This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II(Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II)for solving complex multiobjective o...This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II(Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II)for solving complex multiobjective optimization problems,with a particular focus on robotic leg-linkage design.The study introduces an innovative approach that integrates deep learning-based surrogate models with the robust Non-dominated Sorting Genetic Algorithm II,aiming to enhance the efficiency and precision of the optimization process.Through a series of empirical experiments and algorithmic analyses,the paper demonstrates a high degree of correlation between solutions generated by the DeepSurNet-NSGA II and those obtained from direct experimental methods,underscoring the algorithm’s capability to accurately approximate the Pareto-optimal frontier while significantly reducing computational demands.The methodology encompasses a detailed exploration of the algorithm’s configuration,the experimental setup,and the criteria for performance evaluation,ensuring the reproducibility of results and facilitating future advancements in the field.The findings of this study not only confirm the practical applicability and theoretical soundness of the DeepSurNet-NSGA II in navigating the intricacies of multi-objective optimization but also highlight its potential as a transformative tool in engineering and design optimization.By bridging the gap between complex optimization challenges and achievable solutions,this research contributes valuable insights into the optimization domain,offering a promising direction for future inquiries and technological innovations.展开更多
The temperature response calculation of thermal protection materials,especially ablative thermal protection materials,usually adopts the ablation model,which is complicated in process and requires a large amount of ca...The temperature response calculation of thermal protection materials,especially ablative thermal protection materials,usually adopts the ablation model,which is complicated in process and requires a large amount of calculation.Especially in the process of optimization calculation and parameter identification,the ablation model needs to be called many times,so it is necessary to construct an ablation surrogate model to improve the computational efficiency under the premise of ensuring the accuracy.In this paper,the Gaussian process model method is used to construct a thermal protection material ablation surrogate model,and the prediction accuracy of the surrogate model is improved through optimization.展开更多
Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectivenes...Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectiveness of using platinum(Pt)in them.The cathode catalyst layer(CL)is considered a core component in PEMFCs,and its composition often considerably affects the cell performance(V_(cell))also PEMFC fabrication and production(C_(stack))costs.In this study,a data-driven multi-objective optimization analysis is conducted to effectively evaluate the effects of various cathode CL compositions on Vcelland Cstack.Four essential cathode CL parameters,i.e.,platinum loading(L_(Pt)),weight ratio of ionomer to carbon(wt_(I/C)),weight ratio of Pt to carbon(wt_(Pt/c)),and porosity of cathode CL(ε_(cCL)),are considered as the design variables.The simulation results of a three-dimensional,multi-scale,two-phase comprehensive PEMFC model are used to train and test two famous surrogates:multi-layer perceptron(MLP)and response surface analysis(RSA).Their accuracies are verified using root mean square error and adjusted R^(2).MLP which outperforms RSA in terms of prediction capability is then linked to a multi-objective non-dominated sorting genetic algorithmⅡ.Compared to a typical PEMFC stack,the results of the optimal study show that the single-cell voltage,Vcellis improved by 28 m V for the same stack price and the stack cost evaluated through the U.S department of energy cost model is reduced by$5.86/k W for the same stack performance.展开更多
To reduce the high computational cost of the uncertainty analysis, a procedure is proposed for the aerodynamic optimization under uncertainties, in which the surrogate model is used to simplify the computation of the ...To reduce the high computational cost of the uncertainty analysis, a procedure is proposed for the aerodynamic optimization under uncertainties, in which the surrogate model is used to simplify the computation of the uncertainty analysis. The surrogate model is constructed by using the Latin Hypercube design and the Kriging model. The random parameters are used to account for the small manufacturing errors and the variations of operating conditions. Based on the surrogate model, an uncertainty analysis approach, called the Monte Carlo simulation, is used to compute the mean value and the variance of the predicated performance. The robust optimization for aerodynamic design is formulated, and solved by the genetic algorithm. And then, an airfoil optimization problem is used to test the proposed procedure. Results show that the optimal solutions obtained from the uncertainty-based optimization formulation are less sensitive to uncertainties. And the design constraints are still satisfied under the uncertainties.展开更多
Structural health monitoring is important to ensuring the health and safety of dams.An inverse analysis method based on a novel hybrid fireworks algorithm (FWA) and the radial basis function (RBF) model is proposed to...Structural health monitoring is important to ensuring the health and safety of dams.An inverse analysis method based on a novel hybrid fireworks algorithm (FWA) and the radial basis function (RBF) model is proposed to diagnose the health condition of concrete dams.The damage of concrete dams is diagnosed by identifying the elastic modulus of materials using the displacement changes at different reservoir water levels.FWA is a global optimization intelligent algorithm.The proposed hybrid algorithm combines the FWA with the pattern search algorithm, which has a high capability for local optimization.Examples of benchmark functions and pseudo-experiment examples of concrete dams illustrate that the hybrid FWA improves the convergence speed and robustness of the original algorithm.To address the time consumption problem, an RBF-based surrogate model was established to replace part of the finite element method in inverse analysis.Numerical examples of concrete dams illustrate that the use of an RBF-based surrogate model significantly reduces the computation time of inverse analysis with little influence on identification accuracy.The presented hybrid FWA combined with the RBF network can quickly and accurately determine the elastic modulus of materials, and then determine the health status of the concrete dam.展开更多
Characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity is a complex problem. In this study, to increase the efficiency and accuracy of source charac...Characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity is a complex problem. In this study, to increase the efficiency and accuracy of source characterization an alternative methodology to the methodologies proposed earlier is developed. This methodology, Adaptive Surrogate Modeling Based Optimization (ASMBO) uses the capabilities of Self Organizing Map (SOM) algorithm to design the surrogate models and adaptive surrogate models for source characterization. The most important advantage of this methodology is its direct utilization for groundwater contaminant characterization without the necessity of utilizing a linked simulation optimization model. The validation of the SOM based surrogate models and SOM based adaptive surrogate models demonstrates that the quantity and quality of initial sample sizes have crucial role on the accuracy of solutions as the designed monitoring locations. The performance evaluation results of the proposed methodology are obtained using error free and erroneous concentration measurement data. These results demonstrate that the developed methodology could approximate groundwater flow and transport simulation models, and substitute the optimization model for characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity.展开更多
Under the influence of crosswinds,the running safety of trains will decrease sharply,so it is necessary to optimize the suspension parameters of trains.This paper studies the dynamic performance of high-speed trains u...Under the influence of crosswinds,the running safety of trains will decrease sharply,so it is necessary to optimize the suspension parameters of trains.This paper studies the dynamic performance of high-speed trains under cross-wind conditions,and optimizes the running safety of train.A computational fluid dynamics simulation was used to determine the aerodynamic loads and moments experienced by a train.A series of dynamic models of a train,with different dynamic parameters were constructed,and analyzed,with safety metrics for these being determined.Finally,a surrogate model was built and an optimization algorithm was used upon this surrogate model,to find the minimum possible values for:derailment coefficient,vertical wheel-rail contact force,wheel load reduction ratio,wheel lateral force and overturning coefficient.There were 9 design variables,all associated with the dynamic parameters of the bogie.When the train was running with the speed of 350 km/h,under a crosswind speed of 15 m/s,the benchmark dynamic model performed poorly.The derailment coefficient was 1.31.The vertical wheel-rail contact force was 133.30 kN.The wheel load reduction rate was 0.643.The wheel lateral force was 85.67 kN,and the overturning coefficient was 0.425.After optimization,under the same running conditions,the metrics of the train were 0.268,100.44 kN,0.474,34.36 kN,and 0.421,respectively.This paper show that by combining train aerodynamics,vehicle system dynamics and many-objective optimization theory,a train’s stability can be more comprehensively analyzed,with more safety metrics being considered.展开更多
The innovative Next Generation Subsea Production System(NextGen SPS)concept is a newly proposed petroleum development solution in ultra-deep water areas.The definition of NextGen SPS involves several disciplines,which...The innovative Next Generation Subsea Production System(NextGen SPS)concept is a newly proposed petroleum development solution in ultra-deep water areas.The definition of NextGen SPS involves several disciplines,which makes the design process difficult.In this paper,the definition of NextGen SPS is modeled as an uncertain multidisciplinary design optimization(MDO)problem.The deterministic optimization model is formulated,and three concerning disciplines—cost calculation,hydrodynamic analysis and global performance analysis are presented.Surrogate model technique is applied in the latter two disciplines.Collaborative optimization(CO)architecture is utilized to organize the concerning disciplines.A deterministic CO framework with two disciplinelevel optimizations is proposed firstly.Then the uncertainties of design parameters and surrogate models are incorporated by using interval method,and uncertain CO frameworks with triple loop and double loop optimization structure are established respectively.The optimization results illustrate that,although the deterministic MDO result achieves higher reduction in objective function than the uncertain MDO result,the latter is more reliable than the former.展开更多
In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design...In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design parameters were respectively constructed based on surrogate model optimization methods (polynomial response surface method (PRSM) and Kriging method (KM)). Firstly, the sample data were prepared through the design of experiment (DOE). Then, the test data models were set up based on the theory of surrogate model, and the data samples were trained to obtain the response relationship between the SEA & REAF and design parameters. At last, the structure optimal parameters were obtained by visual analysis and genetic algorithm (GA). The results indicate that the KM, where the local interpolation method is used in Gauss correlation function, has the highest fitting accuracy and the structure optimal parameters are obtained as: the SEA of 29.8558 kJ/kg (corresponding toa=70 mm andt= 3.5 mm) and REAF of 0.2896 (corresponding toa=70 mm andt=1.9615 mm). The basis function of the quartic PRSM with higher order than that of the quadratic PRSM, and the mutual influence of the design variables are considered, so the fitting accuracy of the quartic PRSM is higher than that of the quadratic PRSM.展开更多
The response of the train–bridge system has an obvious random behavior.A high traffic density and a long maintenance period of a track will result in a substantial increase in the number of trains running on a bridge...The response of the train–bridge system has an obvious random behavior.A high traffic density and a long maintenance period of a track will result in a substantial increase in the number of trains running on a bridge,and there is small likelihood that the maximum responses of the train and bridge happen in the total maintenance period of the track.Firstly,the coupling model of train–bridge systems is reviewed.Then,an ensemble method is presented,which can estimate the small probabilities of a dynamic system with stochastic excitations.The main idea of the ensemble method is to use the NARX(nonlinear autoregressive with exogenous input)model to replace the physical model and apply subset simulation with splitting to obtain the extreme distribution.Finally,the efficiency of the suggested method is compared with the direct Monte Carlo simulation method,and the probability exceedance of train responses under the vertical track irregularity is discussed.The results show that when the small probability of train responses under vertical track irregularity is estimated,the ensemble method can reduce both the calculation time of a single sample and the required number of samples.展开更多
