Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often...Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales.展开更多
Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false...Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false detection rates when applying object recognition algorithms tailored for remote sensing imagery.Additionally,these complexities contribute to inaccuracies in target localization and hinder precise target categorization.This paper addresses these challenges by proposing a solution:The YOLO-MFD model(YOLO-MFD:Remote Sensing Image Object Detection withMulti-scale Fusion Dynamic Head).Before presenting our method,we delve into the prevalent issues faced in remote sensing imagery analysis.Specifically,we emphasize the struggles of existing object recognition algorithms in comprehensively capturing critical image features amidst varying scales and complex backgrounds.To resolve these issues,we introduce a novel approach.First,we propose the implementation of a lightweight multi-scale module called CEF.This module significantly improves the model’s ability to comprehensively capture important image features by merging multi-scale feature information.It effectively addresses the issues of missed detection and mistaken alarms that are common in remote sensing imagery.Second,an additional layer of small target detection heads is added,and a residual link is established with the higher-level feature extraction module in the backbone section.This allows the model to incorporate shallower information,significantly improving the accuracy of target localization in remotely sensed images.Finally,a dynamic head attentionmechanism is introduced.This allows themodel to exhibit greater flexibility and accuracy in recognizing shapes and targets of different sizes.Consequently,the precision of object detection is significantly improved.The trial results show that the YOLO-MFD model shows improvements of 6.3%,3.5%,and 2.5%over the original YOLOv8 model in Precision,map@0.5 and map@0.5:0.95,separately.These results illustrate the clear advantages of the method.展开更多
岩石薄片的岩性识别是地质分析中不可或缺的一环,其精准度直接影响后续地层岩石种类、性质和矿物成分等信息的确定,对于地质勘探和矿产开采具有重要意义。为了快速准确地识别岩性,本文提出了一种改进的MobileNetV2轻量化模型,通过选取5...岩石薄片的岩性识别是地质分析中不可或缺的一环,其精准度直接影响后续地层岩石种类、性质和矿物成分等信息的确定,对于地质勘探和矿产开采具有重要意义。为了快速准确地识别岩性,本文提出了一种改进的MobileNetV2轻量化模型,通过选取5种岩石类型共3 700张岩石薄片图像进行岩性识别。在MobileNetV2的倒残差结构中嵌入坐标注意力机制,融合图像中多种矿物的全局特征信息。此外,改进MobileNetV2中的分类器,降低模型的参数量和计算复杂度,从而提高模型的运算速度和效率,并采用带泄露线性整流函数(leaky rectified linear unit, Leaky ReLU)作为激活函数,避免网络训练中的梯度消失问题。实验结果表明,本文提出的改进后的MobileNetV2模型大小仅为2.30 MB,在测试集上的精确率、召回率、F_(1)值分别为91.24%、90.18%、90.70%,具有较高的准确性,相比于SqueezeNet、ShuffleNetV2等同类型的轻量化网络,分类效果最好。展开更多
针对航拍图像目标检测中小目标特征模糊问题,提出一种改进YOLO_v5x的目标检测算法。通过在YOLO_v5x的主干和颈部网络中添加空间到深度(space-to-depth,SPD)模块来减少细粒度信息丢失;在检测输出端添加1个小目标预测头,提高算法学习低分...针对航拍图像目标检测中小目标特征模糊问题,提出一种改进YOLO_v5x的目标检测算法。通过在YOLO_v5x的主干和颈部网络中添加空间到深度(space-to-depth,SPD)模块来减少细粒度信息丢失;在检测输出端添加1个小目标预测头,提高算法学习低分辨率特征的效率;引入协调注意力(coordinate attention,CA)机制,将横向和纵向的位置信息编码到通道注意中,增强网络对不同维度特征的提取能力;在完整交并比(complete-intersection over union,CIOU)损失函数的基础上引入Alpha交并比(α-IOU)损失函数,获得更准确的边界框回归,实现图像中目标更精确的定位。通过在Visdrone数据集上对改进YOLO_v5x算法进行训练和对比实验,结果表明:相比于原YOLO_v5x,改进目标检测算法的平均检测精度提升了7.8%,小目标检测的平均精度达23.9%,能够有效识别无人机航拍图中的小目标;相比于RetinaNet、YOLOX-S、Grid-RCNN等目标检测算法,改进目标检测算法的小目标检测平均精度最高,在当前主流检测小目标算法中达到先进水平。展开更多
基金This research was supported by the National Natural Science Foundation of China No.62276086the National Key R&D Program of China No.2022YFD2000100Zhejiang Provincial Natural Science Foundation of China under Grant No.LTGN23D010002.
