The growing development of the Internet of Things(IoT)is accelerating the emergence and growth of new IoT services and applications,which will result in massive amounts of data being generated,transmitted and pro-cess...The growing development of the Internet of Things(IoT)is accelerating the emergence and growth of new IoT services and applications,which will result in massive amounts of data being generated,transmitted and pro-cessed in wireless communication networks.Mobile Edge Computing(MEC)is a desired paradigm to timely process the data from IoT for value maximization.In MEC,a number of computing-capable devices are deployed at the network edge near data sources to support edge computing,such that the long network transmission delay in cloud computing paradigm could be avoided.Since an edge device might not always have sufficient resources to process the massive amount of data,computation offloading is significantly important considering the coop-eration among edge devices.However,the dynamic traffic characteristics and heterogeneous computing capa-bilities of edge devices challenge the offloading.In addition,different scheduling schemes might provide different computation delays to the offloaded tasks.Thus,offloading in mobile nodes and scheduling in the MEC server are coupled to determine service delay.This paper seeks to guarantee low delay for computation intensive applica-tions by jointly optimizing the offloading and scheduling in such an MEC system.We propose a Delay-Greedy Computation Offloading(DGCO)algorithm to make offloading decisions for new tasks in distributed computing-enabled mobile devices.A Reinforcement Learning-based Parallel Scheduling(RLPS)algorithm is further designed to schedule offloaded tasks in the multi-core MEC server.With an offloading delay broadcast mechanism,the DGCO and RLPS cooperate to achieve the goal of delay-guarantee-ratio maximization.Finally,the simulation results show that our proposal can bound the end-to-end delay of various tasks.Even under slightly heavy task load,the delay-guarantee-ratio given by DGCO-RLPS can still approximate 95%,while that given by benchmarked algorithms is reduced to intolerable value.The simulation results are demonstrated the effective-ness of DGCO-RLPS for delay guarantee in MEC.展开更多
Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the exis...Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the existing spacetimenetwork (STN) model for the cooperative scheduling problem of yard cranes (YCs) and automated guidedvehicles (AGVs) and extend its application scenarios, two improved STN models are proposed. The flow balanceconstraints in the original model are decomposed, and the trajectory constraints of YCs and AGVs are added toacquire the model STN_A. The coupling constraint in STN_A is updated, and buffer constraints are added toSTN_A so that themodel STN_B is built.As the size of the problem increases, the solution speed of CPLEX becomesthe bottleneck. So a heuristic method containing three groups of heuristic rules is designed to obtain a near-optimalsolution quickly. Experimental results showthat the computation time of STN_A is shortened by 49.47% on averageand the gap is reduced by 1.69% on average compared with the original model. The gap between the solution ofthe heuristic rules and the solution of CPLEX is less than 3.50%, and the solution time of the heuristic rules is onaverage 99.85% less than the solution time of CPLEX. Compared with STN_A, the computation time for solvingSTN_B increases by 58.93% on average.展开更多
With the advancement of the manufacturing industry,the investigation of the shop floor scheduling problem has gained increasing importance.The Job shop Scheduling Problem(JSP),as a fundamental scheduling problem,holds...With the advancement of the manufacturing industry,the investigation of the shop floor scheduling problem has gained increasing importance.The Job shop Scheduling Problem(JSP),as a fundamental scheduling problem,holds considerable theoretical research value.However,finding a satisfactory solution within a given time is difficult due to the NP-hard nature of the JSP.A co-operative-guided ant colony optimization algorithm with knowledge learning(namely KLCACO)is proposed to address this difficulty.This algorithm integrates a data-based swarm intelligence optimization algorithm with model-based JSP schedule knowledge.A solution construction scheme based on scheduling knowledge learning is proposed for KLCACO.The problem model and algorithm data are fused by merging scheduling and planning knowledge with individual scheme construction to enhance the quality of the generated individual solutions.A pheromone guidance mechanism,which is based on a collaborative machine strategy,is used to simplify information learning and the problem space by collaborating with different machine processing orders.Additionally,the KLCACO algorithm utilizes the classical neighborhood structure to optimize the solution,expanding the search space of the algorithm and accelerating its convergence.The KLCACO algorithm is compared with other highperformance intelligent optimization algorithms on four public benchmark datasets,comprising 48 benchmark test cases in total.The effectiveness of the proposed algorithm in addressing JSPs is validated,demonstrating the feasibility of the KLCACO algorithm for knowledge and data fusion in complex combinatorial optimization problems.展开更多
