期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Multi-Scale Convolutional Gated Recurrent Unit Networks for Tool Wear Prediction in Smart Manufacturing 被引量:2
1
作者 Weixin Xu Huihui Miao +3 位作者 Zhibin Zhao Jinxin Liu Chuang Sun Ruqiang Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期130-145,共16页
As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symboli... As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symbolic applications of PHM technology in modern manufacturing systems and industry.In this paper,a multi-scale Convolutional Gated Recurrent Unit network(MCGRU)is proposed to address raw sensory data for tool wear prediction.At the bottom of MCGRU,six parallel and independent branches with different kernel sizes are designed to form a multi-scale convolutional neural network,which augments the adaptability to features of different time scales.These features of different scales extracted from raw data are then fed into a Deep Gated Recurrent Unit network to capture long-term dependencies and learn significant representations.At the top of the MCGRU,a fully connected layer and a regression layer are built for cutting tool wear prediction.Two case studies are performed to verify the capability and effectiveness of the proposed MCGRU network and results show that MCGRU outperforms several state-of-the-art baseline models. 展开更多
关键词 Tool wear prediction multi-scale convolutional neural networks Gated recurrent unit
下载PDF
Using Hybrid Penalty and Gated Linear Units to Improve Wasserstein Generative Adversarial Networks for Single-Channel Speech Enhancement
2
作者 Xiaojun Zhu Heming Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2155-2172,共18页
Recently,speech enhancement methods based on Generative Adversarial Networks have achieved good performance in time-domain noisy signals.However,the training of Generative Adversarial Networks has such problems as con... Recently,speech enhancement methods based on Generative Adversarial Networks have achieved good performance in time-domain noisy signals.However,the training of Generative Adversarial Networks has such problems as convergence difficulty,model collapse,etc.In this work,an end-to-end speech enhancement model based on Wasserstein Generative Adversarial Networks is proposed,and some improvements have been made in order to get faster convergence speed and better generated speech quality.Specifically,in the generator coding part,each convolution layer adopts different convolution kernel sizes to conduct convolution operations for obtaining speech coding information from multiple scales;a gated linear unit is introduced to alleviate the vanishing gradient problem with the increase of network depth;the gradient penalty of the discriminator is replaced with spectral normalization to accelerate the convergence rate of themodel;a hybrid penalty termcomposed of L1 regularization and a scale-invariant signal-to-distortion ratio is introduced into the loss function of the generator to improve the quality of generated speech.The experimental results on both TIMIT corpus and Tibetan corpus show that the proposed model improves the speech quality significantly and accelerates the convergence speed of the model. 展开更多
关键词 Speech enhancement generative adversarial networks hybrid penalty gated linear units multi-scale convolution
下载PDF
基于多尺度特征融合网络的HEVC帧内编码单元快速划分研究 被引量:1
3
作者 刘雨墨 刘剑飞 +1 位作者 郝禄国 曾文彬 《计算机工程与科学》 CSCD 北大核心 2023年第11期1991-1998,共8页
高效视频编码HEVC显著提高了编码效率,但同时增加了编码复杂度,在基于四叉树结构的编码单元(CU)划分过程中尤为明显,因此研究CU快速划分具有重要意义。多尺度特征融合的网络可以实现HEVC编码单元快速划分。为此,结合U-Net和CU划分特性... 高效视频编码HEVC显著提高了编码效率,但同时增加了编码复杂度,在基于四叉树结构的编码单元(CU)划分过程中尤为明显,因此研究CU快速划分具有重要意义。多尺度特征融合的网络可以实现HEVC编码单元快速划分。为此,结合U-Net和CU划分特性设计了UcuNet网络,同时为加强不同尺度像素的特征提取,采用了非对称卷积AC和CBAM注意力机制。为更好地训练深度学习模型,收集了不同分辨率的原始视频和对应的编码信息构建出大规模的数据集。最后将模型嵌入到HEVC编码架构中,提前预测CU划分的结果,跳过了原始CU划分方法中递归的率失真优化(RDO)计算过程,从而有效降低CU划分带来的编码复杂度。实验结果表明,对比HEVC官方测试模型(HM16.20),UcuNet在BD-BR仅损失2.63%的情况下,使平均编码时间缩短了68.13%。 展开更多
关键词 HEVC 编码单元划分 深度学习 非对称卷积
下载PDF
结合FCN和多特征的全极化SAR土地覆盖分类 被引量:4
4
作者 谢凯浪 赵泉华 李玉 《测绘科学》 CSCD 北大核心 2020年第1期77-83,98,共8页
针对极化合成孔径雷达(PolSAR)影像地物分类特征表征性弱,以及传统全卷积网络(FCN)分类精度较低、效果差的问题,该文提出了一种结合FCN和多特征的全极化SAR土地覆盖分类算法。首先,根据PolSAR影像和极化目标分解获取散射特征参数构建特... 针对极化合成孔径雷达(PolSAR)影像地物分类特征表征性弱,以及传统全卷积网络(FCN)分类精度较低、效果差的问题,该文提出了一种结合FCN和多特征的全极化SAR土地覆盖分类算法。首先,根据PolSAR影像和极化目标分解获取散射特征参数构建特征空间,利用主成分分析(PCA)对特征空间实现降维,以优化特征组合;接着,以SegNet建模思想为基础,在网络中层嵌入多层多尺度非对称卷积单元(MACU)结构,并在中层添加代价函数构建双代价收敛(DC)结构,基于此设计了DC-MA-FCN网络;然后,以优化后的特征组合为输入,通过DC-MA-FCN网络进行多层自主学习训练网络,并利用训练好的网络进行PolSAR影像初始分类;最后,组合DC-MA-FCN网络分类结果和形态学方法实现最终分类。该方法对两地区的PolSAR影像进行取样和试验,并使用多种评价指标定量分析,表明了算法的可行性和有效性。 展开更多
关键词 极化SAR 全卷积网络 多尺度非对称卷积单元 代价函数
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部