We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an indi...We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an individual’s fuzzy and stochastic fitness. We firstly present an approach to construct a directed fuzzy graph of an evolutionary population according to individuals’ dominance relations, cut-set levels and interval dominance probabilities, and then calculate an individual’s crisp fitness based on the out-degree and in-degree of the fuzzy graph. The approach to obtain training data is achieved using the fuzzy entropy of the evolutionary system to guarantee the credibilities of the samples which are used to train the surrogate model. We adopt a support vector regression machine as the surrogate model and train it using the sampled individuals and their crisp fitness. Then the surrogate model is optimized using the traditional genetic algorithm for some generations, and some good individuals are submitted to the user for the subsequent evolutions so as to guide and accelerate the evolution. Finally, we quantitatively analyze the performance of the presented algorithm in alleviating user fatigue and increasing more opportunities to find the satisfactory individuals, and also apply our algorithm to a fashion evolutionary design system to demonstrate its efficiency.展开更多
The surrogate model technology has a good performance in solving black-box optimization problems,which is widely used in multi-domain engineering optimization problems.The adaptive surrogate model is the mainstream re...The surrogate model technology has a good performance in solving black-box optimization problems,which is widely used in multi-domain engineering optimization problems.The adaptive surrogate model is the mainstream research direction of surrogate model technology,which can realize model fitting and global optimization of engineering problems by infilling criteria.Based on the idea of the adaptive surrogate model,this paper proposes an efficient global optimization algorithm based on the local remodeling method(EGO-LR),which aims at improving the accuracy and optimization efficiency of the model.The proposed algorithm firstly constructs the expectation improvement(EI)function in the local area and optimizes it to get the update points.Secondly,the obtained update points are added to the global region until the global accuracy of the model meets the requirements.Then the differential evolution algorithm is used for global optimization.Sixteen benchmark functions are used to compare the EGO-LR algorithm with the existing algorithms.The results show that the EGO-LR algorithm can quickly converge to the accuracy requirements of the model and find the optimal value efficiently when facing complex problems with many local extrema and large variable spaces.The proposed algorithm is applied to the optimization design of the structural parameter of the impeller,and the outflow field analysis of the impeller is realized through finite element analysis.The optimization with the maximum fluid pressure(MP value)of the impeller as the objective function is completed,which effectively reduces the pressure value of the impeller under load.展开更多
In this paper,for design of large-scale electromagnetic problems,a novel robust global optimization algorithm based on surrogate models is presented.The proposed algorithm can automatically select a proper meta-model ...In this paper,for design of large-scale electromagnetic problems,a novel robust global optimization algorithm based on surrogate models is presented.The proposed algorithm can automatically select a proper meta-model technique among multiple alternatives.In this paper,three representative meta-modeling techniques including ordinary Kriging,universal Kriging,and response surface method with multi-quadratic radial basis functions are applied.In each optimization iteration,the above three models are used for parallel calculation.The proposed hybrid surrogate model optimization algorithm synthesizes advantages of these different meta-models.Without verification of a specific meta-model,a suitable one for the engineering problem to be analyzed is automatically selected.Therefore,the proposed algorithm intends to make a better trade-off between numerical efficiency and searching accuracy for solving engineering problems,which are characterized by stronger non-linearity,higher complexity,non-convex feasible region,and expensive performance analysis.展开更多
Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which...Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which we assess the outcome of optimization.Since accurate,high fidelity models are typically time consuming and computationally expensive,comprehensive evaluations can be conducted only if an efficient framework is available.Furthermore,informed decisions of the model/hardware's overall performance rely on an adequate understanding of the global,not local,sensitivity of the individual design variables on the objectives.The surrogate-based approach,which involves approximating the objectives as continuous functions of design variables from limited data,offers a rational framework to reduce the number of important input variables,i.e.,the dimension of a design or modeling space.In this paper,we review the fundamental issues that arise in surrogate-based analysis and optimization,highlighting concepts,methods,techniques,as well as modeling implications for mechanics problems.To aid the discussions of the issues involved,we summarize recent efforts in investigating cryogenic cavitating flows,active flow control based on dielectric barrier discharge concepts,and lithium(Li)-ion batteries.It is also stressed that many multi-scale mechanics problems can naturally benefit from the surrogate approach for "scale bridging."展开更多
In order to obtain better torque performance of high-speed interior permanent magnet motor(HSIPMM) and solve the problem that electromagnetic optimization design is seriously limited by its mechanical strength, a comp...In order to obtain better torque performance of high-speed interior permanent magnet motor(HSIPMM) and solve the problem that electromagnetic optimization design is seriously limited by its mechanical strength, a complete optimization design method is proposed in this paper. The object of optimization design is a 15 kW、20000 r/min HSIPMM whose permanent magnets in rotor is segmented. Eight structural dimensions are selected as its optimization variables. After design of experiment(DOE), multiple surrogate models are fitted, a set of surrogate models with minimum error is selected by using error evaluation indexes to optimize, the NSGA-II algorithm is used to get the optimal solution. The optimal solution is verified by load test on a 15 kW, 20000 r/min HSIPMM prototype. This paper can be used as a reference for the optimization design of HSIPMM.展开更多
Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction me...Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction method.This makes the accuracy of the surrogate model highly dependent on the experience of users and affects the accuracy of IMU methods.Therefore,an improved IMU method via the adaptive Kriging models is proposed.This method transforms the objective function of the IMU problem into two deterministic global optimization problems about the upper bound and the interval diameter through universal grey numbers.These optimization problems are addressed through the adaptive Kriging models and the particle swarm optimization(PSO)method to quantify the uncertain parameters,and the IMU is accomplished.During the construction of these adaptive Kriging models,the sample space is gridded according to sensitivity information.Local sampling is then performed in key subspaces based on the maximum mean square error(MMSE)criterion.The interval division coefficient and random sampling coefficient are adaptively adjusted without human interference until the model meets accuracy requirements.The effectiveness of the proposed method is demonstrated by a numerical example of a three-degree-of-freedom mass-spring system and an experimental example of a butted cylindrical shell.The results show that the updated results of the interval model are in good agreement with the experimental results.展开更多