This work aims to resolve the distributed heterogeneous permutation flow shop scheduling problem(DHPFSP)with minimizing makespan and total energy consumption(TEC).To solve this NP-hard problem,this work proposed a com...This work aims to resolve the distributed heterogeneous permutation flow shop scheduling problem(DHPFSP)with minimizing makespan and total energy consumption(TEC).To solve this NP-hard problem,this work proposed a competitive and cooperative-based strength Pareto evolutionary algorithm(CCSPEA)which contains the following features:1)An initialization based on three heuristic rules is developed to generate a population with great diversity and convergence.2)A comprehensive metric combining convergence and diversity metrics is used to better represent the heuristic information of a solution.3)A competitive selection is designed which divides the population into a winner and a loser swarms based on the comprehensive metric.4)A cooperative evolutionary schema is proposed for winner and loser swarms to accelerate the convergence of global search.5)Five local search strategies based on problem knowledge are designed to improve convergence.6)Aproblem-based energy-saving strategy is presented to reduce TEC.Finally,to evaluate the performance of CCSPEA,it is compared to four state-of-art and run on 22 instances based on the Taillard benchmark.The numerical experiment results demonstrate that 1)the proposed comprehensive metric can efficiently represent the heuristic information of each solution to help the later step divide the population.2)The global search based on the competitive and cooperative schema can accelerate loser solutions convergence and further improve the winner’s exploration.3)The problembased initialization,local search,and energy-saving strategies can efficiently reduce the makespan and TEC.4)The proposed CCSPEA is superior to the state-of-art for solving DHPFSP.展开更多
Cloud computing has taken over the high-performance distributed computing area,and it currently provides on-demand services and resource polling over the web.As a result of constantly changing user service demand,the ...Cloud computing has taken over the high-performance distributed computing area,and it currently provides on-demand services and resource polling over the web.As a result of constantly changing user service demand,the task scheduling problem has emerged as a critical analytical topic in cloud computing.The primary goal of scheduling tasks is to distribute tasks to available processors to construct the shortest possible schedule without breaching precedence restrictions.Assignments and schedules of tasks substantially influence system operation in a heterogeneous multiprocessor system.The diverse processes inside the heuristic-based task scheduling method will result in varying makespan in the heterogeneous computing system.As a result,an intelligent scheduling algorithm should efficiently determine the priority of every subtask based on the resources necessary to lower the makespan.This research introduced a novel efficient scheduling task method in cloud computing systems based on the cooperation search algorithm to tackle an essential task and schedule a heterogeneous cloud computing problem.The basic idea of thismethod is to use the advantages of meta-heuristic algorithms to get the optimal solution.We assess our algorithm’s performance by running it through three scenarios with varying numbers of tasks.The findings demonstrate that the suggested technique beats existingmethods NewGenetic Algorithm(NGA),Genetic Algorithm(GA),Whale Optimization Algorithm(WOA),Gravitational Search Algorithm(GSA),and Hybrid Heuristic and Genetic(HHG)by 7.9%,2.1%,8.8%,7.7%,3.4%respectively according to makespan.展开更多
When an emergency happens, the scheduling of relief resources to multiple emergency locations is a realistic and intricate problem, especially when the available resources are limited. A non-cooperative games model an...When an emergency happens, the scheduling of relief resources to multiple emergency locations is a realistic and intricate problem, especially when the available resources are limited. A non-cooperative games model and an algorithm for scheduling of relief resources are presented. In the model, the players correspond to the multiple emergency locations, strategies correspond to all resources scheduling and the payoff of each emergency location corresponds to the reciprocal of its scheduling cost. Thus, the optimal results are determined by the Nash equilibrium point of this game. Then the iterative algorithm is introduced to seek the Nash equilibrium point. Simulation and analysis are given to demonstrate the feasibility and availability of the model.展开更多
