Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network mode...Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.展开更多
This paper reports a new three-dimensional autonomous chaotic system. It contains six control parameters and three nonlinear terms. Two cross-product terms are respectively in two equations. And one square term is in ...This paper reports a new three-dimensional autonomous chaotic system. It contains six control parameters and three nonlinear terms. Two cross-product terms are respectively in two equations. And one square term is in the third equation. Basic dynamic properties of the new system are investigated by means of theoretical analysis, numerical simulation, sensitivity to initial, power spectrum, Lyapunov exponent, and Poincar~ diagrams. The dynamic properties affected by variable parameters are also analysed. Finally, the chaotic system is simulated by circuit. The results verify the existence and implementation of the system.展开更多
On August 30, 2020, a high-intensity storm that dropped 45.4 mm of rain in 5 hours hit the Heixiluo basin and triggered a landslide-generated debris flow event, causing fatalities and damage. The original source of th...On August 30, 2020, a high-intensity storm that dropped 45.4 mm of rain in 5 hours hit the Heixiluo basin and triggered a landslide-generated debris flow event, causing fatalities and damage. The original source of the debris flow was a large slope collapse on a steep hillside. The fallen debris mass was enlarged through sediment entrainment and slope collapse and ultimately buried a bridge at the gully entrance. Approximately 6.9×10;m;of material, including sediments and collapsed slope deposits in the gullies, was entrained, and the maximum erosion depth reached 17 m. A geomorphological analysis was initially performed based on a detailed field investigation to recognize the liquid and solid sources of the debris flow and the areas subjected to deposition and erosion. A map of the erosiondeposition distribution was obtained based on preand post-event DEMs. Using the rainfall estimated by the nearest rain gauge and the solid source estimated by the DEMs, runoff and debris flow propagation was simulated using a liquid-solid two-phase model that considers the effects of runoff and entrainment. The similarity between the estimated and simulated deposition-erosion volumes was satisfactory. The behaviour of debris flows captured in the simulation is broadly in line with the main features of the observed event.展开更多
Swiss lever escapement is almost always used in all mechanical watches, which is one of the most critical com- ponents in a mechanical watch. However, its dynamics has not been fully studied. This paper presents a met...Swiss lever escapement is almost always used in all mechanical watches, which is one of the most critical com- ponents in a mechanical watch. However, its dynamics has not been fully studied. This paper presents a method for dy- namics analysis and simulation of the Swiss level escapement. First, the Swiss lever escapement mechanism is introduced and its motion in a half-period is divided into four sections. Then the dynamics model is developed using impulsive differ- ential equations and the simulation result is obtained by MATIAB. A watch called Seiko7OO9a is taken as an example. The simulation result shows the dynamic behavior in terms of the relationship among displacement, angle and time. The spring constant and balance wheel inertia that governed the timekeeping accuracy are also discussed.展开更多
Vibration induced by shield construction can lead to liquefaction of saturated sand.Based on FLAC3D software,a numerical model of tunnel excavation is established and sinusoidal velocity loads with different frequenci...Vibration induced by shield construction can lead to liquefaction of saturated sand.Based on FLAC3D software,a numerical model of tunnel excavation is established and sinusoidal velocity loads with different frequencies are applied to the excavation face.The pattern of the excess pore pressure ratio with frequency,as well as the dynamic response of soil mass under different frequency loads before excavation,is analyzed.When the velocity sinusoidal wave acts on the excavation surface of the shield tunnel with a single sand layer,soil liquefaction occurs.However,the ranges and locations of soil liquefaction are different at different frequencies,which proves that the vibration frequency influences the liquefaction location of the stratum.For sand-clay composite strata with liquefiable layers,the influence of frequency on the liquefaction range is different from that of a single stratum.In the frequency range of 5-30 Hz,the liquefaction area and surface subsidence decrease with an increase in vibration frequency.The research results in this study can be used as a reference in engineering practice for tunneling liquefiable strata with a shield tunneling machine.展开更多
With the development of space science and technology,the on-orbit servicing technologies of spacecraft get more and more attention.According to the design criterion of existing spacecraft in orbit module replacement t...With the development of space science and technology,the on-orbit servicing technologies of spacecraft get more and more attention.According to the design criterion of existing spacecraft in orbit module replacement technology,the flexible swap device is designed and the dynamics simulation of institutions by the automatic dynamic analysis of mechanical systems(ADAMS)simulation software is analyzed.Throughout the analysis process,this paper studies the effect of collision force of flexible mechanism and provides a basis for the optimization of flexible plug agencies.展开更多
Bubble dynamics properties play a crucial and significant role in the design and optimization of gas-solid fluidized beds.In this study,the bubble dynamics properties of four B-particles were investigated in a quasi-t...Bubble dynamics properties play a crucial and significant role in the design and optimization of gas-solid fluidized beds.In this study,the bubble dynamics properties of four B-particles were investigated in a quasi-two-dimensional(quasi-2D)fluidized bed,including bubble equivalent diameter,bubble size distribution,average bubble density,bubble aspect ratio,bubble hold-up,bed expansion ratio,bubble radial position,and bubble velocity.The studies were performed by computational particle fluid dynamics(CPFD)numerical simulation and post-processed with digital image analysis(DIA)technique,at superficial gas velocities ranging from 2u_(mf) to 7u_(mf).The simulated results shown that the CPFD simulation combining with DIA technique post-processing could be used as a reliable method for simulating bubble dynamics properties in quasi-2D gas-solid fluidized beds.However,it seemed not desirable for the simulation of bubble motion near