 展开更多
关键词 undecimated dual-tree complex wavelet MR image segmentation multi-resolution Markov random field model
下载PDF
AMicroseismic Signal Denoising Algorithm Combining VMD and Wavelet Threshold Denoising Optimized by BWOA
20
作者 Dijun Rao Min Huang +2 位作者 Xiuzhi Shi Zhi Yu Zhengxiang He 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期187-217,共31页
The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized ... The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized VariationalMode Decomposition(VMD)jointWavelet Threshold Denoising(WTD)algorithm(BVW)is proposed.The BVW algorithm integrates VMD and WTD,both of which are optimized by BWOA.Specifically,this algorithm utilizes VMD to decompose the microseismic signal to be denoised into several Band-Limited IntrinsicMode Functions(BLIMFs).Subsequently,these BLIMFs whose correlation coefficients with the microseismic signal to be denoised are higher than a threshold are selected as the effective mode functions,and the effective mode functions are denoised using WTD to filter out the residual low-and intermediate-frequency noise.Finally,the denoised microseismic signal is obtained through reconstruction.The ideal values of VMD parameters and WTD parameters are acquired by searching with BWOA to achieve the best VMD decomposition performance and solve the problem of relying on experience and requiring a large workload in the application of the WTD algorithm.The outcomes of simulated experiments indicate that this algorithm is capable of achieving good denoising performance under noise of different intensities,and the denoising performance is significantly better than the commonly used VMD and Empirical Mode Decomposition(EMD)algorithms.The BVW algorithm is more efficient in filtering noise,the waveform after denoising is smoother,the amplitude of the waveform is the closest to the original signal,and the signal-to-noise ratio(SNR)and the root mean square error after denoising are more satisfying.The case based on Fankou Lead-Zinc Mine shows that for microseismic signals with different intensities of noise monitored on-site,compared with VMD and EMD,the BVW algorithm ismore efficient in filtering noise,and the SNR after denoising is higher. 展开更多
关键词 Variational mode decomposition microseismic signal DENOISING wavelet threshold denoising black widow optimization algorithm
下载PDF
上一页 1 2 208 下一页 到第
使用帮助 返回顶部