期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Feature Extraction by Multi-Scale Principal Component Analysis and Classification in Spectral Domain 被引量:2
1
作者 Shengkun Xie Anna T. Lawnizak +1 位作者 Pietro Lio Sridhar Krishnan 《Engineering(科研)》 2013年第10期268-271,共4页
Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (... Feature extraction of signals plays an important role in classification problems because of data dimension reduction property and potential improvement of a classification accuracy rate. Principal component analysis (PCA), wavelets transform or Fourier transform methods are often used for feature extraction. In this paper, we propose a multi-scale PCA, which combines discrete wavelet transform, and PCA for feature extraction of signals in both the spatial and temporal domains. Our study shows that the multi-scale PCA combined with the proposed new classification methods leads to high classification accuracy for the considered signals. 展开更多
关键词 multi-scale Principal Component Analysis Discrete WAVELET TRANSFORM feature extraction Signal CLASSIFICATION Empirical CLASSIFICATION
下载PDF
Multi-Scale Mixed Attention Tea Shoot Instance Segmentation Model
2
作者 Dongmei Chen Peipei Cao +5 位作者 Lijie Yan Huidong Chen Jia Lin Xin Li Lin Yuan Kaihua Wu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期261-275,共15页
Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often... Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales. 展开更多
关键词 Tea shoots attention mechanism multi-scale feature extraction instance segmentation deep learning
下载PDF
Ship recognition based on HRRP via multi-scale sparse preserving method
3
作者 YANG Xueling ZHANG Gong SONG Hu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期599-608,共10页
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba... In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance. 展开更多
关键词 ship target recognition high-resolution range profile(HRRP) multi-scale fusion kernel sparse preserving projection(MSFKSPP) feature extraction dimensionality reduction
下载PDF
Underwater Image Enhancement Based on Multi-scale Adversarial Network
4
作者 ZENG Jun-yang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期70-77,共8页
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea... In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm. 展开更多
关键词 Underwater image enhancement Generative adversarial network multi-scale feature extraction Residual dense block
下载PDF
RealFuVSR:Feature enhanced real-world video super-resolution
5
作者 Zhi LI Xiongwen PANG +1 位作者 Yiyue JIANG Yujie WANG 《Virtual Reality & Intelligent Hardware》 EI 2023年第6期523-537,共15页
Background Recurrent recovery is a common method for video super-resolution(VSR)that models the correlation between frames via hidden states.However,the application of this structure in real-world scenarios can lead t... Background Recurrent recovery is a common method for video super-resolution(VSR)that models the correlation between frames via hidden states.However,the application of this structure in real-world scenarios can lead to unsatisfactory artifacts.We found that in real-world VSR training,the use of unknown and complex degradation can better simulate the degradation process in the real world.Methods Based on this,we propose the RealFuVSR model,which simulates real-world