Aiming at the flexible manufacturing system with multi-machining and multi-assembly equipment, a new scheduling algorithm is proposed to decompose the assembly structure of the products, thus obtaining simple scheduli...Aiming at the flexible manufacturing system with multi-machining and multi-assembly equipment, a new scheduling algorithm is proposed to decompose the assembly structure of the products, thus obtaining simple scheduling problems and forming the cOrrespOnding agents. Then, the importance and the restriction of each agent are cOnsidered, to obtain an order of simple scheduling problems based on the cooperation game theory. With this order, the scheduling of sub-questions is implemented in term of rules, and the almost optimal scheduling results for meeting the restriction can be obtained. Experimental results verify the effectiveness of the proposed scheduling algorithm.展开更多
An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to...An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to determine the splitting of jobs and the sequence of the sub-lots simultaneously. Based on the encoding scheme,three kinds of neighborhoods are developed for generating new solutions. To well balance the exploitation and exploration,two main search procedures are designed within the evolutionary search framework of the iFOA,including the neighborhood-based search( smell-vision-based search) and the global cooperation-based search. Finally,numerical testing results are provided,and the comparisons demonstrate the effectiveness of the proposed iFOA for solving the LSFSP.展开更多
Nowadays,emergency accidents could happen at any time.The accidents occur unpredictably and the accidents requirements are diversely.The accidents happen in a dynamic environment and the resource should be cooperative...Nowadays,emergency accidents could happen at any time.The accidents occur unpredictably and the accidents requirements are diversely.The accidents happen in a dynamic environment and the resource should be cooperative to solve the accidents.Most methods are focusing on minimizing the casualties and property losses in a static environment.However,they are lack in considering the dynamic and unpredictable event handling.In this paper,we propose a representative environmental model in representation of emergency and dynamic resource allocation model,and an adaptive mathematical model based on Genetic Algorithm(GA)to generate an optimal set of solution domain.The experimental results show that the proposed algorithm can get a set of better candidate solutions.展开更多
A cooperative game theoretical approach is taken to production and transportation coordinated scheduling problems of two-machine flow-shop(TFS-PTCS problems)with an interstage transporter.The authors assume that there...A cooperative game theoretical approach is taken to production and transportation coordinated scheduling problems of two-machine flow-shop(TFS-PTCS problems)with an interstage transporter.The authors assume that there is an initial scheduling order for processing jobs on the machines.The cooperative sequencing game models associated with TFS-PTCS problems are established with jobs as players and the maximal cost savings of a coalition as its value.The properties of cooperative games under two different types of admissible rearrangements are analysed.For TFS-PTCS problems with identical processing time,it is proved that,the corresponding games areσ_(0)-component additive and convex under one admissible rearrangement.The Shapley value gives a core allocation,and is provided in a computable form.Under the other admissible rearrangement,the games neither need to beσ_(0)-component additive nor convex,and an allocation rule of modified Shapley value is designed.The properties of the cooperative games are analysed by a counterexample for general problems.展开更多
针对原油调度过程存在的资源规模庞大、约束条件复杂、多时间尺度决策衔接困难等问题,提出一种基于多时间尺度协同的进化算法(MTCEA)。首先,根据炼油企业的规模结构和实际需求,建立了一种大规模多时间尺度原油调度优化模型,该模型由面...针对原油调度过程存在的资源规模庞大、约束条件复杂、多时间尺度决策衔接困难等问题,提出一种基于多时间尺度协同的进化算法(MTCEA)。首先,根据炼油企业的规模结构和实际需求,建立了一种大规模多时间尺度原油调度优化模型,该模型由面向资源的中长期调度模型和面向操作的短期调度模型构成,通过引入原油资源动态分组策略,实现原油资源的合理配置,以满足不同的调度规模、多时间尺度的特征和精细化生产的要求;其次,为促进不同时间尺度调度决策的融合衔接,设计基于多时间尺度协同的进化算法,并针对不同时间尺度调度模型中的连续决策变量构造子问题进行求解,以实现不同时间尺度调度决策之间的协同优化;最后,在3个实际工业案例进行了算法性能验证。结果表明,与3种具有代表性的大规模进化优化算法(即竞争性粒子群优化算法(CSO)、基于多轨迹搜索的自适应差分进化算法(SaDE-MMTS)和基于混合模型的进化策略(MMES))以及3种高性能混合整数非线性规划(MINLP)数学求解器(即ANTIGONE(Algorithms for coNTinuous/Integer Global Optimization of Nonlinear Equations)、SCIP(Solving Constraint Integer Programs)和SHOT(Supporting Hyperplane Optimization Toolkit))相比,MTCEA的求解最优性指标和稳定性指标分别提高了30%和25%以上。这些显著的性能提升验证了MTCEA在大规模多时间尺度原油调度决策中的实际应用价值和优势。展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 61901128,62273109the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(21KJB510032).
