期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
Fast image super-resolution algorithm based on multi-resolution dictionary learning and sparse representation 被引量:3
1
作者 ZHAO Wei BIAN Xiaofeng +2 位作者 HUANG Fang WANG Jun ABIDI Mongi A. 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期471-482,共12页
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif... Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception. 展开更多
关键词 single image super-resolution(SR) sparse representation multi-resolution dictionary learning(MRDL) adaptive patch partition method(APPM)
下载PDF
Seismic data denoising under the morphological component analysis framework combined with adaptive K-SVD and wave atoms dictionary
2
作者 Yangqin Guo Ke Guo Huailai Zhou 《Earthquake Research Advances》 CSCD 2021年第S01期3-7,共5页
Many different effective reflection information are often contaminated by exterior and random noise which concealed in the seismic data.Traditional single or fixed transform is not suit for exploiting their complicate... Many different effective reflection information are often contaminated by exterior and random noise which concealed in the seismic data.Traditional single or fixed transform is not suit for exploiting their complicated characteristics and attenuating the noise.Recent years,a novel method so-called morphological component analysis(MCA)is put forward to separate different geometrical components by amalgamating several irrelevance transforms.According to study the local singular and smooth linear components characteristics of seismic data,we propose a method of suppressing noise by integrating with the advantages of adaptive K-singular value decomposition(K-SVD)and wave atom dictionaries to depict the morphological