degradation and mitigates artifacts caused by the VSR.Specifically,we propose a multiscale feature extraction module(MSF)module that extracts and fuses features from multiple scales,thereby facilitating the elimination of hidden state artifacts.To improve the accuracy of the hidden state alignment information,RealFuVSR uses an advanced optical flow-guided deformable convolution.Moreover,a cascaded residual upsampling module was used to eliminate noise caused by the upsampling process.Results The experiment demonstrates that RealFuVSR model can not only recover high-quality videos but also outperforms the state-of-the-art RealBasicVSR and RealESRGAN models. 展开更多
关键词 Video super-resolution Deformable convolution Cascade residual upsampling Second-order degradation multi-scale feature extraction
下载PDF
A multi-scale convolutional auto-encoder and its application in fault diagnosis of rolling bearings 被引量:10
6
作者 Ding Yunhao Jia Minping 《Journal of Southeast University(English Edition)》 EI CAS 2019年第4期417-423,共7页
Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on ... Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data. 展开更多
关键词 fault diagnosis deep learning convolutional auto-encoder multi-scale convolutional kernel feature extraction
下载PDF
Extraction Algorithm of English Text Summarization for English Teaching
7
作者 WAN Lili 《International English Education Research》 2018年第1期27-30,共4页
In order to improve the ability of sharing and scheduling capability of English teaching resources, an improved algorithm for English text summarization is proposed based on Association semantic rules. The relative fe... In order to improve the ability of sharing and scheduling capability of English teaching resources, an improved algorithm for English text summarization is proposed based on Association semantic rules. The relative features are mined among English text phrases and sentences, the semantic relevance analysis and feature extraction of keywords in English abstract are realized, the association rules differentiation for English text summarization is obtained based on information theory, related semantic roles information in English Teaching Texts is mined. Text similarity feature is taken as the maximum difference component of two semantic association rule vectors, and combining semantic similarity information, the accurate extraction of English text Abstract is realized. The simulation results show that the method can extract the text summarization accurately, it has better convergence and precision performance in the extraction process. 展开更多
关键词 English teaching English text abstract extraction Semantic feature
下载PDF
Abnormal Traffic Detection for Internet of Things Based on an Improved Residual Network
8
作者 Tingting Su Jia Wang +2 位作者 Wei Hu Gaoqiang Dong Jeon Gwanggil 《Computers, Materials & Continua》 SCIE EI 2024年第6期4433-4448,共16页