文摘The growing development of the Internet of Things(IoT)is accelerating the emergence and growth of new IoT services and applications,which will result in massive amounts of data being generated,transmitted and pro-cessed in wireless communication networks.Mobile Edge Computing(MEC)is a desired paradigm to timely process the data from IoT for value maximization.In MEC,a number of computing-capable devices are deployed at the network edge near data sources to support edge computing,such that the long network transmission delay in cloud computing paradigm could be avoided.Since an edge device might not always have sufficient resources to process the massive amount of data,computation offloading is significantly important considering the coop-eration among edge devices.However,the dynamic traffic characteristics and heterogeneous computing capa-bilities of edge devices challenge the offloading.In addition,different scheduling schemes might provide different computation delays to the offloaded tasks.Thus,offloading in mobile nodes and scheduling in the MEC server are coupled to determine service delay.This paper seeks to guarantee low delay for computation intensive applica-tions by jointly optimizing the offloading and scheduling in such an MEC system.We propose a Delay-Greedy Computation Offloading(DGCO)algorithm to make offloading decisions for new tasks in distributed computing-enabled mobile devices.A Reinforcement Learning-based Parallel Scheduling(RLPS)algorithm is further designed to schedule offloaded tasks in the multi-core MEC server.With an offloading delay broadcast mechanism,the DGCO and RLPS cooperate to achieve the goal of delay-guarantee-ratio maximization.Finally,the simulation results show that our proposal can bound the end-to-end delay of various tasks.Even under slightly heavy task load,the delay-guarantee-ratio given by DGCO-RLPS can still approximate 95%,while that given by benchmarked algorithms is reduced to intolerable value.The simulation results are demonstrated the effective-ness of DGCO-RLPS for delay guarantee in MEC.
基金National Natural Science Foundation of China(62073212).
文摘Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the existing spacetimenetwork (STN) model for the cooperative scheduling problem of yard cranes (YCs) and automated guidedvehicles (AGVs) and extend its application scenarios, two improved STN models are proposed. The flow balanceconstraints in the original model are decomposed, and the trajectory constraints of YCs and AGVs are added toacquire the model STN_A. The coupling constraint in STN_A is updated, and buffer constraints are added toSTN_A so that themodel STN_B is built.As the size of the problem increases, the solution speed of CPLEX becomesthe bottleneck. So a heuristic method containing three groups of heuristic rules is designed to obtain a near-optimalsolution quickly. Experimental results showthat the computation time of STN_A is shortened by 49.47% on averageand the gap is reduced by 1.69% on average compared with the original model. The gap between the solution ofthe heuristic rules and the solution of CPLEX is less than 3.50%, and the solution time of the heuristic rules is onaverage 99.85% less than the solution time of CPLEX. Compared with STN_A, the computation time for solvingSTN_B increases by 58.93% on average.
基金supported by the National Natural Science Foundation of China(Nos.62366003 and 62066019)the Natural Science Foundation of Jiangxi Province(No.20232BAB202046)the Graduate Innovation Foundation of Jiangxi University of Science and Technology(No.XY2022-S040).
文摘With the advancement of the manufacturing industry,the investigation of the shop floor scheduling problem has gained increasing importance.The Job shop Scheduling Problem(JSP),as a fundamental scheduling problem,holds considerable theoretical research value.However,finding a satisfactory solution within a given time is difficult due to the NP-hard nature of the JSP.A co-operative-guided ant colony optimization algorithm with knowledge learning(namely KLCACO)is proposed to address this difficulty.This algorithm integrates a data-based swarm intelligence optimization algorithm with model-based JSP schedule knowledge.A solution construction scheme based on scheduling knowledge learning is proposed for KLCACO.The problem model and algorithm data are fused by merging scheduling and planning knowledge with individual scheme construction to enhance the quality of the generated individual solutions.A pheromone guidance mechanism,which is based on a collaborative machine strategy,is used to simplify information learning and the problem space by collaborating with different machine processing orders.Additionally,the KLCACO algorithm utilizes the classical neighborhood structure to optimize the solution,expanding the search space of the algorithm and accelerating its convergence.The KLCACO algorithm is compared with other highperformance intelligent optimization algorithms on four public benchmark datasets,comprising 48 benchmark test cases in total.The effectiveness of the proposed algorithm in addressing JSPs is validated,demonstrating the feasibility of the KLCACO algorithm for knowledge and data fusion in complex combinatorial optimization problems.