the air distributor at higher superficial gas velocity from the simulated average bubble density distribution.The superficial gas velocity significantly affected the bubble equivalent diameter and evolution,while it had little influence on bubble size distribution and bubble aspect ratio distribution for the same particles.Both time-averaged bubble hold-up and bed expansion ratio increased with the increase of superficial gas velocity.Two core-annular flow structures could be found in the fluidized bed for all cases.The average bubble rising velocity increased with the increasing bubble equivalent diameter.For bubble lateral movement,the smaller bubbles might be more susceptible,and superficial gas velocity had a little influence on the absolute lateral velocity of bubbles.The simulated results presented a valuable and novel approach for studying bubble dynamics properties.The comprehensive understanding of bubble dynamics behaviors in quasi-2D gas-solid fluidized beds would provide support in the design,operation,and optimization of gas-solid fluidized bed reactors.展开更多
S-N curve and fatigue parameters of 48MnV are obtained using small sample tests and staircase or up and down method, which paves the way for predicting fatigue life of crankshaft made of 48MnV. The fatigue life of the...S-N curve and fatigue parameters of 48MnV are obtained using small sample tests and staircase or up and down method, which paves the way for predicting fatigue life of crankshaft made of 48MnV. The fatigue life of the crankshaft of a six-cylinder engine is calculated using different damage models such as S-N method, normal strain approach, Smoth-Watson-Topper (SWT)Bannantine approach, shear strain approach, and Fatemi-Socie method based on dynamic simulation and finite element analysis (FEA) of crankshaft. The results indicate that the traditional calculation is conservative and the residual fatigue life of crankshaft is sufficient to maintain next life cycle if the crankshaft is remanufactured after its end of life.展开更多
As groundwater table declination is an important factor resulting in degradation of eco-environment in the Minqin Basin, China, it is significant to investigate and understand the groundwater table dynamics in this ar...As groundwater table declination is an important factor resulting in degradation of eco-environment in the Minqin Basin, China, it is significant to investigate and understand the groundwater table dynamics in this area. According to the physical and geographical conditions of the Minqin Basin, a hydrogeological conceptual model and a mathematical model were established, and the mathematical model was figured out by using Finite Element subsurface Flow system (Feflow). Accurate hydrogeological parameters were acquired, and the spatio-temporal distribution dynamics of groundwater table for 1983-2001 were also simulated. The model performed well with a correlation coefficient of 0.977 and a mean error of 0.9768 m. The inflow and outflow of the groundwater system were predicted by time series analysis, and the groundwater table dynamics for 2011 were further acquired. Gen- erally the groundwater table in the Minqin Basin would continue to decline. The groundwater table would decline during spring and summer irrigation, while it would rise during autumn-winter irrigation. The groundwater depression cones would expand with the increase of center depths. Therefore, regulatory measures should be taken to prevent the declination of groundwater table and improve the eco-environment of this area.展开更多
To investigate the cage stability of high-speed oil-lubricated angular contact ball bearings, a dynamic model of cages is developed on the basis of Gupta’s and Meeks’ work. The model can simulate the cage motion und...To investigate the cage stability of high-speed oil-lubricated angular contact ball bearings, a dynamic model of cages is developed on the basis of Gupta’s and Meeks’ work. The model can simulate the cage motion under oil lubrication with all six degrees of freedom. Particularly, the model introduces oil-film damping and hysteresis damping, and deals with the collision contact as imperfect elastic contact. In addition, the effects of inner ring rotational speed, the ratio of pocket clearance to guiding clearance and applied load on the cage stability are investigated by simulating the cage motion with the model. The results can provide a theoretical basis for the design of ball bearing parameters.展开更多
In this paper. :LDDA (Lagrangian Discontinuous Deformation Analysis) method is used in modeling thedynamic process of the M,=7.8 Tang shan earthquake on July 28, 1976 and obtain directly the dynamic and quasi static d...In this paper. :LDDA (Lagrangian Discontinuous Deformation Analysis) method is used in modeling thedynamic process of the M,=7.8 Tang shan earthquake on July 28, 1976 and obtain directly the dynamic and quasi static dislocations. shear stress drops, fracture velocities of the Tang shan earthquake fault. The simulation showsthai the slip history at each point of the fault is different. The displacement vectors at the concave side of the faultis greater than that of the convex side of the fault. The 'over shoot' of the fault slip is greatest at the middle part ofthe fault and attenuates to its ends. The rupture velocities of the fault from the epicenter towards south-west andtowards north-east are 3.08 m/s and 1. 18 m/s, respectively, the average one is 2.13 In/s. The maximum dynamic.m quasi-static dislocations are 7. 1 m and 6.2 m respectively. the average quasi-static one on the fault is 4.5 m.initial stress dynamic and quasi-static shear stress drops are 8.1 M Pa and 5.4 MP4 respectively, the averagequasi-static shear stress drop is 3.9 M Pa. We found that the rupture velocities and shear stress are related to theinitial stress states of the fault.展开更多
It is significant to research the impact resistance properties of hydraulic support due to its key support role in the fully mechanized mining face.However,it is difficult for the entire hydraulic support to implement...It is significant to research the impact resistance properties of hydraulic support due to its key support role in the fully mechanized mining face.However,it is difficult for the entire hydraulic support to implement the impact experiment underground and analyze the response characteristic.Therefore,a dynamic impact experiment for the entire hydraulic support was proposed in this paper,where a 1:2 reducedscale model of hydraulic support was designed and its response characteristics under dynamic impact load were analyzed.Firstly,a comprehensive monitoring scheme was proposed to achieve an effective monitoring for dynamic response of hydraulic support.Secondly,a multi-scale impact experiment was carried out for the entire hydraulic support and dynamic behaviors of hydraulic support under the multi-scale impact load were revealed by experimental data.Then a dynamic impact experiment of the entire hydraulic support was simulated in ADAMS with the same experiment conditions,and the experimental and simulation data were verified mutually.Finally,the characteristics of energy conversion and dissipation of the entire experiment system after impact were analyzed.The experiment results showed that the impact resistance properties of hydraulic support largely depended on the initial support conditions and different vertical rigidities affected energy distribution proportion of the entire support system.展开更多
