期刊文献+
共找到124篇文章
< 1 2 7 >
每页显示 20 50 100
Effects of pooling,specialization,and discretionary task completion on queueing performance
1
作者 JIANG Houyuan 《运筹学学报(中英文)》 CSCD 北大核心 2024年第3期81-96,共16页
Pooling,unpooling/specialization,and discretionary task completion are typical operational strategies in queueing systems that arise in healthcare,call centers,and online sales.These strategies may have advantages and... Pooling,unpooling/specialization,and discretionary task completion are typical operational strategies in queueing systems that arise in healthcare,call centers,and online sales.These strategies may have advantages and disadvantages in different operational environments.This paper uses the M/M/1 and M/M/2 queues to study the impact of pooling,specialization,and discretionary task completion on the average queue length.Closed-form solutions for the average M/M/2 queue length are derived.Computational examples illustrate how the average queue length changes with the strength of pooling,specialization,and discretionary task completion.Finally,several conjectures are made in the paper. 展开更多
关键词 queuing systems pooling SPECIALIZATION discretionary task completion average queue length
下载PDF
Deep Rank-Based Average Pooling Network for Covid-19 Recognition 被引量:3
2
作者 Shui-Hua Wang Muhammad Attique Khan +3 位作者 Vishnuvarthanan Govindaraj Steven L.Fernandes Ziquan Zhu Yu-Dong Zhang 《Computers, Materials & Continua》 SCIE EI 2022年第2期2797-2813,共17页
(Aim)To make a more accurate and precise COVID-19 diagnosis system,this study proposed a novel deep rank-based average pooling network(DRAPNet)model,i.e.,deep rank-based average pooling network,for COVID-19 recognitio... (Aim)To make a more accurate and precise COVID-19 diagnosis system,this study proposed a novel deep rank-based average pooling network(DRAPNet)model,i.e.,deep rank-based average pooling network,for COVID-19 recognition.(Methods)521 subjects yield 1164 slice images via the slice level selection method.All the 1164 slice images comprise four categories:COVID-19 positive;community-acquired pneumonia;second pulmonary tuberculosis;and healthy control.Our method firstly introduced an improved multiple-way data augmentation.Secondly,an n-conv rankbased average pooling module(NRAPM)was proposed in which rank-based pooling—particularly,rank-based average pooling(RAP)—was employed to avoid overfitting.Third,a novel DRAPNet was proposed based on NRAPM and inspired by the VGGnetwork.Grad-CAM was used to generate heatmaps and gave our AI model an explainable analysis.