Characterization of unknown groundwater contaminant sources is an important but difficult step in effective groundwater management. The difficulties arise mainly due to the time of contaminant detection which usually ...Characterization of unknown groundwater contaminant sources is an important but difficult step in effective groundwater management. The difficulties arise mainly due to the time of contaminant detection which usually happens a long time after the start of contaminant source(s) activities. Usually, limited information is available which also can be erroneous. This study utilizes Self-Organizing Map (SOM) and Gaussian Process Regression (GPR) algorithms to develop surrogate models that can approximate the complex flow and transport processes in a contaminated aquifer. The important feature of these developed surrogate models is that unlike the previous methods, they can be applied independently of any linked optimization model solution for characterizing of unknown groundwater contaminant sources. The performance of the developed surrogate models is evaluated for source characterization in an experimental contaminated aquifer site within the heterogeneous sand aquifer, located at the Botany Basin, New South Wales, Australia. In this study, the measured contaminant concentrations and hydraulic conductivity values are assumed to contain random errors. Simulated responses of the aquifer to randomly specified contamination stresses as simulated by using a three-dimensional numerical simulation model are utilized for initial training of the surrogate models. The performance evaluation results obtained by using different surrogate models are also compared. The evaluation results demonstrate the different capabilities of the developed surrogate models. These capabilities lead to development of an efficient methodology for source characterization based on utilizing the trained and tested surrogate models in an inverse mode. The obtained results are satisfactory and show the potential applicability of the SOM and GPR-based surrogate models for unknown groundwater contaminant source characterization in an inverse mode.展开更多
A new algorithm for the detection of sleep spindles from human sleep EEG with surrogate data approach is presented. Surrogate data ap-proach is the state of the art technique for nonlinear spectral analysis. In this p...A new algorithm for the detection of sleep spindles from human sleep EEG with surrogate data approach is presented. Surrogate data ap-proach is the state of the art technique for nonlinear spectral analysis. In this paper, by developing autoregressive (AR) models on short segment of the EEG is described as a superposition of harmonic oscillating with damping and frequency in time. Sleep spindle events are detected, whenever the damping of one or more frequencies falls below a prede-fined threshold. Based on a surrogate data, a method was proposed to test the hypothesis that the original data were generated by a linear Gaussian process. This method was tested on human sleep EEG signal. The algorithm work well for the detection of sleep spindles and in addition the analysis reveals the alpha and beta band activities in EEG. The rigorous statistical framework proves essential in establishing these results.展开更多
The impact of global warming on the aridity in South America (SA) is investigated. For this purpose, the methodology for generating surrogate climate-change scenarios with a RCM is employed. For the present climate (C...The impact of global warming on the aridity in South America (SA) is investigated. For this purpose, the methodology for generating surrogate climate-change scenarios with a RCM is employed. For the present climate (CTRL) the RCM is initialized with and driven by ECMWF/ERA-Interim reanalysis data. Two aridity indices are used: the Budyko and the UNEP indices. The results for the CTR are in agreement with other model studies which indicate future warming;rainfall increases in southeastern South America, Ecuador and Peru and decreases in the central and eastern Amazon. In general the model reproduces the aridity in the continent compared with the observed data for both indices. The distribution of aridity over SA in surrogate climate-change scenario shows an increase of the dryness in the continent. Over Amazonia the aridity increases 23.9% (for the UNEP index) and 3.1% (for the Budyko index), suggesting that portions of the Amazonia forest are replaced by dry land area. The semi-arid zone over northeast Brazil expands westward, attaining the interior of north Brazil. In this region the aridity increases 20% (for the UNEP index) and 0.6% (for the Budyko index) indicating that areas of humid regime may be occupied by areas with dry land regime. The RCM was also integrated driven by the AOGCM ECHAM5/MPI-OM for the reference climate (CTRL2) and under A1B SRES scenario. The results for the present-day climate are similar in CTRL2 and CTRL, and are in agreement with CRU data. The distribution of the aridity for the present climate seems to be better represented in CTRL using both Budyko and UNEP indices. The changes in aridity (future climate minus control) are higher in the run forced by the A1B SRES scenario. Although the UNEP and Budyko indices show potentialities and limitations to represent the aridity distribution over SA, the changes in aridity due to a pseudo-scenario of global warming are higher using the UNEP index.展开更多
文摘This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II(Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II)for solving complex multiobjective optimization problems,with a particular focus on robotic leg-linkage design.The study introduces an innovative approach that integrates deep learning-based surrogate models with the robust Non-dominated Sorting Genetic Algorithm II,aiming to enhance the efficiency and precision of the optimization process.Through a series of empirical experiments and algorithmic analyses,the paper demonstrates a high degree of correlation between solutions generated by the DeepSurNet-NSGA II and those obtained from direct experimental methods,underscoring the algorithm’s capability to accurately approximate the Pareto-optimal frontier while significantly reducing computational demands.The methodology encompasses a detailed exploration of the algorithm’s configuration,the experimental setup,and the criteria for performance evaluation,ensuring the reproducibility of results and facilitating future advancements in the field.The findings of this study not only confirm the practical applicability and theoretical soundness of the DeepSurNet-NSGA II in navigating the intricacies of multi-objective optimization but also highlight its potential as a transformative tool in engineering and design optimization.By bridging the gap between complex optimization challenges and achievable solutions,this research contributes valuable insights into the optimization domain,offering a promising direction for future inquiries and technological innovations.