Along with the progression of Internet of Things(IoT)technology,network terminals are becoming continuously more intelligent.IoT has been widely applied in various scenarios,including urban infrastructure,transportati... Along with the progression of Internet of Things(IoT)technology,network terminals are becoming continuously more intelligent.IoT has been widely applied in various scenarios,including urban infrastructure,transportation,industry,personal life,and other socio-economic fields.The introduction of deep learning has brought new security challenges,like an increment in abnormal traffic,which threatens network security.Insufficient feature extraction leads to less accurate classification results.In abnormal traffic detection,the data of network traffic is high-dimensional and complex.This data not only increases the computational burden of model training but also makes information extraction more difficult.To address these issues,this paper proposes an MD-MRD-ResNeXt model for abnormal network traffic detection.To fully utilize the multi-scale information in network traffic,a Multi-scale Dilated feature extraction(MD)block is introduced.This module can effectively understand and process information at various scales and uses dilated convolution technology to significantly broaden the model’s receptive field.The proposed Max-feature-map Residual with Dual-channel pooling(MRD)block integrates the maximum feature map with the residual block.This module ensures the model focuses on key information,thereby optimizing computational efficiency and reducing unnecessary information redundancy.Experimental results show that compared to the latest methods,the proposed abnormal traffic detection model improves accuracy by about 2%. 展开更多
关键词 Abnormal network traffic deep learning residual network multi-scale feature extraction max-feature-map
下载PDF
Enhancing Tea Leaf Disease Identification with Lightweight MobileNetV2
9
作者 Zhilin Li Yuxin Li +5 位作者 Chunyu Yan Peng Yan Xiutong Li Mei Yu Tingchi Wen Benliang Xie 《Computers, Materials & Continua》 SCIE EI 2024年第7期679-694,共16页
Diseases in tea trees can result in significant losses in both the quality and quantity of tea production.Regular monitoring can help to prevent the occurrence of large-scale diseases in tea plantations.However,existi... Diseases in tea trees can result in significant losses in both the quality and quantity of tea production.Regular monitoring can help to prevent the occurrence of large-scale diseases in tea plantations.However,existingmethods face challenges such as a high number of parameters and low recognition accuracy,which hinders their application in tea plantation monitoring equipment.This paper presents a lightweight I-MobileNetV2 model for identifying diseases in tea leaves,to address these challenges.The proposed method first embeds a Coordinate Attention(CA)module into the originalMobileNetV2 network,enabling the model to locate disease regions accurately.Secondly,a Multi-branch Parallel Convolution(MPC)module is employed to extract disease features across multiple scales,improving themodel’s adaptability to different disease scales.Finally,the AutoML for Model Compression(AMC)is used to compress themodel and reduce computational complexity.Experimental results indicate that our proposed algorithm attains an average accuracy of 96.12%on our self-built tea leaf disease dataset,surpassing the original MobileNetV2 by 1.91%.Furthermore,the number of model parameters have been reduced by 40%,making itmore suitable for practical application in tea plantation environments. 展开更多
关键词 Disease identification coordinate attention mechanism multi-scale feature extraction model pruning
下载PDF