(Results)Our DRAPNet achieved a micro-averaged F1 score of 95.49%by 10 runs over the test set.The sensitivities of the four classes were 95.44%,96.07%,94.41%,and 96.07%,respectively.The precisions of four classes were 96.45%,95.22%,95.05%,and 95.28%,respectively.The F1 scores of the four classes were 95.94%,95.64%,94.73%,and 95.67%,respectively.Besides,the confusion matrix was given.(Conclusions)The DRAPNet is effective in diagnosing COVID-19 and other chest infectious diseases.The RAP gives better results than four other methods:strided convolution,l2-norm pooling,average pooling,and max pooling. 展开更多
关键词 COVID-19 rank-based average pooling deep learning deep neural network
下载PDF
Multi-scale phase average waveform of electroencephalogram signals in childhood absence epilepsy using wavelet transformation 被引量:1
3
作者 Meiyun Zhang Benshu Zhang +2 位作者 Fenglou Wang Ying Chen Nan Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第10期774-780,共7页
BACKGROUND: Recent studies have focused on various methods of wavelet transformation for electroencephalogram (EEG) signals. However, there are very few studies reporting characteristics of multi-scale phase waves ... BACKGROUND: Recent studies have focused on various methods of wavelet transformation for electroencephalogram (EEG) signals. However, there are very few studies reporting characteristics of multi-scale phase waves during epileptic discharge.OBJECTIVE: To extract multi-scale phase average waveforms from childhood absence epilepsy EEG signals between time and frequency domains using wavelet transformation, and to compare EEG signals of absence seizure with pre-epileptic seizure and normal children, and to quantify multi-scale phase average waveforms from childhood absence epilepsy EEG signals. DESIGN, TIME AND SETTING: The case-comparative experiment was performed at the Department of Neuroelectrophysiology, Tianjin Medical University from August 2002 to May 2005. PARTICIPANTS: A total of 15 patients with childhood absence epilepsy from the General Hospital of Tianjin Medical University were enrolled in the study. The patients were not administered anti-epileptic drugs or sedatives prior to EEG testing. In addition, 12 healthy, age- and gender-matched children were also enrolled.METHODS: EEG signals