基金supported by Independent Research and Development Project of CASC(YF-ZZYF-2022-132)。
文摘The temperature response calculation of thermal protection materials,especially ablative thermal protection materials,usually adopts the ablation model,which is complicated in process and requires a large amount of calculation.Especially in the process of optimization calculation and parameter identification,the ablation model needs to be called many times,so it is necessary to construct an ablation surrogate model to improve the computational efficiency under the premise of ensuring the accuracy.In this paper,the Gaussian process model method is used to construct a thermal protection material ablation surrogate model,and the prediction accuracy of the surrogate model is improved through optimization.
基金supported by the Technology Innovation Program of the Korea Evaluation Institute of Industrial Technology (KEIT)under the Ministry of Trade,Industry and Energy (MOTIE)of Republic of Korea (20012121)by the National Research Foundation of Korea (NRF)grant funded by the Korea government (MSIT) (2022M3J7A106294)。
文摘Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectiveness of using platinum(Pt)in them.The cathode catalyst layer(CL)is considered a core component in PEMFCs,and its composition often considerably affects the cell performance(V_(cell))also PEMFC fabrication and production(C_(stack))costs.In this study,a data-driven multi-objective optimization analysis is conducted to effectively evaluate the effects of various cathode CL compositions on Vcelland Cstack.Four essential cathode CL parameters,i.e.,platinum loading(L_(Pt)),weight ratio of ionomer to carbon(wt_(I/C)),weight ratio of Pt to carbon(wt_(Pt/c)),and porosity of cathode CL(ε_(cCL)),are considered as the design variables.The simulation results of a three-dimensional,multi-scale,two-phase comprehensive PEMFC model are used to train and test two famous surrogates:multi-layer perceptron(MLP)and response surface analysis(RSA).Their accuracies are verified using root mean square error and adjusted R^(2).MLP which outperforms RSA in terms of prediction capability is then linked to a multi-objective non-dominated sorting genetic algorithmⅡ.Compared to a typical PEMFC stack,the results of the optimal study show that the single-cell voltage,Vcellis improved by 28 m V for the same stack price and the stack cost evaluated through the U.S department of energy cost model is reduced by$5.86/k W for the same stack performance.
文摘To reduce the high computational cost of the uncertainty analysis, a procedure is proposed for the aerodynamic optimization under uncertainties, in which the surrogate model is used to simplify the computation of the uncertainty analysis. The surrogate model is constructed by using the Latin Hypercube design and the Kriging model. The random parameters are used to account for the small manufacturing errors and the variations of operating conditions. Based on the surrogate model, an uncertainty analysis approach, called the Monte Carlo simulation, is used to compute the mean value and the variance of the predicated performance. The robust optimization for aerodynamic design is formulated, and solved by the genetic algorithm. And then, an airfoil optimization problem is used to test the proposed procedure. Results show that the optimal solutions obtained from the uncertainty-based optimization formulation are less sensitive to uncertainties. And the design constraints are still satisfied under the uncertainties.
基金supported by the National Key Research and Development Program of China(Grants No.2016YFC0401600 and 2017YFC0404906)the National Natural Science Foundation of China(Grants No.51769033 and 51779035)the Fundamental Research Funds for the Central Universities(Grants No.DUT17ZD205 and DUT19LK14)
文摘Structural health monitoring is important to ensuring the health and safety of dams.An inverse analysis method based on a novel hybrid fireworks algorithm (FWA) and the radial basis function (RBF) model is proposed to diagnose the health condition of concrete dams.The damage of concrete dams is diagnosed by identifying the elastic modulus of materials using the displacement changes at different reservoir water levels.FWA is a global optimization intelligent algorithm.The proposed hybrid algorithm combines the FWA with the pattern search algorithm, which has a high capability for local optimization.Examples of benchmark functions and pseudo-experiment examples of concrete dams illustrate that the hybrid FWA improves the convergence speed and robustness of the original algorithm.To address the time consumption problem, an RBF-based surrogate model was established to replace part of the finite element method in inverse analysis.Numerical examples of concrete dams illustrate that the use of an RBF-based surrogate model significantly reduces the computation time of inverse analysis with little influence on identification accuracy.The presented hybrid FWA combined with the RBF network can quickly and accurately determine the elastic modulus of materials, and then determine the health status of the concrete dam.