An integrated dynamic model of China's deep ocean mining system is developed and the fast simulation analysis of its longitudinal reciprocating motion operation processes is achieved. The seafloor tracked miner is bu...An integrated dynamic model of China's deep ocean mining system is developed and the fast simulation analysis of its longitudinal reciprocating motion operation processes is achieved. The seafloor tracked miner is built as a three-dimensional single-body model with six-degree-of-freedom. The track-terrain interaction is modeled by partitioning the track-terrain interface into a certain number of mesh elements with three mutually perpendicular forces, including the normal force, the longitudinal shear force and the lateral shear force, acting on the center point of each mesh element. The hydrodynamic force of the miner is considered and applied. By considering the operational safety and collection efficiency, two new mining paths for the miner on the seafloor are proposed, which can be simulated with the established single-body dynamic model of the miner. The pipeline subsystem is built as a three-dimensional multi-body discrete element model, which is divided into rigid elements linked by flexible connectors. The flexible connector without mass is represented by six spring-damper elements. The external hydrodynamic forces of the ocean current from the longitudinal and lateral directions are both considered and modeled based on the Morison formula and applied to the mass center of each corresponding discrete rigid element. The mining ship is simplified and represented by a general kinematic point, whose heave motion induced by the ocean waves and the longitudinal and lateral towing motions are considered and applied. By integrating the single-body dynamic model of the miner and the multi-body discrete element dynamic model of the pipeline, and defining the kinematic equations of the mining ship, the integrated dynamic model of the total deep ocean mining system is formed. The longitudinal reciprocating motion operation modes of the total mining system, which combine the active straight-line and turning motions of the miner and the ship, and the passive towed motions of the pipeline, are proposed and simulated with the developed 3D dynamic model. Some critical simulation results are obtained and analyzed, such as the motion trajectories of key subsystems, the velocities of the buoyancy modules and the interaction forces between subsystems, which in a way can provide important theoretical basis and useful technical reference for the practical deep ocean mining system analysis, operation and control.展开更多
The phase transition of tungsten(W)under high pressures was investigated with molecular dynamics simulation.The structure was characterized in terms of the pair distribution function and the largest standard cluster a...The phase transition of tungsten(W)under high pressures was investigated with molecular dynamics simulation.The structure was characterized in terms of the pair distribution function and the largest standard cluster analysis(LSCA).It is found that under 40−100 GPa at a cooling rate of 0.1 K/ps a pure W melt first crystallizes into the body-centred cubic(BCC)crystal,and then transfers into the hexagonal close-packed(HCP)crystal through a series of BCC−HCP coexisting states.The dynamic factors may induce intermediate stages during the liquid−solid transition and the criss-cross grain boundaries cause lots of indistinguishable intermediate states,making the first-order BCC−HCP transition appear to be continuous.Furthermore,LSCA is shown to be a parameter-free method that can effectively analyze both ordered and disordered structures.Therefore,LSCA can detect more details about the evolution of the structure in such structure transition processes with rich intermediate structures.展开更多
By ANSYS, dynamic simulation analysis of rubber spring supporting equipment used in vibrating screen was made. The modal frequency, mode, and harmonic displacement under working frequency were obtained. Variation of r...By ANSYS, dynamic simulation analysis of rubber spring supporting equipment used in vibrating screen was made. The modal frequency, mode, and harmonic displacement under working frequency were obtained. Variation of rubber spring supporting equipment's dynamic performance was discussed first, which is under the condition of existing spring stiffness difference and exciting force bias. Also, the quantitative calculation formulas were given. The results indicate that the performance of vibrating screen is closely related with rubber spring supporting equipment's dynamic performance. Differences of springs' stiffness coefficients reduce the modal frequency reduced, decrease the dynamic stiffness, and increase vibration displacement. Exciting force bias induces a larger lateral displacement. When rubber springs' stiffness coefficients exist, differences and lateral force accounts for 5% in total exciting force; rubber spring supporting equipment's side swing is larger than 1 mm, exceeding the side swing limit.展开更多
A large caliber howitzer is a complex and cumbersome assembly. Understanding its dynamics and performance attributes' sensitivity to changes in its design parameters can be a very time-consuming and expensive exer...A large caliber howitzer is a complex and cumbersome assembly. Understanding its dynamics and performance attributes' sensitivity to changes in its design parameters can be a very time-consuming and expensive exercise, as such an effort requires highly sophisticated test rigs and platforms. However, the need of such an understanding is crucially important for system designers, users, and evaluators. Some of the key performance attributes of such a system are its vertical jump, forward motion, recoil displacement, and force transmitted to ground through tires and trail after the gun has been fired. In this work, we have developed a rigid body dynamics model for a representative howitzer system, and used relatively simple experimental procedures to estimate its principal design parameters. Such procedures can help in obviating the need of expensive experimental rigs, especially in early stages of the design cycle. These parameters were subsequently incorporated into our simulation model,which was then used to predict gun performance. Finally, we conducted several sensitivity studies to understand the influence of changes in various design parameters on system performance. Their results provide useful insights in our understanding of the functioning of the overall system.展开更多