were tested on 15 patients with childhood absence epilepsy and 12 normal children. Epileptic discharge signals during clinical and subclinical seizures were collected 10 and 20 times, respectively. The collected EEG signals were treated with wavelet transformation to extract multi-scale characteristics during absence epilepsy seizure using a conditional sampling method. Multi-scale phase average waveforms were collected using a conditional phase averaging technique. Amplitude of phase average waveform from EEG signals of epilepsy seizure, subclinical epileptic discharge, and EEG signals of normal children were compared and statistically analyzed in the first half-cycle.MAIN OUTCOME MEASURES: Multi-scale wavelet coefficient and the evolution of EEG signals were observed during childhood absence epilepsy seizures using wavelet transformation. Multi-scale phase average waveforms from EEG signals were observed using a conditional sampling method and phase averaging technique.RESULTS: Multi-scale characteristics of EEG signals demonstrated that 12-scale (3 Hz) rhythmical activity was significantly enhanced during childhood absence epilepsy seizure and co-existed with background structure (〈1 Hz, low frequency discharge). The phase average wave exhibited opposed phase abnormal rhythm at 3 Hz. Prior to childhood absence epilepsy seizure, EEG detected opposed abnormal a rhythm and 3 Hz composition, which were not detected with traditional EEG. Compared to EEG signals from normal children, epileptic discharges from clinical and subclinical childhood absence epilepsy seizures were positive and amplitude was significantly greater (P〈0.05).CONCLUSION: Wavelet transformation was used to analyze EEG signals from childhood absence epilepsy to obtain multi-scale quantitative characteristics and phase average waveforms. Multi-scale wavelet coefficients of EEG signals correlated with childhood absence epilepsy seizure, and multi-scale waveforms prior to epilepsy seizure were similar to characteristics during the onset period. Compared to normal children, EEG signals during epilepsy seizure exhibited an opposed phase model. 展开更多
关键词 EEG multi-scale absence epilepsy wavelet transform phase average waveform neuroelectrophysiology neural regeneration
下载PDF
Numerical research on flow and thermal transport in cooling pool of electrical power station using three depth-averaged turbulence models 被引量:1