文摘Characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity is a complex problem. In this study, to increase the efficiency and accuracy of source characterization an alternative methodology to the methodologies proposed earlier is developed. This methodology, Adaptive Surrogate Modeling Based Optimization (ASMBO) uses the capabilities of Self Organizing Map (SOM) algorithm to design the surrogate models and adaptive surrogate models for source characterization. The most important advantage of this methodology is its direct utilization for groundwater contaminant characterization without the necessity of utilizing a linked simulation optimization model. The validation of the SOM based surrogate models and SOM based adaptive surrogate models demonstrates that the quantity and quality of initial sample sizes have crucial role on the accuracy of solutions as the designed monitoring locations. The performance evaluation results of the proposed methodology are obtained using error free and erroneous concentration measurement data. These results demonstrate that the developed methodology could approximate groundwater flow and transport simulation models, and substitute the optimization model for characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity.
基金Supported by The National Key Research and Development Program of China(Grant No.2020YFA0710902)The National Natural Science Foundation of China(Grant No.12172308)+1 种基金Sichuan Provincial Science and Technology Program of China(Grant No.2019YJ0227)State Key Laboratory of Traction Power of China(Grant No.2019TPL_T02).
文摘Under the influence of crosswinds,the running safety of trains will decrease sharply,so it is necessary to optimize the suspension parameters of trains.This paper studies the dynamic performance of high-speed trains under cross-wind conditions,and optimizes the running safety of train.A computational fluid dynamics simulation was used to determine the aerodynamic loads and moments experienced by a train.A series of dynamic models of a train,with different dynamic parameters were constructed,and analyzed,with safety metrics for these being determined.Finally,a surrogate model was built and an optimization algorithm was used upon this surrogate model,to find the minimum possible values for:derailment coefficient,vertical wheel-rail contact force,wheel load reduction ratio,wheel lateral force and overturning coefficient.There were 9 design variables,all associated with the dynamic parameters of the bogie.When the train was running with the speed of 350 km/h,under a crosswind speed of 15 m/s,the benchmark dynamic model performed poorly.The derailment coefficient was 1.31.The vertical wheel-rail contact force was 133.30 kN.The wheel load reduction rate was 0.643.The wheel lateral force was 85.67 kN,and the overturning coefficient was 0.425.After optimization,under the same running conditions,the metrics of the train were 0.268,100.44 kN,0.474,34.36 kN,and 0.421,respectively.This paper show that by combining train aerodynamics,vehicle system dynamics and many-objective optimization theory,a train’s stability can be more comprehensively analyzed,with more safety metrics being considered.
基金the National Natural Science Foundation of China(Grant No.51709041).
文摘The innovative Next Generation Subsea Production System(NextGen SPS)concept is a newly proposed petroleum development solution in ultra-deep water areas.The definition of NextGen SPS involves several disciplines,which makes the design process difficult.In this paper,the definition of NextGen SPS is modeled as an uncertain multidisciplinary design optimization(MDO)problem.The deterministic optimization model is formulated,and three concerning disciplines—cost calculation,hydrodynamic analysis and global performance analysis are presented.Surrogate model technique is applied in the latter two disciplines.Collaborative optimization(CO)architecture is utilized to organize the concerning disciplines.A deterministic CO framework with two disciplinelevel optimizations is proposed firstly.Then the uncertainties of design parameters and surrogate models are incorporated by using interval method,and uncertain CO frameworks with triple loop and double loop optimization structure are established respectively.The optimization results illustrate that,although the deterministic MDO result achieves higher reduction in objective function than the uncertain MDO result,the latter is more reliable than the former.
基金Project(U1334208)supported by the National Natural Science Foundation of ChinaProject(2013GK2001)supported by the Fund of Hunan Provincial Science and Technology Department,China
文摘In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design parameters were respectively constructed based on surrogate model optimization methods (polynomial response surface method (PRSM) and Kriging method (KM)). Firstly, the sample data were prepared through the design of experiment (DOE). Then, the test data models were set up based on the theory of surrogate model, and the data samples were trained to obtain the response relationship between the SEA & REAF and design parameters. At last, the structure optimal parameters were obtained by visual analysis and genetic algorithm (GA). The results indicate that the KM, where the local interpolation method is used in Gauss correlation function, has the highest fitting accuracy and the structure optimal parameters are obtained as: the SEA of 29.8558 kJ/kg (corresponding toa=70 mm andt= 3.5 mm) and REAF of 0.2896 (corresponding toa=70 mm andt=1.9615 mm). The basis function of the quartic PRSM with higher order than that of the quadratic PRSM, and the mutual influence of the design variables are considered, so the fitting accuracy of the quartic PRSM is higher than that of the quadratic PRSM.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51978589,51778544,and 51525804).