API RP2AWSD is a design code in practice for design of jacket platforms in the Persian Gulf but is based on the Gulf of Mexico environmental condition. So for the sake of using this code for the Persian Gulf, it is be...API RP2AWSD is a design code in practice for design of jacket platforms in the Persian Gulf but is based on the Gulf of Mexico environmental condition. So for the sake of using this code for the Persian Gulf, it is better to perform a calibration based on this specific region. Analysis and design of jacket platforms based on API code are performed in a static manner and dynamic analysis is not recommended for such structures. Regarding the fact that the real behavior of the offshore jacket platforms is a dynamic behavior, so in this research, dynamic analysis for an offshore jacket platform in the Persian Gulf under extreme environmental condition is performed using random time domain method. Therefore, a new constructed offshore jacket platform in the Persian Gulf is selected and analyzed. Fifteen, 1-h storm, simulations for the water surface elevation is produced to capture the statistical properties of extreme sea condition. Time series of base shear and overturning moment are derived from both dynamic and static responses. By calculating the maximum dynamic amplification factor (DAF) from each simulation and fitting the collected data to Weibull distribution, the most probable maximum extreme (MPME) value for the DAF is achieved. Results show that a realistic value for DAF for this specific platform is 1.06, which is a notable value and is recommended to take into practice in design of fixed jacket platform in the Persian Gulf.展开更多
This paper presents a simulation technology of environmental impact for the building. By emergy analysis method,emergy costs of building( or construction engineering) can be calculated in the life cycle. It includes t...This paper presents a simulation technology of environmental impact for the building. By emergy analysis method,emergy costs of building( or construction engineering) can be calculated in the life cycle. It includes the engineering cost, environmental cost and social cost of building. Through integrating GIS technology with multi-agent technology,life cycle substance and energy metabolism of building( construction engineering) can be simulated and their environmental influence can be dynamically displayed. Based on the case study of entries works‘Sunny Inside'by Xiamen University in 2013 China International Solar Decathlon Competition,we discovered the changing pattern of surrounding environmental impact from waste streams of the zero-energy building and ordinary construction. The simulation results verified and showed the Odum principles of maximum power. This paper provides a new research perspective and integration approach for the environmental impact assessment in building and construction engineering. The result will help decision-making in design and construction engineering scheme.展开更多
Casino games can be classified in two main categories, i.e. skill games and gambling. Notably, the former refers to games whose outcome is affected by the strategies of players, the latter to those games whose outcome...Casino games can be classified in two main categories, i.e. skill games and gambling. Notably, the former refers to games whose outcome is affected by the strategies of players, the latter to those games whose outcome is completely random. For instance, lotteries are easily recognized as pure gambling, while some variants of Poker (e.g. Texas Hold’em) are usually considered as skill games. In both cases, the theory of probability constitutes the mathematical framework for studying their dynamics, despite their classification. Here, it is worth to consider that when games entail the competition between many players, the structure of interactions can acquire a relevant role. For instance, some games as Bingo are not characterized by this kind of interactions, while other games as Poker, show a network structure, i.e. players interact each other and have the opportunity to share or exchange information. In this paper, we analyze the dynamics of a population composed of two species, i.e. strong and weak agents. The former represents expert players, while the latter beginners, i.e. non-expert ones. Here, pair-wise interactions are based on a very simple game, whose outcome is affected by the nature of the involved agents. In doing so, expert agents have a higher probability to succeed when playing with weak agents, while the success probability is equal when two agents of the same kind face each other. Numerical simulations are performed considering a population arranged in different topologies like regular graphs and in scale-free networks. This choice allows to model dynamics that we might observe on online game platforms. Further aspects as the adaptability of agents are taken into account, e.g. the possibility to improve (i.e. to becomean expert). Results show that complex topologies represent a strong opportunity for experts and a risk for both kinds of agents.展开更多
A three-dimensional model of the uplift device of a sugarcane harvester was built up in Pro/Engineer. Simulation and evaluation of its motional and dynamic performance were performed with the automatic dynamic analysi...A three-dimensional model of the uplift device of a sugarcane harvester was built up in Pro/Engineer. Simulation and evaluation of its motional and dynamic performance were performed with the automatic dynamic analysis of mechanical system (ADAMS). ANSYS program was applied to the structural analysis of the model. A finite element analytic model was built up with the bottom-up methodology and was meshed. The default Block Lanczos method was used to work out the native frequency. The results indicate that the five lower modes-the transpotaion wheel, the left holding device, the right holding device, the left cutter disk, and the right cutter disk- and displacement of vibratory type only slightly affect the process of sugarcane harvester and harvesting quality. So it is advisable that the optimization of the static intensity other than the dynamic stiffness of uplift device be executed.展开更多
基金Project(51321065)supported by the Innovative Research Groups of the National Natural Science Foundation of ChinaProject(2013CB035904)supported by the National Basic Research Program of China(973 Program)Project(51439005)supported by the National Natural Science Foundation of China
文摘Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.