4
作者 Li-ren YU Jun YU 《Water Science and Engineering》 EI CAS 2009年第3期1-12,共12页
This paper describes a numerical simulation of thermal discharge in the cooling pool of an electrical power station, aiming to develop general-purpose computational programs for grid generation and flow/pollutant tran... This paper describes a numerical simulation of thermal discharge in the cooling pool of an electrical power station, aiming to develop general-purpose computational programs for grid generation and flow/pollutant transport in the complex domains of natural and artificial waterways. Three depth-averaged two-equation closure turbulence models, k-ε, k- w, and k- w, were used to close the quasi three-dimensional hydrodynamic model. The k- w model was recently established by the authors and is still in the testing process. The general-purpose computational programs and turbulence models will be involved in a software that is under development. The SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) algorithm and multi-grid iterative method are used to solve the hydrodynamic fundamental governing equations, which are discretized on non-orthogonal boundary-fitted grids with a variable collocated arrangement. The results calculated with the three turbulence models were compared with one another. In addition to the steady flow and thermal transport simulation, the unsteady process of waste heat inpouring and development in the cooling pool was also investigated. 展开更多
关键词 waste heat transport turbulence two-equation closure depth-averaged k- w omodel cooling pool
下载PDF
基于改进YOLOv8的煤矿输送带异物检测 被引量:1
5
作者 洪炎 汪磊 +2 位作者 苏静明 汪瀚涛 李木石 《工矿自动化》 CSCD 北大核心 2024年第6期61-69,共9页
现有基于深度学习的输送带异物检测模型较大,难以在边缘设备部署,且对不同尺寸异物和小目标异物存在错检、漏检情况。针对上述问题,提出一种基于改进YOLOv8的煤矿输送带异物检测方法。采用深度可分离卷积、压缩和激励(SE)网络将YOLOv8... 现有基于深度学习的输送带异物检测模型较大,难以在边缘设备部署,且对不同尺寸异物和小目标异物存在错检、漏检情况。针对上述问题,提出一种基于改进YOLOv8的煤矿输送带异物检测方法。采用深度可分离卷积、压缩和激励(SE)网络将YOLOv8主干网络中C2f模块的Bottleneck重新构建为DSBlock,在保持模型轻量化的同时提升检测性能;为增强对不同尺寸目标物体信息的获取能力,引入高效通道注意力(ECA)机制,并对ECA的输入层进行自适应平均池化和自适应最大池化操作,得到跨通道交互MECA模块,以增强模块的全局视觉信息,进一步提升异物识别精度;将YOLOv8的3个检测头修改为4个轻量化小目标检测头,以增强对小目标的敏感性,有效降低小目标异物的漏检率和错检率。实验结果表明:改进YOLOv8的精确度达91.69%,mAP@50达92.27%,较YOLOv8分别提升了3.09%和4.07%;改进YOLOv8的检测速度达73.92帧/s,可充分满足煤矿输送带异物实时检测的需求;改进YOLOv8的精确度、mAP@50、参数量、权重大小和每秒浮点运算数均优于SSD,Faster-RCNN,YOLOv5,YOLOv7-tiny等主流目标检测算法。 展开更多
关键词 输送带异物检测 YOLOv8 SE网络 高效通道注意力机制 轻量化 小目标检测 自适应平均池化 自适应最大池化
下载PDF
基于改进图注意力网络的油井产量预测模型 被引量:1