文摘The response of the train–bridge system has an obvious random behavior.A high traffic density and a long maintenance period of a track will result in a substantial increase in the number of trains running on a bridge,and there is small likelihood that the maximum responses of the train and bridge happen in the total maintenance period of the track.Firstly,the coupling model of train–bridge systems is reviewed.Then,an ensemble method is presented,which can estimate the small probabilities of a dynamic system with stochastic excitations.The main idea of the ensemble method is to use the NARX(nonlinear autoregressive with exogenous input)model to replace the physical model and apply subset simulation with splitting to obtain the extreme distribution.Finally,the efficiency of the suggested method is compared with the direct Monte Carlo simulation method,and the probability exceedance of train responses under the vertical track irregularity is discussed.The results show that when the small probability of train responses under vertical track irregularity is estimated,the ensemble method can reduce both the calculation time of a single sample and the required number of samples.
基金supported by National Natural Science Foundation of China (No.60775044)the Program for New Century Excellent Talentsin University (No.NCET-07-0802)
文摘We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an individual’s fuzzy and stochastic fitness. We firstly present an approach to construct a directed fuzzy graph of an evolutionary population according to individuals’ dominance relations, cut-set levels and interval dominance probabilities, and then calculate an individual’s crisp fitness based on the out-degree and in-degree of the fuzzy graph. The approach to obtain training data is achieved using the fuzzy entropy of the evolutionary system to guarantee the credibilities of the samples which are used to train the surrogate model. We adopt a support vector regression machine as the surrogate model and train it using the sampled individuals and their crisp fitness. Then the surrogate model is optimized using the traditional genetic algorithm for some generations, and some good individuals are submitted to the user for the subsequent evolutions so as to guide and accelerate the evolution. Finally, we quantitatively analyze the performance of the presented algorithm in alleviating user fatigue and increasing more opportunities to find the satisfactory individuals, and also apply our algorithm to a fashion evolutionary design system to demonstrate its efficiency.
基金supported by the National Natural Science Foundation of China under the Contract No.51975106.
文摘The surrogate model technology has a good performance in solving black-box optimization problems,which is widely used in multi-domain engineering optimization problems.The adaptive surrogate model is the mainstream research direction of surrogate model technology,which can realize model fitting and global optimization of engineering problems by infilling criteria.Based on the idea of the adaptive surrogate model,this paper proposes an efficient global optimization algorithm based on the local remodeling method(EGO-LR),which aims at improving the accuracy and optimization efficiency of the model.The proposed algorithm firstly constructs the expectation improvement(EI)function in the local area and optimizes it to get the update points.Secondly,the obtained update points are added to the global region until the global accuracy of the model meets the requirements.Then the differential evolution algorithm is used for global optimization.Sixteen benchmark functions are used to compare the EGO-LR algorithm with the existing algorithms.The results show that the EGO-LR algorithm can quickly converge to the accuracy requirements of the model and find the optimal value efficiently when facing complex problems with many local extrema and large variable spaces.The proposed algorithm is applied to the optimization design of the structural parameter of the impeller,and the outflow field analysis of the impeller is realized through finite element analysis.The optimization with the maximum fluid pressure(MP value)of the impeller as the objective function is completed,which effectively reduces the pressure value of the impeller under load.
基金This work was supported in part by Program funded by Ministry of Education in Liaoning Province under Grants LR2017060in part by Zhejiang Provincial Natural Science Foundation of China(No.LY18E070005).
文摘In this paper,for design of large-scale electromagnetic problems,a novel robust global optimization algorithm based on surrogate models is presented.The proposed algorithm can automatically select a proper meta-model technique among multiple alternatives.In this paper,three representative meta-modeling techniques including ordinary Kriging,universal Kriging,and response surface method with multi-quadratic radial basis functions are applied.In each optimization iteration,the above three models are used for parallel calculation.The proposed hybrid surrogate model optimization algorithm synthesizes advantages of these different meta-models.Without verification of a specific meta-model,a suitable one for the engineering problem to be analyzed is automatically selected.Therefore,the proposed algorithm intends to make a better trade-off between numerical efficiency and searching accuracy for solving engineering problems,which are characterized by stronger non-linearity,higher complexity,non-convex feasible region,and expensive performance analysis.
文摘Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which we assess the outcome of optimization.Since accurate,high fidelity models are typically time consuming and computationally expensive,comprehensive evaluations can be conducted only if an efficient framework is available.Furthermore,informed decisions of the model/hardware's overall performance rely on an adequate understanding of the global,not local,sensitivity of the individual design variables on the objectives.The surrogate-based approach,which involves approximating the objectives as continuous functions of design variables from limited data,offers a rational framework to reduce the number of important input variables,i.e.,the dimension of a design or modeling space.In this paper,we review the fundamental issues that arise in surrogate-based analysis and optimization,highlighting concepts,methods,techniques,as well as modeling implications for mechanics problems.To aid the discussions of the issues involved,we summarize recent efforts in investigating cryogenic cavitating flows,active flow control based on dielectric barrier discharge concepts,and lithium(Li)-ion batteries.It is also stressed that many multi-scale mechanics problems can naturally benefit from the surrogate approach for "scale bridging."
