The paper builds a multi-rigid-body model of human with a 4-rigid-body foot in the 3D CAD software Solidworks, based on human anatomy. By controlling the rotation of the ankle and major joints of human body while walk...The paper builds a multi-rigid-body model of human with a 4-rigid-body foot in the 3D CAD software Solidworks, based on human anatomy. By controlling the rotation of the ankle and major joints of human body while walking, the Kinematic simulation was performed in the dynamics simulation software ADAMS. The paper analyzes the simulate results and points out deficiencies in the current work and the direction of research efforts in future.展开更多
Impact dynamics of multi-rigid-body systems with joint friction is considered. Based on the traditional approximate assumption dealing with impact problem, a general numerical method called the sliding state stepping ...Impact dynamics of multi-rigid-body systems with joint friction is considered. Based on the traditional approximate assumption dealing with impact problem, a general numerical method called the sliding state stepping algorithm is introduced. This method can avoid difficulties in solving differential equations with variable scale and its result can avoid energy inconsistency before and after impact from considering complexily of tangential sliding mode. An example is given to describe details using this algorithm.展开更多
The orthogonality of eigenvector is a precondition to compute the dynamic responses of linear multi-rigid-flexible-body system using the classical modal analysis method. For a linear multi-rigid-flexible-body system, ...The orthogonality of eigenvector is a precondition to compute the dynamic responses of linear multi-rigid-flexible-body system using the classical modal analysis method. For a linear multi-rigid-flexible-body system, the eigenfunction does not satisfy the orthogonality under ordinary meaning. A new concept--augmented eigenvector is introduced, which is used to overcome the orthogonality problem of eigenvectors of linear multi-rigid-flexible-body system. The constitution method and the orthogonality of augmented eigenvector are expatiated. After the orthogonality of augmented eigenvector is acquired, the coupling of coordinates in dynamics equations can be released, which makes it possible to analyze exactly the dynamic responses of linear multi-rigid-flexible-body system using the classical modal analysis method.展开更多
The differential equations for planar impacts reduce to an algebraic form, and can be easily solved. For three dimensional impacts with friction, there is no closed-form solution, and numerical integration is required...The differential equations for planar impacts reduce to an algebraic form, and can be easily solved. For three dimensional impacts with friction, there is no closed-form solution, and numerical integration is required due to the swerve behavior of tangential impulse during collisions. The dynamic governing equations in the impact process are built up in impulse space based on the Lagrangian equation in this paper. The coefficient of restitution defined by Poisson is used as the condition of impact termination. A valid nu- merical method for solving three-dimensional frictional impact of multi-rigid body system is established. The singular cases of tangential movement in sticking point are especially noticed and analyzed. Several examples are present to reveal the different kinds of tan- gential movement modes varied with the normal impulse during collision.展开更多
文摘The paper builds a multi-rigid-body model of human with a 4-rigid-body foot in the 3D CAD software Solidworks, based on human anatomy. By controlling the rotation of the ankle and major joints of human body while walking, the Kinematic simulation was performed in the dynamics simulation software ADAMS. The paper analyzes the simulate results and points out deficiencies in the current work and the direction of research efforts in future.
基金the National Natural Science Foundation of China(No.10532050)the Na-tional Science Fund for Distinguished Young Scholars(No.10625211)the Science Development Foundation of Shandong University of Science and Techonogy(No.05g017)
文摘Impact dynamics of multi-rigid-body systems with joint friction is considered. Based on the traditional approximate assumption dealing with impact problem, a general numerical method called the sliding state stepping algorithm is introduced. This method can avoid difficulties in solving differential equations with variable scale and its result can avoid energy inconsistency before and after impact from considering complexily of tangential sliding mode. An example is given to describe details using this algorithm.
文摘The orthogonality of eigenvector is a precondition to compute the dynamic responses of linear multi-rigid-flexible-body system using the classical modal analysis method. For a linear multi-rigid-flexible-body system, the eigenfunction does not satisfy the orthogonality under ordinary meaning. A new concept--augmented eigenvector is introduced, which is used to overcome the orthogonality problem of eigenvectors of linear multi-rigid-flexible-body system. The constitution method and the orthogonality of augmented eigenvector are expatiated. After the orthogonality of augmented eigenvector is acquired, the coupling of coordinates in dynamics equations can be released, which makes it possible to analyze exactly the dynamic responses of linear multi-rigid-flexible-body system using the classical modal analysis method.
基金the National Natural Science Foundation of China (Grant Nos. 10272002, 10502009 , 60334030) the Natural Science Foundation of Beijing (Grant No. 1062007).
文摘The differential equations for planar impacts reduce to an algebraic form, and can be easily solved. For three dimensional impacts with friction, there is no closed-form solution, and numerical integration is required due to the swerve behavior of tangential impulse during collisions. The dynamic governing equations in the impact process are built up in impulse space based on the Lagrangian equation in this paper. The coefficient of restitution defined by Poisson is used as the condition of impact termination. A valid nu- merical method for solving three-dimensional frictional impact of multi-rigid body system is established. The singular cases of tangential movement in sticking point are especially noticed and analyzed. Several examples are present to reveal the different kinds of tan- gential movement modes varied with the normal impulse during collision.