基金supported by the National Natural Science Foundation of China under Grant Nos.62076225 and 62122093the Open Project of Xiangjiang Laboratory under Grant No 22XJ02003.
文摘This work aims to resolve the distributed heterogeneous permutation flow shop scheduling problem(DHPFSP)with minimizing makespan and total energy consumption(TEC).To solve this NP-hard problem,this work proposed a competitive and cooperative-based strength Pareto evolutionary algorithm(CCSPEA)which contains the following features:1)An initialization based on three heuristic rules is developed to generate a population with great diversity and convergence.2)A comprehensive metric combining convergence and diversity metrics is used to better represent the heuristic information of a solution.3)A competitive selection is designed which divides the population into a winner and a loser swarms based on the comprehensive metric.4)A cooperative evolutionary schema is proposed for winner and loser swarms to accelerate the convergence of global search.5)Five local search strategies based on problem knowledge are designed to improve convergence.6)Aproblem-based energy-saving strategy is presented to reduce TEC.Finally,to evaluate the performance of CCSPEA,it is compared to four state-of-art and run on 22 instances based on the Taillard benchmark.The numerical experiment results demonstrate that 1)the proposed comprehensive metric can efficiently represent the heuristic information of each solution to help the later step divide the population.2)The global search based on the competitive and cooperative schema can accelerate loser solutions convergence and further improve the winner’s exploration.3)The problembased initialization,local search,and energy-saving strategies can efficiently reduce the makespan and TEC.4)The proposed CCSPEA is superior to the state-of-art for solving DHPFSP.
文摘Cloud computing has taken over the high-performance distributed computing area,and it currently provides on-demand services and resource polling over the web.As a result of constantly changing user service demand,the task scheduling problem has emerged as a critical analytical topic in cloud computing.The primary goal of scheduling tasks is to distribute tasks to available processors to construct the shortest possible schedule without breaching precedence restrictions.Assignments and schedules of tasks substantially influence system operation in a heterogeneous multiprocessor system.The diverse processes inside the heuristic-based task scheduling method will result in varying makespan in the heterogeneous computing system.As a result,an intelligent scheduling algorithm should efficiently determine the priority of every subtask based on the resources necessary to lower the makespan.This research introduced a novel efficient scheduling task method in cloud computing systems based on the cooperation search algorithm to tackle an essential task and schedule a heterogeneous cloud computing problem.The basic idea of thismethod is to use the advantages of meta-heuristic algorithms to get the optimal solution.We assess our algorithm’s performance by running it through three scenarios with varying numbers of tasks.The findings demonstrate that the suggested technique beats existingmethods NewGenetic Algorithm(NGA),Genetic Algorithm(GA),Whale Optimization Algorithm(WOA),Gravitational Search Algorithm(GSA),and Hybrid Heuristic and Genetic(HHG)by 7.9%,2.1%,8.8%,7.7%,3.4%respectively according to makespan.
文摘When an emergency happens, the scheduling of relief resources to multiple emergency locations is a realistic and intricate problem, especially when the available resources are limited. A non-cooperative games model and an algorithm for scheduling of relief resources are presented. In the model, the players correspond to the multiple emergency locations, strategies correspond to all resources scheduling and the payoff of each emergency location corresponds to the reciprocal of its scheduling cost. Thus, the optimal results are determined by the Nash equilibrium point of this game. Then the iterative algorithm is introduced to seek the Nash equilibrium point. Simulation and analysis are given to demonstrate the feasibility and availability of the model.
文摘Aiming at the flexible manufacturing system with multi-machining and multi-assembly equipment, a new scheduling algorithm is proposed to decompose the assembly structure of the products, thus obtaining simple scheduling problems and forming the cOrrespOnding agents. Then, the importance and the restriction of each agent are cOnsidered, to obtain an order of simple scheduling problems based on the cooperation game theory. With this order, the scheduling of sub-questions is implemented in term of rules, and the almost optimal scheduling results for meeting the restriction can be obtained. Experimental results verify the effectiveness of the proposed scheduling algorithm.