文摘This paper reports a new three-dimensional autonomous chaotic system. It contains six control parameters and three nonlinear terms. Two cross-product terms are respectively in two equations. And one square term is in the third equation. Basic dynamic properties of the new system are investigated by means of theoretical analysis, numerical simulation, sensitivity to initial, power spectrum, Lyapunov exponent, and Poincar~ diagrams. The dynamic properties affected by variable parameters are also analysed. Finally, the chaotic system is simulated by circuit. The results verify the existence and implementation of the system.
基金supported by the CAS Original Innovation Program(Grant No.ZDBS-LY-DQC039)National Natural Science Foundation of China(Grant No.41907241)+1 种基金Foundation of Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2021373)CAS“Light of West China”Program and the Foundation for Young Scientists of the Institute of Mountain Hazards and Environment,CAS(Grant No.SDS-QN-1901)。
文摘On August 30, 2020, a high-intensity storm that dropped 45.4 mm of rain in 5 hours hit the Heixiluo basin and triggered a landslide-generated debris flow event, causing fatalities and damage. The original source of the debris flow was a large slope collapse on a steep hillside. The fallen debris mass was enlarged through sediment entrainment and slope collapse and ultimately buried a bridge at the gully entrance. Approximately 6.9×10;m;of material, including sediments and collapsed slope deposits in the gullies, was entrained, and the maximum erosion depth reached 17 m. A geomorphological analysis was initially performed based on a detailed field investigation to recognize the liquid and solid sources of the debris flow and the areas subjected to deposition and erosion. A map of the erosiondeposition distribution was obtained based on preand post-event DEMs. Using the rainfall estimated by the nearest rain gauge and the solid source estimated by the DEMs, runoff and debris flow propagation was simulated using a liquid-solid two-phase model that considers the effects of runoff and entrainment. The similarity between the estimated and simulated deposition-erosion volumes was satisfactory. The behaviour of debris flows captured in the simulation is broadly in line with the main features of the observed event.
文摘Swiss lever escapement is almost always used in all mechanical watches, which is one of the most critical com- ponents in a mechanical watch. However, its dynamics has not been fully studied. This paper presents a method for dy- namics analysis and simulation of the Swiss level escapement. First, the Swiss lever escapement mechanism is introduced and its motion in a half-period is divided into four sections. Then the dynamics model is developed using impulsive differ- ential equations and the simulation result is obtained by MATIAB. A watch called Seiko7OO9a is taken as an example. The simulation result shows the dynamic behavior in terms of the relationship among displacement, angle and time. The spring constant and balance wheel inertia that governed the timekeeping accuracy are also discussed.
基金Research Grants for Returned Students of China under Grant No.2020-038the National Natural Science Foundation of China under Grant No.51408392。
文摘Vibration induced by shield construction can lead to liquefaction of saturated sand.Based on FLAC3D software,a numerical model of tunnel excavation is established and sinusoidal velocity loads with different frequencies are applied to the excavation face.The pattern of the excess pore pressure ratio with frequency,as well as the dynamic response of soil mass under different frequency loads before excavation,is analyzed.When the velocity sinusoidal wave acts on the excavation surface of the shield tunnel with a single sand layer,soil liquefaction occurs.However,the ranges and locations of soil liquefaction are different at different frequencies,which proves that the vibration frequency influences the liquefaction location of the stratum.For sand-clay composite strata with liquefiable layers,the influence of frequency on the liquefaction range is different from that of a single stratum.In the frequency range of 5-30 Hz,the liquefaction area and surface subsidence decrease with an increase in vibration frequency.The research results in this study can be used as a reference in engineering practice for tunneling liquefiable strata with a shield tunneling machine.
文摘With the development of space science and technology,the on-orbit servicing technologies of spacecraft get more and more attention.According to the design criterion of existing spacecraft in orbit module replacement technology,the flexible swap device is designed and the dynamics simulation of institutions by the automatic dynamic analysis of mechanical systems(ADAMS)simulation software is analyzed.Throughout the analysis process,this paper studies the effect of collision force of flexible mechanism and provides a basis for the optimization of flexible plug agencies.
基金the financial support provided by National Key R&D Project of China(grant No.2020YFB0606303)the technical supports received from Sam Clark in CPFD Software,LLC of USA,and from Hi-Key Technology Incorporated of China.