features diversity of seismic signals.Numerical results indicate that our method can dramatically suppress the undesired noises,preserve the information of geologic body and geological structure and improve the signal-to-noise ratio of the data.We also demonstrate the superior performance of this approach by comparing with other novel dictionaries such as discrete cosine transform(DCT),undecimated discrete wavelet transform(UDWT),or curvelet transform,etc.This algorithm provides new ideas for data processing to advance quality and signal-to-noise ratio of seismic data. 展开更多
关键词 Morphological component analysis sparse representation K-SVD Wave atom adaptive dictionary Seismic denoising
下载PDF
基于Sparse K-SVD学习字典的语音增强方法 被引量:9
3
作者 黄玲 李琳 +2 位作者 王薇 易才钦 郭东辉 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期36-40,共5页
摘要:提出一种基于SparseK-SVD学习字典的语音增强方法,采用SparseK-SVD算法自适应地训练一个可稀疏表示的冗余字典,在该冗余字典上采用正交匹配追踪(OMP)算法对带噪语音信号进行稀疏分解,利用稀疏系数矩阵重构纯净语音,实现语... 摘要:提出一种基于SparseK-SVD学习字典的语音增强方法,采用SparseK-SVD算法自适应地训练一个可稀疏表示的冗余字典,在该冗余字典上采用正交匹配追踪(OMP)算法对带噪语音信号进行稀疏分解,利用稀疏系数矩阵重构纯净语音,实现语音增强.使用NOIZEUS语音库进行了一系列的语音增强实验,主客观评测数据表明,基于稀疏表示的语音增强方法(分别使用SparseKSVD和K-SVD训练字典)相对于传统语音增强方法(小阈值波法、谱减法、改进谱减法)可进一步改善语音质量;对字典训练时间进行统计,发现SparseK-SVD算法训练字典消耗的时间为K-SVD算法训练时间的1/6~1/10,大幅度提高了计算效率. 展开更多
关键词 稀疏表示 sparse K SVD 自适应字典 语音增强
下载PDF
联合自适应LASSO与块稀疏贝叶斯直接定位方法
4
作者 罗军 张顺生 《雷达科学与技术》 北大核心 2024年第3期265-274,共10页
无源定位中,直接定位方法优势在于适用低信噪比、参数独立等。然而,当辐射源距无源侦测系统较远时,受低信噪比的影响,接收信号模型中存在的部分未知参数会大幅降低算法对于辐射源的定位性能。为了有效地解决该难题,给出了一种联合自适应... 无源定位中,直接定位方法优势在于适用低信噪比、参数独立等。然而,当辐射源距无源侦测系统较远时,受低信噪比的影响,接收信号模型中存在的部分未知参数会大幅降低算法对于辐射源的定位性能。为了有效地解决该难题,给出了一种联合自适应LASSO先验与块稀疏贝叶斯的辐射源直接定位方法。经由贝叶斯理论构建分层稀疏模型,联合不同的先验分布以赋予信号中元素独立的自适应LASSO,同时探索信号的块结构和块内相关性,联合具有共享稀疏性的不同基站的字典重建过完备字典,实现远距离辐射源定位。仿真结果表明:在远距离下,当快拍数设置较少,信噪比设定较低时,在辐射源定位效果上所提算法显著优于如MUSIC等传统直接定位算法、Laplace先验方法以及块稀疏贝叶斯方法。 展开更多