Integrating Transformer and Bidirectional Long Short-Term Memory for Intelligent Breast Cancer Detection from Histopathology Biopsy Images
10
作者 Prasanalakshmi Balaji Omar Alqahtani +2 位作者 Sangita Babu Mousmi Ajay Chaurasia Shanmugapriya Prakasam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期443-458,共16页
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enh... Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection. 展开更多
关键词 Bidirectional long short-term memory breast cancer detection feature extraction histopathology biopsy images multi-scale dilated vision transformer
下载PDF
基于Transformer和卷积神经网络的代码克隆检测 被引量:1
11
作者 贲可荣 杨佳辉 +1 位作者 张献 赵翀 《郑州大学学报(工学版)》 CAS 北大核心 2023年第6期12-18,共7页
基于深度学习的代码克隆检测方法往往作用在代码解析的词序列上或是整棵抽象语法树上,使用基于循环神经网络的时间序列模型提取特征,这会遗漏源代码的重要语法语义信息并诱发梯度消失。针对这一问题,提出一种基于Transformer和卷积神经... 基于深度学习的代码克隆检测方法往往作用在代码解析的词序列上或是整棵抽象语法树上,使用基于循环神经网络的时间序列模型提取特征,这会遗漏源代码的重要语法语义信息并诱发梯度消失。针对这一问题,提出一种基于Transformer和卷积神经网络的代码克隆检测方法(TCCCD)。首先,TCCCD将源代码表示成抽象语法树,并将抽象语法树切割成语句子树输入给神经网络,其中,语句子树由先序遍历得到的语句结点序列构成,蕴含了代码的结构和层次化信息。其次,在神经网络设计方面,TCCCD使用Transformer的Encoder部分提取代码的全局信息,再利用卷积神经网络捕获代码的局部信息。再次,融合2个不同网络提取出的特征,学习得到蕴含词法、语法和结构信息的代码向量表示。最后,采用两段代码向量的欧氏距离表征语义关联程度,训练一个分类器检测代码克隆。实验结果表明:在OJClone数据集上,精度、召回率、F 1值分别能达到98.9%、98.1%和98.5%;在BigCloneBench数据集上,精度、召回率、F 1值分别能达到99.1%、91.5%和94.2%。与其他方法对比,精度、召回率、F 1值均有提升,所提方法能够有效检测代码克隆。 展开更多
关键词 代码克隆检测 抽象语法树(AST) TRANSFORMER 卷积神经网络 代码特征提取
下载PDF
基于文本摘要提取的双路情感分析模型 被引量:1
12
作者 王郅翔 刘渊 《计算机工程与应用》 CSCD 北大核心 2023年第18期119-128,共10页
针对传统文本分类模型存在识别能力受限、训练时间随着输入长度倍增的问题,提出了一种基于文本摘要提取的双路特征情感分析模型(BLAT)。BLAT模型引入Fastformer的加性注意力机制代替Transfomer的自注意力机制,使得模型能够在不损失精度... 针对传统文本分类模型存在识别能力受限、训练时间随着输入长度倍增的问题,提出了一种基于文本摘要提取的双路特征情感分析模型(BLAT)。BLAT模型引入Fastformer的加性注意力机制代替Transfomer的自注意力机制,使得模型能够在不损失精度的情况下,面对长文本训练能够有较为出色的训练速度。模型通过对原始文本数据做摘要提取处理形成双路特征,融入长短期记忆网络与卷积神经网络组成双路特征提取网络,实现对文本情感倾向的高效识别。通过实验在中文电商评论数据集上进行验证,准确率可以达到92.26%,相较当下主流模型能够达到较好的效果。 展开更多
关键词 摘要提取 加性注意力机制 特征融合 情感分析
下载PDF
抽象语义和全局交互的对话关系抽取方法
13
作者 李博博 荆心 仲尧 《西安工业大学学报》 CAS 2023年第5期503-511,共9页
为解决对话关系抽取任务中实体间关联语义信息稀疏、获取核心语义和触发线索困难等问题,提出一种新型的对话关系抽取模型。在对话文本中融入抽象语义表示来增强对话的核心语义,以解决在对话关系提取过程中出现的语义缺失和逻辑纠缠问题... 为解决对话关系抽取任务中实体间关联语义信息稀疏、获取核心语义和触发线索困难等问题,提出一种新型的对话关系抽取模型。在对话文本中融入抽象语义表示来增强对话的核心语义,以解决在对话关系提取过程中出现的语义缺失和逻辑纠缠问题;引入全局对话交互机制,通过对关键线索的捕捉来改善对话中有效信息稀疏的问题;通过增加明确的结构信息来进一步丰富实体间的关系特征,使模型能够更好地理解对话文本。实验结果表明:相较于基线模型BERTs,文中提出的模型在数据集DialogRE上的F 1和F 1C分别提升了5.5%和6.2%;相比于序列模型CNN、LSTM和BiLSTM,在对话关系抽取中准确率提高9%以上,效果显著。文中模型在复杂对话场景中的泛化能力更好,鲁棒性更强。 展开更多
关键词 对话关系抽取 抽象语义表示 全局对话交互 关系特征
下载PDF
基于图卷积神经网络和RoBERTa的物流订单分类 被引量:1
14
作者 王建兵 杨超 +2 位作者 刘方方 黄暕 项勇 《计算机技术与发展》 2023年第10期195-201,共7页
订单信息贯穿于物流供应链的所有环节,高效的订单处理是保障物流服务质量和运营效率的关键。面对日益增长的差异化客户物流订单,人工对订单分类费时、低效,难以满足现代物流要求的效率标准。为了提升物流订单分类的性能,该文提出了一种... 订单信息贯穿于物流供应链的所有环节,高效的订单处理是保障物流服务质量和运营效率的关键。面对日益增长的差异化客户物流订单,人工对订单分类费时、低效,难以满足现代物流要求的效率标准。为了提升物流订单分类的性能,该文提出了一种基于图卷积神经网络(graph convolution network,GCN)和RoBERTa预训练语言模型的订单分类方法。首先,基于物流订单文本的抽象语义表示(abstract meaning representation,AMR)结果和关键词构建全局AMR图,并使用图卷积神经网络对全局AMR图进行特征提取,获取订单文本的全局AMR图表示向量;其次,基于AMR算法构建物流订单文本分句的局部AMR图集合,然后使用堆叠GCN处理图集合得到订单文本局部AMR图表示向量;再次,使用RoBERTa模型处理物流订单文本,得到文本语义表示向量;最后,融合三种类型的文本表示向量完成物流订单分类。实验结果表明:该方法在多项评价指标上优于其他基线方法。消融实验结果也验证了该分类方法各模块的有效性。 展开更多
关键词 订单分类 图卷积神经网络 抽象语义表示 RoBERTa模型 特征提取
下载PDF
Modified reward function on abstract features in inverse reinforcement learning 被引量:1
15
作者 Shen-yi CHEN Hui QIAN Jia FAN Zhuo-jun JIN Miao-liang ZHU 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2010年第9期718-723,共6页