6
作者 张强 彭骨 薛陈斌 《吉林大学学报(理学版)》 CAS 北大核心 2024年第4期933-942,共10页
针对图注意力网络处理噪声和时序数据较弱,并且在堆叠多层后出现梯度爆炸、过平滑等问题,提出一种改进图注意力网络模型.首先,使用Squeeze-and-Excitation模块对样本输入数据的特征信息进行不同程度关注,增强模型处理噪声的能力;其次,... 针对图注意力网络处理噪声和时序数据较弱,并且在堆叠多层后出现梯度爆炸、过平滑等问题,提出一种改进图注意力网络模型.首先,使用Squeeze-and-Excitation模块对样本输入数据的特征信息进行不同程度关注,增强模型处理噪声的能力;其次,使用多头注意力机制,将序列数据中每个序列相对其他序列进行加权求和,提取数据的时序性;再次,将图注意力网络提取的节点特征与节点的度中心性拼接,获取节点的局部特征,并用全局平均池化的方式提取节点的全局特征;最后,将两者进行融合得到节点的最终特征表示,增强模型的表征能力.为验证改进图注意力网络的有效性,将改进图注意力网络模型与LSTM,GRU和GGNN模型进行对比,实验结果表明,该模型预测效果得到有效提升,具有更高的预测精度. 展开更多
关键词 图注意力网络 多头注意力 节点度中心性 全局平均池化
下载PDF
结合Segformer与增强特征金字塔的文本检测方法
7
作者 张铭泉 张泽恩 +1 位作者 曹锦纲 邵绪强 《智能系统学报》 CSCD 北大核心 2024年第5期1111-1125,共15页
针对自然场景文本检测算法中的小尺度文本漏检、类文本像素误检以及边缘定位不准确的问题,提出一种基于Segformer和增强特征金字塔的文本检测模型。该模型首先采用基于混合Transformer(mix Trans-former,MiT)的编码器生成多尺度特征图;... 针对自然场景文本检测算法中的小尺度文本漏检、类文本像素误检以及边缘定位不准确的问题,提出一种基于Segformer和增强特征金字塔的文本检测模型。该模型首先采用基于混合Transformer(mix Trans-former,MiT)的编码器生成多尺度特征图;然后,在具有特征金字塔结构解码器的上采样部分,提出级联融合注意力模块,通过全局平均池化、全局最大池化和Ghost模块获取全局通道信息并保留文本特征;接着,在解码器的特征融合部分提出两级正交融合注意力模块,利用非对称卷积分别从水平和垂直方向进行信息增强;最后,利用可微分二值化对结果进行后处理。将本文方法在ICDAR2015、ShopSign1265和MTWI 3个数据集上进行实验,相比于其他8种方法,本文方法的F值均为最优,分别达到了87.8%、59.1%和74.8%。结果表明,本文方法有效提高了文本检测的准确率。 展开更多
关键词 文本检测 特征金字塔 注意力机制 Segformer Ghost模块 多尺度特征融合 平均池化 最大池化
下载PDF
多视野精细分析下的弱监督目标定位算法
8
作者 张英俊 贾聪聪 谢斌红 《计算机工程与设计》 北大核心 2024年第6期1750-1756,共7页
针对多尺度目标定位精度较差,难以捕获完整目标边界的问题,设计一种多视野精细分析模块并融入通道与空间注意力机制抑制背景噪声的干扰,获取多尺度目标的高分辨率特征。利用随机特征选取模块获取特征图随机位置的组合,聚合多个位置图获... 针对多尺度目标定位精度较差,难以捕获完整目标边界的问题,设计一种多视野精细分析模块并融入通道与空间注意力机制抑制背景噪声的干扰,获取多尺度目标的高分辨率特征。利用随机特征选取模块获取特征图随机位置的组合,聚合多个位置图获取最具辨别性的位置及其它位置的信息,融合浅层生成的类激活图与聚合类激活图获取细粒度位置信息,捕获完整的目标边界。与现有的弱监督定位方法相比,在解决多尺度目标定位效果差和局部最优问题上具有一定的优势。 展开更多
关键词 弱监督学习 目标定位 多尺度特征融合 注意力机制 全局平均池化 类激活图 正则化
下载PDF
基于改进卷积神经网络的中药饮片图像识别 被引量:3
9
作者 李玥辰 赵晓 +1 位作者 王若男 杨晨 《科学技术与工程》 北大核心 2024年第9期3596-3604,共9页
为解决AlexNet网络模型在中药饮片图像识别中存在的识别准确率和鲁棒性不够理想的问题,以常见的50种中药饮片为研究对象,对AlexNet网络模型进行改进优化。首先通过拍摄以及搜索引擎获取中药饮片图像,并对图像进行数据扩充以及细节增强... 为解决AlexNet网络模型在中药饮片图像识别中存在的识别准确率和鲁棒性不够理想的问题,以常见的50种中药饮片为研究对象,对AlexNet网络模型进行改进优化。首先通过拍摄以及搜索引擎获取中药饮片图像,并对图像进行数据扩充以及细节增强预处理。其次对AlexNet网络模型进行优化改进,通过缩减原网络的卷积核个数和卷积核大小、使用全局平均池化(global average pooling,GAP)替代全连接层以减少网络参数;去除局部响应归一化(local response normalization,LRN)层、引入批量归一化(batch normalization,BN)层和使用Lion优化算法替代随机梯度下降(stochastic gradient descent,SGD)优化算法以提高网络训练速度;使用Mish激活函数替代ReLU激活函数和引入通道注意力机制SENet网络以提高模型的识别精度。实验结果表明,改进后的网络模型相比于AlexNet网络模型,平均识别率提高了6.1%,平均损失率下降了14.4%,网络参数由原来的60 M缩减至1 M,该结果表明在中药饮片数据集上,改进后的网络模型具有更高的识别率和更好的鲁棒性,可为中药饮片图像识别领域的进一步发展提供有力支持。 展开更多