关键词 直接定位 自适应LASSO先验 块稀疏贝叶斯 过完备字典
下载PDF
复杂场景下基于稀疏表示的多目标生命体征估计
5
作者 王洪雁 马嘉康 黄梓峰 《通信学报》 EI CSCD 北大核心 2024年第7期223-234,共12页
针对复杂室内场景下毫米波雷达难以对多个运动目标生命体征精确估计的问题,提出了一种复杂场景下基于稀疏表示的多目标生命体征估计方法。首先对回波数据进行预处理以获得目标场景点云;然后构建动态杂波抑制模型以滤除动态干扰;接着关... 针对复杂室内场景下毫米波雷达难以对多个运动目标生命体征精确估计的问题,提出了一种复杂场景下基于稀疏表示的多目标生命体征估计方法。首先对回波数据进行预处理以获得目标场景点云;然后构建动态杂波抑制模型以滤除动态干扰;接着关联多目标数据并基于扩展卡尔曼滤波实现多目标跟踪进而提取多动目标胸腔相位信息;随后基于呼吸心跳的频域稀疏特性,提出数据驱动的自适应字典构建方法以实现呼吸心跳信号的有效分离;最后基于稀疏重构方法获得高精度的多目标生命体征估计。实际场景下大量测试结果表明,相较于现有主流生命体征估计方法,所提方法可实现复杂动态杂波场景下多目标生命体征的有效感知。 展开更多
关键词 毫米波雷达 生命体征检测 动态杂波 稀疏表示 自适应字典
下载PDF
基于多源域领域适应字典学习和稀疏表示的脑电情感识别方法 被引量:1
6
作者 袁凯烽 侯璐 黄永锋 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2023年第4期412-418,共7页
脑电信号容易记录且不易伪装,基于脑电信号的情感识别越来越受到人们的关注.然而,人类情感具有多样性和个体可变性,基于脑电信号的情感识别仍是情感计算领域的难题.本文提出一种多源域领域适应字典学习和稀疏表示方法.为减少源领域和目... 脑电信号容易记录且不易伪装,基于脑电信号的情感识别越来越受到人们的关注.然而,人类情感具有多样性和个体可变性,基于脑电信号的情感识别仍是情感计算领域的难题.本文提出一种多源域领域适应字典学习和稀疏表示方法.为减少源领域和目标领域数据分布的差异,将所有领域的数据投影到共享子空间,并在共享子空间中学习一个共有字典.根据稀疏重建的最小化类内误差和最大化类间误差准则,稀疏表示具有类别的分辨能力.另外,每个源域自适应学习领域权重,可以避免负迁移的发生.模型参数的求解通过参数交替优化方法,所有参数可同时达到最优解.DEAP数据集的实验结果显示本文方法在所有对比方法中是最优的. 展开更多
关键词 脑电情感识别 稀疏表示 领域适应 子空间 字典学习
下载PDF
基于原子范数的无网格动目标参数估计
7
作者 孙刚 张威 +1 位作者 来燃 章涛 《现代雷达》 CSCD 北大核心 2023年第11期60-66,共7页
针对现有参数稀疏恢复空时自适应处理中动目标参数估计方法在字典失配条件下性能下降的问题,提出一种基于原子范数无网格稀疏恢复技术的动目标参数估计方法,该方法利用目标回波在角度-多普勒域的稀疏特性,根据连续压缩感知和低秩矩阵恢... 针对现有参数稀疏恢复空时自适应处理中动目标参数估计方法在字典失配条件下性能下降的问题,提出一种基于原子范数无网格稀疏恢复技术的动目标参数估计方法,该方法利用目标回波在角度-多普勒域的稀疏特性,根据连续压缩感知和低秩矩阵恢复理论实现了运动目标方位角和速度的高精度估计,避免了基于固定离散字典模型进行参数稀疏恢复时遇到的字典失配问题,有效提高了动目标参数的估计性能。仿真结果证实了所提方法参数估计性能优于已有基于字典网格的稀疏恢复参数估计方法。 展开更多
关键词 空时自适应处理 参数估计 稀疏恢复 字典失配 原子范数
下载PDF
非凸松弛原子范数空时动目标参数估计算法
8
作者 来燃 孙刚 +1 位作者 张威 章涛 《系统工程与电子技术》 EI CSCD 北大核心 2023年第9期2761-2767,共7页