文摘Bubble dynamics properties play a crucial and significant role in the design and optimization of gas-solid fluidized beds.In this study,the bubble dynamics properties of four B-particles were investigated in a quasi-two-dimensional(quasi-2D)fluidized bed,including bubble equivalent diameter,bubble size distribution,average bubble density,bubble aspect ratio,bubble hold-up,bed expansion ratio,bubble radial position,and bubble velocity.The studies were performed by computational particle fluid dynamics(CPFD)numerical simulation and post-processed with digital image analysis(DIA)technique,at superficial gas velocities ranging from 2u_(mf) to 7u_(mf).The simulated results shown that the CPFD simulation combining with DIA technique post-processing could be used as a reliable method for simulating bubble dynamics properties in quasi-2D gas-solid fluidized beds.However,it seemed not desirable for the simulation of bubble motion near the air distributor at higher superficial gas velocity from the simulated average bubble density distribution.The superficial gas velocity significantly affected the bubble equivalent diameter and evolution,while it had little influence on bubble size distribution and bubble aspect ratio distribution for the same particles.Both time-averaged bubble hold-up and bed expansion ratio increased with the increase of superficial gas velocity.Two core-annular flow structures could be found in the fluidized bed for all cases.The average bubble rising velocity increased with the increasing bubble equivalent diameter.For bubble lateral movement,the smaller bubbles might be more susceptible,and superficial gas velocity had a little influence on the absolute lateral velocity of bubbles.The simulated results presented a valuable and novel approach for studying bubble dynamics properties.The comprehensive understanding of bubble dynamics behaviors in quasi-2D gas-solid fluidized beds would provide support in the design,operation,and optimization of gas-solid fluidized bed reactors.
基金This project is supported by National Natural Science Foundation of China(No.50235030).
文摘S-N curve and fatigue parameters of 48MnV are obtained using small sample tests and staircase or up and down method, which paves the way for predicting fatigue life of crankshaft made of 48MnV. The fatigue life of the crankshaft of a six-cylinder engine is calculated using different damage models such as S-N method, normal strain approach, Smoth-Watson-Topper (SWT)Bannantine approach, shear strain approach, and Fatemi-Socie method based on dynamic simulation and finite element analysis (FEA) of crankshaft. The results indicate that the traditional calculation is conservative and the residual fatigue life of crankshaft is sufficient to maintain next life cycle if the crankshaft is remanufactured after its end of life.
基金funded by the National Natural Science Foundation of China(50879071 and 40801103)the Ph.D.Programs Foundation of the Ministry of Education of China (200800271029)
文摘As groundwater table declination is an important factor resulting in degradation of eco-environment in the Minqin Basin, China, it is significant to investigate and understand the groundwater table dynamics in this area. According to the physical and geographical conditions of the Minqin Basin, a hydrogeological conceptual model and a mathematical model were established, and the mathematical model was figured out by using Finite Element subsurface Flow system (Feflow). Accurate hydrogeological parameters were acquired, and the spatio-temporal distribution dynamics of groundwater table for 1983-2001 were also simulated. The model performed well with a correlation coefficient of 0.977 and a mean error of 0.9768 m. The inflow and outflow of the groundwater system were predicted by time series analysis, and the groundwater table dynamics for 2011 were further acquired. Gen- erally the groundwater table in the Minqin Basin would continue to decline. The groundwater table would decline during spring and summer irrigation, while it would rise during autumn-winter irrigation. The groundwater depression cones would expand with the increase of center depths. Therefore, regulatory measures should be taken to prevent the declination of groundwater table and improve the eco-environment of this area.
基金Supported by National Key Technology Research and Development Program of China during the 11th Five-Year Plan Period (No. JPPT-115-189)National Natural Science Foundation of China (No. 50975033)
文摘To investigate the cage stability of high-speed oil-lubricated angular contact ball bearings, a dynamic model of cages is developed on the basis of Gupta’s and Meeks’ work. The model can simulate the cage motion under oil lubrication with all six degrees of freedom. Particularly, the model introduces oil-film damping and hysteresis damping, and deals with the collision contact as imperfect elastic contact. In addition, the effects of inner ring rotational speed, the ratio of pocket clearance to guiding clearance and applied load on the cage stability are investigated by simulating the cage motion with the model. The results can provide a theoretical basis for the design of ball bearing parameters.
文摘In this paper. :LDDA (Lagrangian Discontinuous Deformation Analysis) method is used in modeling thedynamic process of the M,=7.8 Tang shan earthquake on July 28, 1976 and obtain directly the dynamic and quasi static dislocations. shear stress drops, fracture velocities of the Tang shan earthquake fault. The simulation showsthai the slip history at each point of the fault is different. The displacement vectors at the concave side of the faultis greater than that of the convex side of the fault. The 'over shoot' of the fault slip is greatest at the middle part ofthe fault and attenuates to its ends. The rupture velocities of the fault from the epicenter towards south-west andtowards north-east are 3.08 m/s and 1. 18 m/s, respectively, the average one is 2.13 In/s. The maximum dynamic.m quasi-static dislocations are 7. 1 m and 6.2 m respectively. the average quasi-static one on the fault is 4.5 m.initial stress dynamic and quasi-static shear stress drops are 8.1 M Pa and 5.4 MP4 respectively, the averagequasi-static shear stress drop is 3.9 M Pa. We found that the rupture velocities and shear stress are related to theinitial stress states of the fault.