We improve inverse reinforcement learning(IRL) by applying dimension reduction methods to automatically extract Abstract features from human-demonstrated policies,to deal with the cases where features are either unkno... We improve inverse reinforcement learning(IRL) by applying dimension reduction methods to automatically extract Abstract features from human-demonstrated policies,to deal with the cases where features are either unknown or numerous.The importance rating of each abstract feature is incorporated into the reward function.Simulation is performed on a task of driving in a five-lane highway,where the controlled car has the largest fixed speed among all the cars.Performance is almost 10.6% better on average with than without importance ratings. 展开更多
关键词 Importance rating abstract feature feature extraction Inverse reinforcement learning(IRL) Markov decision process(MDP)
原文传递
特征抽象的直接体绘制方法 被引量:5
16
作者 梁荣华 李伟明 +2 位作者 王子仁 毛剑飞 马祥音 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第3期339-347,共9页
直接体绘制需要借助于传输函数,而设计一个有效的传输函数非常耗时且需要具备丰富的经验.为此提出一种不透明度自动调节的可视化方法.通过分析采样光线提取出数据的特征,并将这些特征抽象为不同层次的采样点,抽象采样点的不透明度根据... 直接体绘制需要借助于传输函数,而设计一个有效的传输函数非常耗时且需要具备丰富的经验.为此提出一种不透明度自动调节的可视化方法.通过分析采样光线提取出数据的特征,并将这些特征抽象为不同层次的采样点,抽象采样点的不透明度根据采样光线上特征数的变化而改变;在保证最远抽象采样点可见度最大的前提下,推导并修改传统体绘制积分方程,得到基于抽象采样点的体绘制积分方程.实验结果表明,该方法不依赖于传输函数,能有效地展示体数据中的特征信息. 展开更多
关键词 直接体绘制 特征提取 抽象采样点 特征增强
下载PDF
一种新的基于对象的足球视频镜头分类方案 被引量:3
17
作者 周艺华 曹元大 张龙飞 《计算机工程与应用》 CSCD 北大核心 2005年第34期229-232,共4页
论文提出了一种基于对象的足球视频镜头分类方案。首先对足球视频中的场地和运动员对象进行检测和分割,然后利用识别出的场地特征、运动员数目及运动员与场地比例等特征,对足球视频中的长距镜头、中距镜头、特写及其它类型的镜头进行分... 论文提出了一种基于对象的足球视频镜头分类方案。首先对足球视频中的场地和运动员对象进行检测和分割,然后利用识别出的场地特征、运动员数目及运动员与场地比例等特征,对足球视频中的长距镜头、中距镜头、特写及其它类型的镜头进行分类。实验表明,该分类方案取得了良好的效果。 展开更多
关键词 镜头分类 特征提取 视频摘要
下载PDF
融合用户和商品评论的双通道CNN推荐算法
18
作者 冯兴杰 徐一雄 曾云泽 《现代电子技术》 北大核心 2019年第14期121-126,共6页
基于评分矩阵的推荐模型目前被广泛应用,虽达到一定推荐精度,但忽略了评论中大量能够反映用户兴趣爱好的语义信息,且数据稀疏性问题依然存在。针对上述问题,提出融合用户评论和商品评论的双通道CNN推荐算法(C DCNN)。首先将用户和商品... 基于评分矩阵的推荐模型目前被广泛应用,虽达到一定推荐精度,但忽略了评论中大量能够反映用户兴趣爱好的语义信息,且数据稀疏性问题依然存在。针对上述问题,提出融合用户评论和商品评论的双通道CNN推荐算法(C DCNN)。首先将用户和商品评论文本矢量化为词向量,再分别使用两个CNN网络对用户和物品进行特征提取,最后在共享层通过点积项将用户和物品的抽象特征映射到同一特征空间,从而预测出用户对特定商品的评分。在Amazon,Yelp,Beer三组公共数据集上进行实验,结果表明该模型在不同数据集上的MSE都比其他基准算法更小,且有效缓解了数据稀疏性问题。 展开更多
关键词 CNN推荐算法 推荐系统 特征提取 文本矢量化 抽象特征映射 评分预测
下载PDF
英语教学中的文本摘要提取算法 被引量:3
19
作者 帕提曼·吐尔逊 任艳 《信息技术》 2020年第12期82-85,共4页
传统的英语教学中,资源利用率不高,调度能力不强。为了解决这些问题,文中提出了一种基于关联语义规则的英语文本摘要改进算法。挖掘了英语文本短语和句子之间的相关特征,实现了英语摘要中关键词的语义关联分析和特征提取,其核心是基于... 传统的英语教学中,资源利用率不高,调度能力不强。为了解决这些问题,文中提出了一种基于关联语义规则的英语文本摘要改进算法。挖掘了英语文本短语和句子之间的相关特征,实现了英语摘要中关键词的语义关联分析和特征提取,其核心是基于信息论获得了英语摘要的关联规则判别。然后将文本相似度特征作为两个语义关联规则向量的最大差异分量,结合语义相似度信息,最终实现英语文本摘要的精确提取。仿真结果表明,该方法能够准确地提取出文本摘要,在提取过程中具有较好的收敛性和精确性。 展开更多
关键词 英语文本 抽象提取 语义特征 英语教学 相似度
下载PDF
基于多特征值的源代码相似性检测技术 被引量:1
20
作者 展佳俊 赵逢禹 艾均 《计算机技术与发展》 2021年第1期103-109,共7页
在软件开发的过程中,开发人员通过复制粘贴式的开发方式或者模块化的开发方式来完成需求是十分常见的,这两种开发方式可以提高开发效率,但同时会导致软件系统中出现大量的相同代码或者相似代码,大量的相似代码会给软件维护等方面带来很... 在软件开发的过程中,开发人员通过复制粘贴式的开发方式或者模块化的开发方式来完成需求是十分常见的,这两种开发方式可以提高开发效率,但同时会导致软件系统中出现大量的相同代码或者相似代码,大量的相似代码会给软件维护等方面带来很大的困难,这也是最常见的重构对象。源代码相似性度量是指利用一定的检测方法分析程序源代码间的相似程度。该技术被应用于代码抄袭检测、代码克隆检测、软件知识产权保护、代码复用等多个领域。为了提高代码相似性度量的准确性,提出了一种基于多特征值的源代码相似性检测技术。构建了源代码注释、型构、代码文本语句与结构中特征提取的方法,并给出了源代码相似度检测的度量模型。通过与权威的代码相似检测系统Moss进行对比实验,结果表明该方法可以更准确地检测出相似代码。 展开更多
关键词 代码相似 代码抄袭 抽象语法树 代码特征提取 余弦相似度
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部