针对参数稀疏恢复空时自适应处理中的动目标参数估计存在字典失配的问题,提出一种非凸松弛原子范数空时动目标参数估计算法。该方法利用目标回波在角度-多普勒域的稀疏特性,根据连续压缩感知和低秩矩阵恢复理论实现了运动目标方位角和... 针对参数稀疏恢复空时自适应处理中的动目标参数估计存在字典失配的问题,提出一种非凸松弛原子范数空时动目标参数估计算法。该方法利用目标回波在角度-多普勒域的稀疏特性,根据连续压缩感知和低秩矩阵恢复理论实现了运动目标方位角和速度的高精度、超分辨率估计,避免了稀疏恢复中的字典失配问题,有效提高了动目标参数估计性能。仿真实验结果表明,相较于已有基于字典网格的稀疏恢复参数估计方法和原子范数估计方法,所提算法具有更高的参数估计精度和对空间紧邻目标的分辨能力。 展开更多
关键词 空时自适应处理 动目标参数估计 稀疏恢复 字典失配 非凸原子范数
下载PDF
基于字典尺度自适应学习的欠定盲语音重构算法
9
作者 李嘉新 魏爽 +1 位作者 俞守庚 刘睿 《电讯技术》 北大核心 2023年第9期1411-1418,共8页
针对欠定盲语音分离传统字典学习算法不能优化字典尺寸的问题,提出了一种尺度自适应同步码字优化(Scale Adaptive Simultaneous Codeword Optimization,SASimCO)算法。设计了一种迭代调整字典尺寸的自适应字典学习策略,将训练的字典用... 针对欠定盲语音分离传统字典学习算法不能优化字典尺寸的问题,提出了一种尺度自适应同步码字优化(Scale Adaptive Simultaneous Codeword Optimization,SASimCO)算法。设计了一种迭代调整字典尺寸的自适应字典学习策略,将训练的字典用于语音盲分离中,以提高语音源信号的恢复性能。所提算法依据设计的候选矩阵,计算候选矩阵中的原子重要性,按照原子重要性准则对字典进行添加与删除原子操作,最后迭代训练得到一个稀疏表示误差最优的字典,用于语音源信号的恢复。使用SiSEC(Signal Separation Evaluation Campaign)数据集对所提算法进行的仿真实验表明,相较于传统字典学习算法,所提算法提高了1~3 dB语音源分离性能,证明了该算法的优势。 展开更多
关键词 欠定盲源分离 语音重构 尺度自适应字典学习 稀疏表示
下载PDF
基于自适应多字典学习的单幅图像超分辨率算法 被引量:25
10
作者 潘宗序 禹晶 +1 位作者 肖创柏 孙卫东 《电子学报》 EI CAS CSCD 北大核心 2015年第2期209-216,共8页
自适应字典学习利用图像结构自相似性,将图像自身作为训练样本,通过字典学习使图像中的相似块在字典下具有稀疏表示形式.本文将全局字典学习中利用图像库获取附加信息的思想融入到自适应字典学习的过程中,提出了一种基于自适应多字典学... 自适应字典学习利用图像结构自相似性,将图像自身作为训练样本,通过字典学习使图像中的相似块在字典下具有稀疏表示形式.本文将全局字典学习中利用图像库获取附加信息的思想融入到自适应字典学习的过程中,提出了一种基于自适应多字典学习的单幅图像超分辨率算法,从低分辨率图像自身与图像库同时获取附加信息.该算法对低分辨率图像金字塔结构中的图像块进行聚类,在聚类结果的引导下将图像库中的图像块进行分类,利用各类中的样本分别构建针对各类的多个字典,从而确定表达重建图像块的最优字典.实验表明,与Sc SR、SISR、NLIBP、CSSS以及m SSIM等算法相比,本文算法具有更好的超分重建效果. 展开更多
关键词 超分辨率 稀疏表示 自适应字典学习 全局字典学习
下载PDF
基于自适应稀疏表示的宽带噪声去除算法 被引量:10
11
作者 王国栋 阳建宏 +1 位作者 黎敏 徐金梧 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第8期1818-1823,共6页