关键词 AlexNet网络 中药饮片 全局平均池化 Lion优化算法 Mish激活函数 SENet网络
下载PDF
基于改进算法YOLOv5+的混凝土轨枕裂纹检测 被引量:1
10
作者 令雅莉 杨桂芹 +1 位作者 张又元 王小鹏 《铁道标准设计》 北大核心 2024年第4期70-77,87,共9页
基于既有研究成果在对混凝土轨枕裂纹检测效率不足的基础上,提出一种改进算法YOLOv5+,主要以YOLOv5网络模型为基础,对混凝土轨枕裂纹进行高效检测。首先,采用分治标签的策略来增大裂纹在标签中的实际占比,从而解决混凝土轨枕裂纹尺度变... 基于既有研究成果在对混凝土轨枕裂纹检测效率不足的基础上,提出一种改进算法YOLOv5+,主要以YOLOv5网络模型为基础,对混凝土轨枕裂纹进行高效检测。首先,采用分治标签的策略来增大裂纹在标签中的实际占比,从而解决混凝土轨枕裂纹尺度变化大的问题,使网络更利于提取有效特征;其次,将YOLOv5网络结构中SPP模块的最大池化层改为平均池化层,减少裂纹漏检的现象;同时,在YOLOv5骨干网络中嵌入SE注意力模块(Squeeze and Excitation,SE)提高对细小裂纹的检测能力;最后,结合新的检测尺度与特征融合网络,降低微小裂纹的漏检现象。实验结果表明,以YOLOv5网络模型为基础的改进算法YOLOv5+,除了召回率Recall变化不大外,精确率Precision提高6.5%,平均精度均值mAP提升8%,帧率FPS也有所提升,能够满足实时性的检测需求。 展开更多
关键词 混凝土轨枕 裂纹检测 分治标签 平均池化 注意力模块 YOLOv5+
下载PDF
LRAE-Unet:轻量级MRI脑肿瘤全自动分割网络
11
作者 林嘉豪 王瑜 +1 位作者 肖洪兵 孙梅 《中国医学物理学杂志》 CSCD 2024年第1期43-49,共7页
提出一种轻量级脑肿瘤全自动分割网络,即轻量级残差注意力增强网络(LRAE-Unet)。首先采用轻量级残差模块解决网络层数增加时出现的梯度消失和网络退化问题;其次采用轻量级自注意力模块抑制输入图像中的不相关区域,同时突出特定局部区域... 提出一种轻量级脑肿瘤全自动分割网络,即轻量级残差注意力增强网络(LRAE-Unet)。首先采用轻量级残差模块解决网络层数增加时出现的梯度消失和网络退化问题;其次采用轻量级自注意力模块抑制输入图像中的不相关区域,同时突出特定局部区域的显著特征;最后通过增强视野平均池化模块减少特征图的空间,节省计算资源,控制网络过拟合现象。在BraTS 2019数据集的测试结果显示LRAE-Unet在完整肿瘤、肿瘤核心与增强肿瘤区域的Dice相似系数为91.24%、88.64%与88.32%,证明使用LRAE-Unet进行脑瘤分割具有可行性与有效性。 展开更多
关键词 脑肿瘤 LRAE-Unet 轻量级残差模块 轻量级自注意力模块 平均池化模块
下载PDF
基于SVDD与VGG的纽扣表面缺陷检测
12
作者 樊鑫江 佟强 +2 位作者 杨大利 侯凌燕 梁旭 《计算机工程与设计》 北大核心 2024年第3期918-924,共7页
为解决纽扣表面缺陷检测中人工效率低下,且无需对纽扣表面瑕疵进行分类的问题,提出一种基于DEEP SVDD与改进VGG16的纽扣表面缺陷检测模型。在VGG16中增加BN层加快网络收敛;为提升网络特征提取能力引入SE注意力模块;使用全局平局池化替... 为解决纽扣表面缺陷检测中人工效率低下,且无需对纽扣表面瑕疵进行分类的问题,提出一种基于DEEP SVDD与改进VGG16的纽扣表面缺陷检测模型。在VGG16中增加BN层加快网络收敛;为提升网络特征提取能力引入SE注意力模块;使用全局平局池化替代全连接层,减少模型参数量,使模型更加健壮。实验结果表明,改进后的模型在DEEP SVDD中的两种方法软边界及一类方法的AUC值分别提升7.7%、5.9%,均高于96%,单张检测时间仅4.5 ms,模型性能满足实际要求。 展开更多
关键词 纽扣表面检测 深度支持向量数据描述 VGG16网络模型 注意力机制 全局平均池化层 批量归一化 深度学习
下载PDF
基于分形和分理论的分形池化算法
13
作者 肖莎莎 高哲 +2 位作者 贾凯 焦芷媛 柴浩宇 《微电子学与计算机》 2024年第7期1-7,共7页
传统池化操作既不能客观地评价池化区域中数据之间的差异性,也不能有效地保留池化区域中鉴别性特征。为解决这类问题,提出了一种基于分形和分理论,且能够根据每个特征图各通道中数据间的差异性,自行地选择最优池化策略的分形池化算法。... 传统池化操作既不能客观地评价池化区域中数据之间的差异性,也不能有效地保留池化区域中鉴别性特征。为解决这类问题,提出了一种基于分形和分理论,且能够根据每个特征图各通道中数据间的差异性,自行地选择最优池化策略的分形池化算法。首先,引入分形和分的定义,构造分形池化算子和训练误差的反向传播算法。该算子不仅包括最大池化、平均池化,还能够降低训练误差。然后,在算法实现的过程中,根据每个特征图各通道中数据间的差异性自适应地整定阶次,以确定池化区域中每个数据的训练权重。最后,在不同数据集和不同架构上进行了大量分类性能实验,验证了所提出的方法比传统池化方法和混合池化都取得了更好的分类效果。 展开更多
关键词 分形和分 最大池化 平均池化 分形池化 分类
下载PDF
基于改进的IIE-SegNet的快速图像语义分割方法
14
作者 李庆 王宏健 +2 位作者 李本银 肖瑶 迟志康 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第2期314-323,共10页