基金National Key Basic Research and Development Program of China(No.2013CB329503)National Natural Science Foundation of China(No.61174189)the Doctoral Program Foundation of Institutions of Higher Education of China(No.20130002110057)
文摘An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to determine the splitting of jobs and the sequence of the sub-lots simultaneously. Based on the encoding scheme,three kinds of neighborhoods are developed for generating new solutions. To well balance the exploitation and exploration,two main search procedures are designed within the evolutionary search framework of the iFOA,including the neighborhood-based search( smell-vision-based search) and the global cooperation-based search. Finally,numerical testing results are provided,and the comparisons demonstrate the effectiveness of the proposed iFOA for solving the LSFSP.
基金This work is supported by the National Science Foundation of China under Grant No.F020803,and No.61602254the National Science Foundation of Jiangsu Province,China,under Grant No.BK20160968the Project through the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,the China-USA Computer Science Research Center.
文摘Nowadays,emergency accidents could happen at any time.The accidents occur unpredictably and the accidents requirements are diversely.The accidents happen in a dynamic environment and the resource should be cooperative to solve the accidents.Most methods are focusing on minimizing the casualties and property losses in a static environment.However,they are lack in considering the dynamic and unpredictable event handling.In this paper,we propose a representative environmental model in representation of emergency and dynamic resource allocation model,and an adaptive mathematical model based on Genetic Algorithm(GA)to generate an optimal set of solution domain.The experimental results show that the proposed algorithm can get a set of better candidate solutions.
基金supported in part by the Liaoning Province Xingliao Talents Plan Project under Grant No.XLYC2006017in part by the Scientific Research Funds Project of Educational Department of Liaoning Province under Grant Nos.LG202025 and LJKZ0260。
文摘A cooperative game theoretical approach is taken to production and transportation coordinated scheduling problems of two-machine flow-shop(TFS-PTCS problems)with an interstage transporter.The authors assume that there is an initial scheduling order for processing jobs on the machines.The cooperative sequencing game models associated with TFS-PTCS problems are established with jobs as players and the maximal cost savings of a coalition as its value.The properties of cooperative games under two different types of admissible rearrangements are analysed.For TFS-PTCS problems with identical processing time,it is proved that,the corresponding games areσ_(0)-component additive and convex under one admissible rearrangement.The Shapley value gives a core allocation,and is provided in a computable form.Under the other admissible rearrangement,the games neither need to beσ_(0)-component additive nor convex,and an allocation rule of modified Shapley value is designed.The properties of the cooperative games are analysed by a counterexample for general problems.
文摘针对原油调度过程存在的资源规模庞大、约束条件复杂、多时间尺度决策衔接困难等问题,提出一种基于多时间尺度协同的进化算法(MTCEA)。首先,根据炼油企业的规模结构和实际需求,建立了一种大规模多时间尺度原油调度优化模型,该模型由面向资源的中长期调度模型和面向操作的短期调度模型构成,通过引入原油资源动态分组策略,实现原油资源的合理配置,以满足不同的调度规模、多时间尺度的特征和精细化生产的要求;其次,为促进不同时间尺度调度决策的融合衔接,设计基于多时间尺度协同的进化算法,并针对不同时间尺度调度模型中的连续决策变量构造子问题进行求解,以实现不同时间尺度调度决策之间的协同优化;最后,在3个实际工业案例进行了算法性能验证。结果表明,与3种具有代表性的大规模进化优化算法(即竞争性粒子群优化算法(CSO)、基于多轨迹搜索的自适应差分进化算法(SaDE-MMTS)和基于混合模型的进化策略(MMES))以及3种高性能混合整数非线性规划(MINLP)数学求解器(即ANTIGONE(Algorithms for coNTinuous/Integer Global Optimization of Nonlinear Equations)、SCIP(Solving Constraint Integer Programs)和SHOT(Supporting Hyperplane Optimization Toolkit))相比,MTCEA的求解最优性指标和稳定性指标分别提高了30%和25%以上。这些显著的性能提升验证了MTCEA在大规模多时间尺度原油调度决策中的实际应用价值和优势。