基金supported by National Key R&D Program of China for the 13th Five-Year Plan(No.2017YFC0603005)National Natural Science Foundation of China(Nos.51874174and 51834006)。
文摘It is significant to research the impact resistance properties of hydraulic support due to its key support role in the fully mechanized mining face.However,it is difficult for the entire hydraulic support to implement the impact experiment underground and analyze the response characteristic.Therefore,a dynamic impact experiment for the entire hydraulic support was proposed in this paper,where a 1:2 reducedscale model of hydraulic support was designed and its response characteristics under dynamic impact load were analyzed.Firstly,a comprehensive monitoring scheme was proposed to achieve an effective monitoring for dynamic response of hydraulic support.Secondly,a multi-scale impact experiment was carried out for the entire hydraulic support and dynamic behaviors of hydraulic support under the multi-scale impact load were revealed by experimental data.Then a dynamic impact experiment of the entire hydraulic support was simulated in ADAMS with the same experiment conditions,and the experimental and simulation data were verified mutually.Finally,the characteristics of energy conversion and dissipation of the entire experiment system after impact were analyzed.The experiment results showed that the impact resistance properties of hydraulic support largely depended on the initial support conditions and different vertical rigidities affected energy distribution proportion of the entire support system.
基金supported by the National Natural Science Foundation of China(Grant No.51105386)the National Deep-Sea Technology Project of Development and Research(Grant No.DYXM-115-04-02-01)the Fundamental Research Funds for the Central Universities(Grant No.2011QNZT058)
文摘An integrated dynamic model of China's deep ocean mining system is developed and the fast simulation analysis of its longitudinal reciprocating motion operation processes is achieved. The seafloor tracked miner is built as a three-dimensional single-body model with six-degree-of-freedom. The track-terrain interaction is modeled by partitioning the track-terrain interface into a certain number of mesh elements with three mutually perpendicular forces, including the normal force, the longitudinal shear force and the lateral shear force, acting on the center point of each mesh element. The hydrodynamic force of the miner is considered and applied. By considering the operational safety and collection efficiency, two new mining paths for the miner on the seafloor are proposed, which can be simulated with the established single-body dynamic model of the miner. The pipeline subsystem is built as a three-dimensional multi-body discrete element model, which is divided into rigid elements linked by flexible connectors. The flexible connector without mass is represented by six spring-damper elements. The external hydrodynamic forces of the ocean current from the longitudinal and lateral directions are both considered and modeled based on the Morison formula and applied to the mass center of each corresponding discrete rigid element. The mining ship is simplified and represented by a general kinematic point, whose heave motion induced by the ocean waves and the longitudinal and lateral towing motions are considered and applied. By integrating the single-body dynamic model of the miner and the multi-body discrete element dynamic model of the pipeline, and defining the kinematic equations of the mining ship, the integrated dynamic model of the total deep ocean mining system is formed. The longitudinal reciprocating motion operation modes of the total mining system, which combine the active straight-line and turning motions of the miner and the ship, and the passive towed motions of the pipeline, are proposed and simulated with the developed 3D dynamic model. Some critical simulation results are obtained and analyzed, such as the motion trajectories of key subsystems, the velocities of the buoyancy modules and the interaction forces between subsystems, which in a way can provide important theoretical basis and useful technical reference for the practical deep ocean mining system analysis, operation and control.
基金Projects(51661005,U1612442)supported by the National Natural Science Foundation of ChinaProject(QKHJC[2017]1025)supported by the Natural Science Foundation of Guizhou Province,ChinaProject(2018JJ3560)supported by the Natural Science Foundation of Hunan Province,China。
文摘The phase transition of tungsten(W)under high pressures was investigated with molecular dynamics simulation.The structure was characterized in terms of the pair distribution function and the largest standard cluster analysis(LSCA).It is found that under 40−100 GPa at a cooling rate of 0.1 K/ps a pure W melt first crystallizes into the body-centred cubic(BCC)crystal,and then transfers into the hexagonal close-packed(HCP)crystal through a series of BCC−HCP coexisting states.The dynamic factors may induce intermediate stages during the liquid−solid transition and the criss-cross grain boundaries cause lots of indistinguishable intermediate states,making the first-order BCC−HCP transition appear to be continuous.Furthermore,LSCA is shown to be a parameter-free method that can effectively analyze both ordered and disordered structures.Therefore,LSCA can detect more details about the evolution of the structure in such structure transition processes with rich intermediate structures.
文摘By ANSYS, dynamic simulation analysis of rubber spring supporting equipment used in vibrating screen was made. The modal frequency, mode, and harmonic displacement under working frequency were obtained. Variation of rubber spring supporting equipment's dynamic performance was discussed first, which is under the condition of existing spring stiffness difference and exciting force bias. Also, the quantitative calculation formulas were given. The results indicate that the performance of vibrating screen is closely related with rubber spring supporting equipment's dynamic performance. Differences of springs' stiffness coefficients reduce the modal frequency reduced, decrease the dynamic stiffness, and increase vibration displacement. Exciting force bias induces a larger lateral displacement. When rubber springs' stiffness coefficients exist, differences and lateral force accounts for 5% in total exciting force; rubber spring supporting equipment's side swing is larger than 1 mm, exceeding the side swing limit.