针对IIE-SegNet计算复杂度高、计算量大等问题,本文提出一种基于IIE-SegNet的改进方法。编码结构中引入经ImageNet训练过的VGG16和多尺度空洞卷积空间金字塔池化来获得丰富的编码信息;解码结构中,设计全局加平均模块来解决IIE-SegNet计... 针对IIE-SegNet计算复杂度高、计算量大等问题,本文提出一种基于IIE-SegNet的改进方法。编码结构中引入经ImageNet训练过的VGG16和多尺度空洞卷积空间金字塔池化来获得丰富的编码信息;解码结构中,设计全局加平均模块来解决IIE-SegNet计算量大的问题;研究Focal损失函数来解决正、负采样不平衡的问题。实验结果表明:与IIE-SegNet相比,本方法在PASCAL VOC 2012数据集上的语义分割速度更快,平均每次迭代快0.6 s左右,测试单张图像的时间平均减少了0.94 s;分割精度更高,MIoU提升了2.1%。在扩展的PASCAL VOC 2012(Exp-PASCAL VOC 2012)数据集上的语义分割速度更快,平均每次迭代快0.4 s左右,测试单张图像的时间平均减少了0.92 s;分割精度更高,MPA和MIoU分别提升了2.6%和2.8%,特别是对于小尺度目标分割边界更清晰,性能得到了很大的提升。 展开更多
关键词 语义分割 深度学习 多尺度空洞卷积空间金字塔池化 图像信息熵 全局加平均 VGG16 IIE-SegNet
下载PDF
基于全局频域池化的行为识别算法
15
作者 贾志超 张海超 +3 位作者 张闯 颜蒙蒙 储金祺 颜之岳 《计算机应用研究》 CSCD 北大核心 2024年第9期2867-2873,共7页
目前基于3D-ConvNet的行为识别算法普遍使用全局平均池化(global average pooling,GAP)压缩特征信息,但会产生信息损失、信息冗余和网络过拟合等问题。为了解决上述问题,更好地保留卷积层提取到的高级语义信息,提出了基于全局频域池化(g... 目前基于3D-ConvNet的行为识别算法普遍使用全局平均池化(global average pooling,GAP)压缩特征信息,但会产生信息损失、信息冗余和网络过拟合等问题。为了解决上述问题,更好地保留卷积层提取到的高级语义信息,提出了基于全局频域池化(global frequency domain pooling,GFDP)的行为识别算法。首先,根据离散余弦变换(discrete cosine transform,DCT)看出,GAP是频域中特征分解的一种特例,从而引入更多频率分量增加特征通道间的特异性,减少信息压缩后的信息冗余;其次,为了更好地抑制过拟合问题,引入卷积层的批标准化策略,并将其拓展在以ERB(efficient residual block)-Res3D为骨架的行为识别模型的全连接层以优化数据分布;最后,将该方法在UCF101数据集上进行验证。结果表明,模型计算量为3.5 GFlops,参数量为7.4 M,最终的识别准确率在ERB-Res3D模型的基础上提升了3.9%,在原始Res3D模型基础上提升了17.4%,高效实现了更加准确的行为识别结果。 展开更多
关键词 3D-ConvNet 人体行为识别 全局平均池化 离散余弦变换
下载PDF
基于PSO-CNN算法的齿轮故障诊断方法
16
作者 谷娜 吴胜利 邢文婷 《科学技术与工程》 北大核心 2024年第26期11246-11252,共7页
齿轮故障振动信号具有非线性和非平稳性的特性,以及样本不均衡问题和运行工况复杂多变的情况,造成齿轮故障特征诊断的准确度和稳定性偏低,因此,通过研究提高样本集质量和改进深度学习模型的综合方法,以此来提高模型的诊断精度。首先采... 齿轮故障振动信号具有非线性和非平稳性的特性,以及样本不均衡问题和运行工况复杂多变的情况,造成齿轮故障特征诊断的准确度和稳定性偏低,因此,通过研究提高样本集质量和改进深度学习模型的综合方法,以此来提高模型的诊断精度。首先采用变分模态分解(variational mode decomposition,VMD)对信号进行处理,提取每个本征模态函数(intrinsic mode function,IMF)分量的能量熵无量纲指标作为样本集,克服样本不均衡和工况变化带来的不利影响。然后,利用粒子群优化(particle swarm optimization,PSO)算法自主优化卷积神经网络(convolutional neural network,CNN)的学习率(PSO-CNN),降低模型出现过拟合问题的可能性,并利用Inception模块的概念,设计一个多分支全局平均池化网络用于特征融合,进一步提高模型的故障诊断精度。最后,通过试验数据对所提方法进行了验证,结果表明,本文方法的故障诊断准确率可达0.99,并于其他方法进行对比,凸显该方法的有效性和稳定性。 展开更多
关键词 VMD能量熵 PSO-CNN 学习率 多分支全局平均池化网络
下载PDF
基于Grad-CAM可视化与特征识别率结合的草地贪夜蛾及近缘种成虫识别模型评估
17
作者 魏靖 季英超 《现代农业科技》 2024年第8期163-169,共7页