为了有效地去除信号中的宽带噪声,提出了一种基于自适应稀疏表示的宽带噪声去除算法。根据噪声成分与信号特征成分之间的不相关或弱相关特点,自适应地确定稀疏分解的终止条件,实现信号的稀疏表示。降噪过程中使用染噪信号构造学习样本,... 为了有效地去除信号中的宽带噪声,提出了一种基于自适应稀疏表示的宽带噪声去除算法。根据噪声成分与信号特征成分之间的不相关或弱相关特点,自适应地确定稀疏分解的终止条件,实现信号的稀疏表示。降噪过程中使用染噪信号构造学习样本,由信号的自适应稀疏表示和原子库的更新迭代实现原子库的训练。染噪信号在训练后的原子库上进行自适应稀疏表示,实现信号的噪声去除。仿真信号和齿轮振动信号的降噪试验表明:该方法具有比小波阈值降噪、匹配追踪降噪方法更好的降噪性能,能够有效地去除信号中的宽带噪声。 展开更多
关键词 噪声去除 自适应稀疏表示 原子库训练 正交匹配追踪
下载PDF
基于多尺度自适应稀疏字典的小弱目标检测方法 被引量:8
12
作者 王会改 李正周 +3 位作者 顾园山 唐岚 王臻 金钢 《红外与激光工程》 EI CSCD 北大核心 2014年第7期2371-2378,共8页
针对单尺度固定函数的滤波器难以有效剔除杂波和提高小弱目标检测性能的不足,文中研究建立多尺度自适应稀疏字典,提出了一种多尺度自适应形态稀疏字典检测小弱目标方法。首先根据图像信号内容建立多尺度自适应形态稀疏字典,并将图像信... 针对单尺度固定函数的滤波器难以有效剔除杂波和提高小弱目标检测性能的不足,文中研究建立多尺度自适应稀疏字典,提出了一种多尺度自适应形态稀疏字典检测小弱目标方法。首先根据图像信号内容建立多尺度自适应形态稀疏字典,并将图像信号在多尺度稀疏字典中进行稀疏分解;然后在分析小原子稀疏表示系数的基础上建立稀疏表示系数直方图,并利用指数函数拟合小尺度原子的稀疏表示系数直方图;最后,根据指数函数拟合参数在杂波、噪声和目标表现出的差异检测小弱目标。该多尺度稀疏字典利用大尺度原子描述图像背景杂波,小尺度原子捕获图像细小特征。实验结果表明,与小波算法和Contourlet算法相比,文中方法能更为有效地抑制背景杂波,减少背景残留,从而提高小弱目标检测性能。 展开更多
关键词 弱小目标检测 多尺度稀疏字典 稀疏特征 指数函数拟合
下载PDF
基于稀疏表示的两阶段脑电癫痫波检测算法研究 被引量:5
13
作者 吴敏 孙玉宝 +2 位作者 韦志辉 肖亮 汤黎明 《中国生物医学工程学报》 CAS CSCD 北大核心 2009年第4期535-543,共9页
脑电癫痫特征波的自动检测具有重要的临床应用价值,本研究提出一种基于自适应预测滤波与稀疏表示的两阶段癫痫特征波检测算法。第一阶段,使用自适应预测滤波器粗检出有嫌疑的癫痫波时段,在保证检测正确率的同时,减少数据量,提高后续处... 脑电癫痫特征波的自动检测具有重要的临床应用价值,本研究提出一种基于自适应预测滤波与稀疏表示的两阶段癫痫特征波检测算法。第一阶段,使用自适应预测滤波器粗检出有嫌疑的癫痫波时段,在保证检测正确率的同时,减少数据量,提高后续处理效率;第二阶段,先以高斯函数及其一、二阶导数为原子的生成函数构建一个冗余多成分字典,再应用匹配追踪算法仅获取可疑波段在此字典下的稀疏表示(自适应参数化表示),原子的结构参数能够准确度量瞬时波形的多种形态结构特征如宽度、幅度、锐度等,进而提出基于形态结构匹配的检测算法,对预检输出的可疑时段进行鉴别分类。检测结果表明该算法针对临床癫痫EEG的检测率为93.3%,正确率为88.5%,相应的漏检率为6.7%,误检率为11.5%。 展开更多
关键词 棘波检测 稀疏表示 自适应预测滤波 多成分字典 匹配追踪
下载PDF
结合标准对冲与核函数稀疏分类的目标跟踪 被引量:7
14
作者 匡金骏 柴毅 熊庆宇 《光学精密工程》 EI CAS CSCD 北大核心 2012年第11期2540-2547,共8页