基金supported by the National Natural Science Foundation of China (51907129)Project Supported by Department of Science and Technology of Liaoning Province (2021-MS-236)。
文摘In order to obtain better torque performance of high-speed interior permanent magnet motor(HSIPMM) and solve the problem that electromagnetic optimization design is seriously limited by its mechanical strength, a complete optimization design method is proposed in this paper. The object of optimization design is a 15 kW、20000 r/min HSIPMM whose permanent magnets in rotor is segmented. Eight structural dimensions are selected as its optimization variables. After design of experiment(DOE), multiple surrogate models are fitted, a set of surrogate models with minimum error is selected by using error evaluation indexes to optimize, the NSGA-II algorithm is used to get the optimal solution. The optimal solution is verified by load test on a 15 kW, 20000 r/min HSIPMM prototype. This paper can be used as a reference for the optimization design of HSIPMM.
基金Project supported by the National Natural Science Foundation of China(Nos.12272211,12072181,12121002)。
文摘Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction method.This makes the accuracy of the surrogate model highly dependent on the experience of users and affects the accuracy of IMU methods.Therefore,an improved IMU method via the adaptive Kriging models is proposed.This method transforms the objective function of the IMU problem into two deterministic global optimization problems about the upper bound and the interval diameter through universal grey numbers.These optimization problems are addressed through the adaptive Kriging models and the particle swarm optimization(PSO)method to quantify the uncertain parameters,and the IMU is accomplished.During the construction of these adaptive Kriging models,the sample space is gridded according to sensitivity information.Local sampling is then performed in key subspaces based on the maximum mean square error(MMSE)criterion.The interval division coefficient and random sampling coefficient are adaptively adjusted without human interference until the model meets accuracy requirements.The effectiveness of the proposed method is demonstrated by a numerical example of a three-degree-of-freedom mass-spring system and an experimental example of a butted cylindrical shell.The results show that the updated results of the interval model are in good agreement with the experimental results.
文摘Characterization of unknown groundwater contaminant sources is an important but difficult step in effective groundwater management. The difficulties arise mainly due to the time of contaminant detection which usually happens a long time after the start of contaminant source(s) activities. Usually, limited information is available which also can be erroneous. This study utilizes Self-Organizing Map (SOM) and Gaussian Process Regression (GPR) algorithms to develop surrogate models that can approximate the complex flow and transport processes in a contaminated aquifer. The important feature of these developed surrogate models is that unlike the previous methods, they can be applied independently of any linked optimization model solution for characterizing of unknown groundwater contaminant sources. The performance of the developed surrogate models is evaluated for source characterization in an experimental contaminated aquifer site within the heterogeneous sand aquifer, located at the Botany Basin, New South Wales, Australia. In this study, the measured contaminant concentrations and hydraulic conductivity values are assumed to contain random errors. Simulated responses of the aquifer to randomly specified contamination stresses as simulated by using a three-dimensional numerical simulation model are utilized for initial training of the surrogate models. The performance evaluation results obtained by using different surrogate models are also compared. The evaluation results demonstrate the different capabilities of the developed surrogate models. These capabilities lead to development of an efficient methodology for source characterization based on utilizing the trained and tested surrogate models in an inverse mode. The obtained results are satisfactory and show the potential applicability of the SOM and GPR-based surrogate models for unknown groundwater contaminant source characterization in an inverse mode.
文摘A new algorithm for the detection of sleep spindles from human sleep EEG with surrogate data approach is presented. Surrogate data ap-proach is the state of the art technique for nonlinear spectral analysis. In this paper, by developing autoregressive (AR) models on short segment of the EEG is described as a superposition of harmonic oscillating with damping and frequency in time. Sleep spindle events are detected, whenever the damping of one or more frequencies falls below a prede-fined threshold. Based on a surrogate data, a method was proposed to test the hypothesis that the original data were generated by a linear Gaussian process. This method was tested on human sleep EEG signal. The algorithm work well for the detection of sleep spindles and in addition the analysis reveals the alpha and beta band activities in EEG. The rigorous statistical framework proves essential in establishing these results.
文摘The impact of global warming on the aridity in South America (SA) is investigated. For this purpose, the methodology for generating surrogate climate-change scenarios with a RCM is employed. For the present climate (CTRL) the RCM is initialized with and driven by ECMWF/ERA-Interim reanalysis data. Two aridity indices are used: the Budyko and the UNEP indices. The results for the CTR are in agreement with other model studies which indicate future warming;rainfall increases in southeastern South America, Ecuador and Peru and decreases in the central and eastern Amazon. In general the model reproduces the aridity in the continent compared with the observed data for both indices. The distribution of aridity over SA in surrogate climate-change scenario shows an increase of the dryness in the continent. Over Amazonia the aridity increases 23.9% (for the UNEP index) and 3.1% (for the Budyko index), suggesting that portions of the Amazonia forest are replaced by dry land area. The semi-arid zone over northeast Brazil expands westward, attaining the interior of north Brazil. In this region the aridity increases 20% (for the UNEP index) and 0.6% (for the Budyko index) indicating that areas of humid regime may be occupied by areas with dry land regime. The RCM was also integrated driven by the AOGCM ECHAM5/MPI-OM for the reference climate (CTRL2) and under A1B SRES scenario. The results for the present-day climate are similar in CTRL2 and CTRL, and are in agreement with CRU data. The distribution of the aridity for the present climate seems to be better represented in CTRL using both Budyko and UNEP indices. The changes in aridity (future climate minus control) are higher in the run forced by the A1B SRES scenario. Although the UNEP and Budyko indices show potentialities and limitations to represent the aridity distribution over SA, the changes in aridity due to a pseudo-scenario of global warming are higher using the UNEP index.