为提升草地贪夜蛾及其近缘种成虫识别模型的泛化能力,除识别准确率外,额外引入特征识别率对模型的泛化能力进行评估。将VGG-16-bn模型的全连接层以全局平均值池化层取代,并在模型训练阶段引入了Grad-CAM可视化结果进行训练指导,共构建了... 为提升草地贪夜蛾及其近缘种成虫识别模型的泛化能力,除识别准确率外,额外引入特征识别率对模型的泛化能力进行评估。将VGG-16-bn模型的全连接层以全局平均值池化层取代,并在模型训练阶段引入了Grad-CAM可视化结果进行训练指导,共构建了4种改进模型识别草地贪夜蛾及其近缘种成虫。结果表明,改进后的模型的识别准确率均在99.22%以上,VGG-16-bn-GAP模型参数内存需求仅为原始模型的10.98%。为评估模型的泛化能力,利用导向反向传播梯度值、Grad-CAM及Grad-CAM++对模型习得的特征进行可视化,并与专家进行人工识别的关键视觉特征进行比较。结果表明,改进的VGG-16-bn-GAP模型和VGG-16-bn-GAIN模型获得的草地贪夜蛾平均特征识别率比原始模型分别提高12.25%和13.42%。本文提出的以特征识别率评估模型泛化能力的方法,可为特征识别率和识别准确率的提升提供参考。 展开更多
关键词 草地贪夜蛾 Grad-CAM 全局平均值池化 泛化能力 特征识别率
下载PDF
融合主题特征的文本情感分析模型
18
作者 杨俊哲 宋莹 陈逸菲 《计算机科学》 CSCD 北大核心 2024年第S01期159-166,共8页
随着大型语言模型的快速发展,如何在保证模型性能的同时减少模型参数量,成为了自然语言处理领的一个重要挑战。然而,现有的参数压缩技术往往难以兼顾模型的稳定性和泛化能力。为此,提出了一种融合主题特征的情感分析新架构,旨在利用主... 随着大型语言模型的快速发展,如何在保证模型性能的同时减少模型参数量,成为了自然语言处理领的一个重要挑战。然而,现有的参数压缩技术往往难以兼顾模型的稳定性和泛化能力。为此,提出了一种融合主题特征的情感分析新架构,旨在利用主题信息增强模型对文本情感极性的判断能力。具体而言,采用一种结合LDA和K-means的方法来提取文本的主题特征,并将其作为固定维度的向量与词嵌入进行拼接,得到新的词向量表示。随后使用平均池化技术构建句子级别的表征向量,并输入到一个全连接层进行情感分类。为了验证所提模型的有效性,在公开的情感分析数据集上与多个基准算法进行了对比实验。实验结果表明,所提模型在多个数据集上明显优于ALBERT,准确率提高了约3.5%,在参数量仅有微小增加的情况下维持了较高的稳定性和泛化能力。 展开更多
关键词 情感分析 ALBERT模型 LDA模型 主题特征 平均池化
下载PDF
基于切分通道注意力网络的图像分类算法
19
作者 储岳中 石玉金 +1 位作者 张学锋 刘恒 《工程科学学报》 EI CSCD 北大核心 2024年第10期1856-1863,共8页
通道注意力机制可以有效利用不同的特征通道,通过对特征图的通道进行加权和调整,使得卷积神经网络可以更加关注重要的特征通道,以提高卷积神经网络的分类能力.然而,对于使用全局平均池化来获取通道全局特征的方法,特征图中不同的通道有... 通道注意力机制可以有效利用不同的特征通道,通过对特征图的通道进行加权和调整,使得卷积神经网络可以更加关注重要的特征通道,以提高卷积神经网络的分类能力.然而,对于使用全局平均池化来获取通道全局特征的方法,特征图中不同的通道有极大概率出现相同的均值,使得全局平均池化后的特征缺乏多样性,进一步影响网络分类性能.针对此问题,提出一种切分通道注意力机制来构建模块,该模块对全局平均池化的输出维度进行了扩展,减轻全局平均池化造成的信息丢失,增强了通道注意力中全局平均池化层的特征多样性,然后使用多个一维卷积分别计算通道维度上每个区域的注意力权重.将切分通道注意力机制与多种图像分类网络相结合,在CIFAR-100和ImageNet数据集上进行了图像分类实验.实验结果表明,切分通道注意力机制在保持轻量化的基础上仍然能有效提高模型的精度,并且与其他注意力机制相比也表现出较好的优势. 展开更多
关键词 图像分类 通道注意力 全局平均池化 高效通道注意力 模型解释
下载PDF
基于YOLOv4改进特征融合及全局感知的目标检测算法
20
作者 程德强 马尚 +2 位作者 寇旗旗 张皓翔 钱建生 《智能系统学报》 CSCD 北大核心 2024年第2期325-334,共10页
YOLOv4算法在检测速度和精度上达到了很好的平衡,但仍存在着定位框不准确、检测率低的问题,尤其是在检测目标较小、尺度变化大的情况下。针对以上问题,提出一种新的基于YOLOv4改进的目标检测算法。该算法采用改进的特征融合模块(path ag... YOLOv4算法在检测速度和精度上达到了很好的平衡,但仍存在着定位框不准确、检测率低的问题,尤其是在检测目标较小、尺度变化大的情况下。针对以上问题,提出一种新的基于YOLOv4改进的目标检测算法。该算法采用改进的特征融合模块(path aggregation network combined with bi-directional feature pyramid network,P-Bifpn)代替PANet(path aggregation network),增加跨尺度连接的同时在输出端引入权重,增强重要特征的表现力,解决由多尺度变化而引起的精度下降。然后,采用新的全局注意力机制(global association network,GANet),在减少平均池化与计算量的同时增强Sigmoid函数输出,加强模型对目标上下文关系的学习,减少噪声干扰和全局信息的损失。试验采用RSOD、NWPU VHR-10数据集,平均检测精度分别提升了约5%和3%;泛化试验采用VOC2007+2012公共数据集,平均检测精度提升了约0.6%。试验结果表明改进的算法能够有效提高模型的检测能力。 展开更多
关键词 YOLOv4 目标检测 特征融合 跨尺度 多尺度变化 全局注意力 平均池化 上下文信息
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部