针对经典稀疏分类目标跟踪算法在噪声,遮挡等恶劣环境下精度不高的问题,提出了一种新的目标跟踪算法。该算法在标准对冲框架下结合了核函数稀疏分类方法以及自适应字典更新方法,能够较好地适应类间相似度较高与目标外形变化较大等恶劣... 针对经典稀疏分类目标跟踪算法在噪声,遮挡等恶劣环境下精度不高的问题,提出了一种新的目标跟踪算法。该算法在标准对冲框架下结合了核函数稀疏分类方法以及自适应字典更新方法,能够较好地适应类间相似度较高与目标外形变化较大等恶劣情况。核函数技巧能够增强分类器性能,但通用方法求解凸优化问题的效率较低,不能满足目标跟踪问题的实时性要求,故提出用核函数随机坐标下降(KRCD)算法来高效求解稀疏系数,并使用核函数稀疏分类方法(KRCD-SRC)来计算各个粒子的代价值。为了避免模板漂移问题,解释了目标字典和背景字典的在线更新方法。最后,结合标准对冲算法估算目标的状态信息。在使用50个粒子进行跟踪时,本文算法的处理帧率能够达到14frame/s。相比其它几种经典目标跟踪算法,本文算法具有更好的精确性和鲁棒性。 展开更多
关键词 目标跟踪 核函数稀疏分类 自适应字典更新 标准对冲
下载PDF
组合字典下超宽带穿墙雷达自适应稀疏成像方法 被引量:10
15
作者 晋良念 申文婷 +1 位作者 钱玉彬 欧阳缮 《电子与信息学报》 EI CSCD 北大核心 2016年第5期1047-1054,共8页
针对现有超宽带穿墙雷达稀疏成像算法大多只采用点目标稀疏基表示模型和稀疏优化的正则化参数不能被自适应调整以及目标位置不在划分网格上带来虚假像的问题,该文提出一种基于贝叶斯证据框架的自适应稀疏成像方法。该方法首先利用组合... 针对现有超宽带穿墙雷达稀疏成像算法大多只采用点目标稀疏基表示模型和稀疏优化的正则化参数不能被自适应调整以及目标位置不在划分网格上带来虚假像的问题,该文提出一种基于贝叶斯证据框架的自适应稀疏成像方法。该方法首先利用组合字典独立稀疏表示场景中的点目标和扩展目标,然后在建立的偏离网格稀疏表示模型的基础上分层最大化各参数的似然函数,用第1层推理结合共轭梯度算法估计组合字典的各稀疏表示系数,用第2层推理估计正则化参数和目标的偏离网格量,最终通过迭代优化参数的设置得到问题的求解。仿真和实验结果表明,该方法不仅同时自适应增强穿墙场景中的点目标和扩展目标,还消除了偏离网格目标引起的虚假像。 展开更多
关键词 超宽带穿墙雷达稀疏成像 组合字典 证据框架 参数自适应调整
下载PDF
结合自适应字典学习的稀疏贝叶斯重构 被引量:4
16
作者 王勇 乔倩倩 +4 位作者 杨笑宇 徐文娟 贾拯 陈楚楚 高全学 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2016年第4期1-4,122,共5页
贝叶斯压缩感知是一种基于统计分析的压缩感知算法,具有很好的鲁棒性,能够充分利用信息间的相关性,它的重构依赖于图像的稀疏性表达.针对贝叶斯压缩感知的深层次稀疏化问题,笔者结合自适应字典学习思想,提出一种冗余自适应字典表示的稀... 贝叶斯压缩感知是一种基于统计分析的压缩感知算法,具有很好的鲁棒性,能够充分利用信息间的相关性,它的重构依赖于图像的稀疏性表达.针对贝叶斯压缩感知的深层次稀疏化问题,笔者结合自适应字典学习思想,提出一种冗余自适应字典表示的稀疏贝叶斯学习算法.该算法对图像进行局部分块,从待重建图像的迭代中间图像分块中学习字典,并以该字典作为图像的稀疏变换基,通过稀疏贝叶斯学习算法获得稀疏解.实验结果表明,基于自适应字典的贝叶斯学习算法能提高稀疏化,明显改善图像的重构质量. 展开更多
关键词 稀疏贝叶斯学习 自适应字典 贝叶斯压缩感知
下载PDF
基于分组字典与变分模型的图像去噪算法 被引量:6
17
作者 陶永鹏 景雨 顼聪 《计算机应用》 CSCD 北大核心 2019年第2期551-555,共5页
针对加性高斯噪声去除问题,在现有传统的K均值奇异值分解(K-SVD)字典学习算法的基础上,提出一种将字典学习与变分模型相融合的改进算法。首先,根据图像的几何和光度信息将图像进行聚类分组,再将图像组按照边缘和纹理类别进行分类,根据... 针对加性高斯噪声去除问题,在现有传统的K均值奇异值分解(K-SVD)字典学习算法的基础上,提出一种将字典学习与变分模型相融合的改进算法。首先,根据图像的几何和光度信息将图像进行聚类分组,再将图像组按照边缘和纹理类别进行分类,根据噪声水平和图像组类别训练一个自适应字典;其次,将通过所学字典得到的稀疏表示先验与图像本身的非局部相似先验进行融合来构建变分模型;最后,通过求解变分模型得到去噪后图像。实验结果表明,与同类去噪算法相比,当噪声比率较高时,所提算法可以解决前期算法准确性较差、纹理丢失较为严重、产生视觉伪影等问题,在视觉效果上要更为理想;同时该算法结构相似性指数有明显提高,峰值信噪比(PSNR)的值更是平均提高了10%以上。 展开更多