文摘A large caliber howitzer is a complex and cumbersome assembly. Understanding its dynamics and performance attributes' sensitivity to changes in its design parameters can be a very time-consuming and expensive exercise, as such an effort requires highly sophisticated test rigs and platforms. However, the need of such an understanding is crucially important for system designers, users, and evaluators. Some of the key performance attributes of such a system are its vertical jump, forward motion, recoil displacement, and force transmitted to ground through tires and trail after the gun has been fired. In this work, we have developed a rigid body dynamics model for a representative howitzer system, and used relatively simple experimental procedures to estimate its principal design parameters. Such procedures can help in obviating the need of expensive experimental rigs, especially in early stages of the design cycle. These parameters were subsequently incorporated into our simulation model,which was then used to predict gun performance. Finally, we conducted several sensitivity studies to understand the influence of changes in various design parameters on system performance. Their results provide useful insights in our understanding of the functioning of the overall system.
文摘API RP2AWSD is a design code in practice for design of jacket platforms in the Persian Gulf but is based on the Gulf of Mexico environmental condition. So for the sake of using this code for the Persian Gulf, it is better to perform a calibration based on this specific region. Analysis and design of jacket platforms based on API code are performed in a static manner and dynamic analysis is not recommended for such structures. Regarding the fact that the real behavior of the offshore jacket platforms is a dynamic behavior, so in this research, dynamic analysis for an offshore jacket platform in the Persian Gulf under extreme environmental condition is performed using random time domain method. Therefore, a new constructed offshore jacket platform in the Persian Gulf is selected and analyzed. Fifteen, 1-h storm, simulations for the water surface elevation is produced to capture the statistical properties of extreme sea condition. Time series of base shear and overturning moment are derived from both dynamic and static responses. By calculating the maximum dynamic amplification factor (DAF) from each simulation and fitting the collected data to Weibull distribution, the most probable maximum extreme (MPME) value for the DAF is achieved. Results show that a realistic value for DAF for this specific platform is 1.06, which is a notable value and is recommended to take into practice in design of fixed jacket platform in the Persian Gulf.
基金Sponsored by the National Natural Science Foundation of China(Grant No.71271180,71271065,71390522)the Program for New Century Excellent Talents in University(Grant No.NCET-11-0811)
文摘This paper presents a simulation technology of environmental impact for the building. By emergy analysis method,emergy costs of building( or construction engineering) can be calculated in the life cycle. It includes the engineering cost, environmental cost and social cost of building. Through integrating GIS technology with multi-agent technology,life cycle substance and energy metabolism of building( construction engineering) can be simulated and their environmental influence can be dynamically displayed. Based on the case study of entries works‘Sunny Inside'by Xiamen University in 2013 China International Solar Decathlon Competition,we discovered the changing pattern of surrounding environmental impact from waste streams of the zero-energy building and ordinary construction. The simulation results verified and showed the Odum principles of maximum power. This paper provides a new research perspective and integration approach for the environmental impact assessment in building and construction engineering. The result will help decision-making in design and construction engineering scheme.
文摘Casino games can be classified in two main categories, i.e. skill games and gambling. Notably, the former refers to games whose outcome is affected by the strategies of players, the latter to those games whose outcome is completely random. For instance, lotteries are easily recognized as pure gambling, while some variants of Poker (e.g. Texas Hold’em) are usually considered as skill games. In both cases, the theory of probability constitutes the mathematical framework for studying their dynamics, despite their classification. Here, it is worth to consider that when games entail the competition between many players, the structure of interactions can acquire a relevant role. For instance, some games as Bingo are not characterized by this kind of interactions, while other games as Poker, show a network structure, i.e. players interact each other and have the opportunity to share or exchange information. In this paper, we analyze the dynamics of a population composed of two species, i.e. strong and weak agents. The former represents expert players, while the latter beginners, i.e. non-expert ones. Here, pair-wise interactions are based on a very simple game, whose outcome is affected by the nature of the involved agents. In doing so, expert agents have a higher probability to succeed when playing with weak agents, while the success probability is equal when two agents of the same kind face each other. Numerical simulations are performed considering a population arranged in different topologies like regular graphs and in scale-free networks. This choice allows to model dynamics that we might observe on online game platforms. Further aspects as the adaptability of agents are taken into account, e.g. the possibility to improve (i.e. to becomean expert). Results show that complex topologies represent a strong opportunity for experts and a risk for both kinds of agents.
基金the National Natural Science Foundation (Grant No. 50365001),Guangxi Young Scientists’ Foundation (Grant No. Gui Qin Ke 0640013)PhD Startup Found-ation of Guangxi University of Technology (Project No. 500514).
文摘A three-dimensional model of the uplift device of a sugarcane harvester was built up in Pro/Engineer. Simulation and evaluation of its motional and dynamic performance were performed with the automatic dynamic analysis of mechanical system (ADAMS). ANSYS program was applied to the structural analysis of the model. A finite element analytic model was built up with the bottom-up methodology and was meshed. The default Block Lanczos method was used to work out the native frequency. The results indicate that the five lower modes-the transpotaion wheel, the left holding device, the right holding device, the left cutter disk, and the right cutter disk- and displacement of vibratory type only slightly affect the process of sugarcane harvester and harvesting quality. So it is advisable that the optimization of the static intensity other than the dynamic stiffness of uplift device be executed.