文摘Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales.
基金the Scientific Research Fund of Hunan Provincial Education Department(23A0423).
文摘Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false detection rates when applying object recognition algorithms tailored for remote sensing imagery.Additionally,these complexities contribute to inaccuracies in target localization and hinder precise target categorization.This paper addresses these challenges by proposing a solution:The YOLO-MFD model(YOLO-MFD:Remote Sensing Image Object Detection withMulti-scale Fusion Dynamic Head).Before presenting our method,we delve into the prevalent issues faced in remote sensing imagery analysis.Specifically,we emphasize the struggles of existing object recognition algorithms in comprehensively capturing critical image features amidst varying scales and complex backgrounds.To resolve these issues,we introduce a novel approach.First,we propose the implementation of a lightweight multi-scale module called CEF.This module significantly improves the model’s ability to comprehensively capture important image features by merging multi-scale feature information.It effectively addresses the issues of missed detection and mistaken alarms that are common in remote sensing imagery.Second,an additional layer of small target detection heads is added,and a residual link is established with the higher-level feature extraction module in the backbone section.This allows the model to incorporate shallower information,significantly improving the accuracy of target localization in remotely sensed images.Finally,a dynamic head attentionmechanism is introduced.This allows themodel to exhibit greater flexibility and accuracy in recognizing shapes and targets of different sizes.Consequently,the precision of object detection is significantly improved.The trial results show that the YOLO-MFD model shows improvements of 6.3%,3.5%,and 2.5%over the original YOLOv8 model in Precision,map@0.5 and map@0.5:0.95,separately.These results illustrate the clear advantages of the method.
文摘岩石薄片的岩性识别是地质分析中不可或缺的一环,其精准度直接影响后续地层岩石种类、性质和矿物成分等信息的确定,对于地质勘探和矿产开采具有重要意义。为了快速准确地识别岩性,本文提出了一种改进的MobileNetV2轻量化模型,通过选取5种岩石类型共3 700张岩石薄片图像进行岩性识别。在MobileNetV2的倒残差结构中嵌入坐标注意力机制,融合图像中多种矿物的全局特征信息。此外,改进MobileNetV2中的分类器,降低模型的参数量和计算复杂度,从而提高模型的运算速度和效率,并采用带泄露线性整流函数(leaky rectified linear unit, Leaky ReLU)作为激活函数,避免网络训练中的梯度消失问题。实验结果表明,本文提出的改进后的MobileNetV2模型大小仅为2.30 MB,在测试集上的精确率、召回率、F_(1)值分别为91.24%、90.18%、90.70%,具有较高的准确性,相比于SqueezeNet、ShuffleNetV2等同类型的轻量化网络,分类效果最好。
文摘针对航拍图像目标检测中小目标特征模糊问题,提出一种改进YOLO_v5x的目标检测算法。通过在YOLO_v5x的主干和颈部网络中添加空间到深度(space-to-depth,SPD)模块来减少细粒度信息丢失;在检测输出端添加1个小目标预测头,提高算法学习低分辨率特征的效率;引入协调注意力(coordinate attention,CA)机制,将横向和纵向的位置信息编码到通道注意中,增强网络对不同维度特征的提取能力;在完整交并比(complete-intersection over union,CIOU)损失函数的基础上引入Alpha交并比(α-IOU)损失函数,获得更准确的边界框回归,实现图像中目标更精确的定位。通过在Visdrone数据集上对改进YOLO_v5x算法进行训练和对比实验,结果表明:相比于原YOLO_v5x,改进目标检测算法的平均检测精度提升了7.8%,小目标检测的平均精度达23.9%,能够有效识别无人机航拍图中的小目标;相比于RetinaNet、YOLOX-S、Grid-RCNN等目标检测算法,改进目标检测算法的小目标检测平均精度最高,在当前主流检测小目标算法中达到先进水平。