关键词 自适应字典学习 图像去噪 稀疏表示 变分模型 非局部相似
下载PDF
结合字典稀疏表示和非局部相似性的自适应压缩成像算法 被引量:12
18
作者 练秋生 周婷 《电子学报》 EI CAS CSCD 北大核心 2012年第7期1416-1422,共7页
如何以较少的观测值重构出高质量的图像是压缩成像系统的一个关键问题.本文根据图像块随机投影能量大小分布特点,提出了一种新的自适应采样方式以及针对自适应采样的有效重构算法.重构时利用了图像在字典下的稀疏表示原理和图像的非局... 如何以较少的观测值重构出高质量的图像是压缩成像系统的一个关键问题.本文根据图像块随机投影能量大小分布特点,提出了一种新的自适应采样方式以及针对自适应采样的有效重构算法.重构时利用了图像在字典下的稀疏表示原理和图像的非局部相似性先验知识.为实现图像的稀疏表示,文中构造了由多个方向字典和一个正交DCT字典组成的冗余字典,并用l1范数作为约束条件求解稀疏优化问题.由于充分利用了图像块的局部特性和图像的非局部特性,本文的压缩成像算法在低采样率下能重构出较高质量的图像. 展开更多
关键词 压缩成像 自适应采样 冗余字典 稀疏表示 非局部相似性
下载PDF
结合自适应稀疏表示和全变分约束的图像重建 被引量:2
19
作者 王勇 冯唐智 +4 位作者 陈楚楚 乔倩倩 杨笑宇 王国栋 高全学 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2016年第1期12-17,109,共7页
针对以二维小波变换和离散余弦变换为代表的固定正交基在图像压缩感知高分辨率重建中的局限性,提出了一种新的自适应冗余字典稀疏表示结合全变分约束的图像高分辨率重建算法.该算法以迭代过程的中间图像作为训练样本,通过自适应学习获... 针对以二维小波变换和离散余弦变换为代表的固定正交基在图像压缩感知高分辨率重建中的局限性,提出了一种新的自适应冗余字典稀疏表示结合全变分约束的图像高分辨率重建算法.该算法以迭代过程的中间图像作为训练样本,通过自适应学习获得适合样本特征的冗余字典,它充分利用了字典原子与待重建图像的相关性,获得了待重建图像的理想完备稀疏表示,从而降低了采样率,提高了图像重建质量.最后,以全变分作为正则化条件,采用交替迭代算法求解稀疏优化问题.仿真结果表明,该算法可以在低采样率下重建出高质量的图像. 展开更多
关键词 压缩感知 自适应冗余字典 稀疏表示 图像重建 全变分
下载PDF
基于字典学习和稀疏编码的振动信号去噪技术 被引量:2
20
作者 郭亮 姚磊 +2 位作者 高宏力 黄海凤 张筱辰 《振动.测试与诊断》 EI CSCD 北大核心 2015年第4期752-756,802,共5页
针对现有机械振动信号去噪算法需要一定先验知识的问题,提出了一种基于字典学习和稀疏编码的自适应去噪滤波方法。根据信号的本质特性,应用在线字典学习方法对原始数据进行学习和训练,寻求数据驱动的最优字典空间。引入正交匹配追踪算法... 针对现有机械振动信号去噪算法需要一定先验知识的问题,提出了一种基于字典学习和稀疏编码的自适应去噪滤波方法。根据信号的本质特性,应用在线字典学习方法对原始数据进行学习和训练,寻求数据驱动的最优字典空间。引入正交匹配追踪算法,确定原始信号在最优字典空间上的稀疏表示。基于稀疏编码和优化字典,重构原始信号,实现信号去噪。仿真和试验结果表明,相对于现有去噪方法,基于字典学习和稀疏编码的方法自适应能力强,去噪效果好。 展开更多
关键词 字典学习 稀疏编码 自适应滤波 振动信号
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部