期刊文献+
共找到1,161篇文章
< 1 2 59 >
每页显示 20 50 100
Modified multiple-component scattering power decomposition for PolSAR data based on eigenspace of coherency matrix
1
作者 ZHANG Shuang WANG Lu WANG Wen-Qing 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2024年第4期572-581,共10页
A modified multiple-component scattering power decomposition for analyzing polarimetric synthetic aperture radar(PolSAR)data is proposed.The modified decomposition involves two distinct steps.Firstly,ei⁃genvectors of ... A modified multiple-component scattering power decomposition for analyzing polarimetric synthetic aperture radar(PolSAR)data is proposed.The modified decomposition involves two distinct steps.Firstly,ei⁃genvectors of the coherency matrix are used to modify the scattering models.Secondly,the entropy and anisotro⁃py of targets are used to improve the volume scattering power.With the guarantee of high double-bounce scatter⁃ing power in the urban areas,the proposed algorithm effectively improves the volume scattering power of vegeta⁃tion areas.The efficacy of the modified multiple-component scattering power decomposition is validated using ac⁃tual AIRSAR PolSAR data.The scattering power obtained through decomposing the original coherency matrix and the coherency matrix after orientation angle compensation is compared with three algorithms.Results from the experiment demonstrate that the proposed decomposition yields more effective scattering power for different PolSAR data sets. 展开更多
关键词 PolSAR data model-based decomposition eigenvalue decomposition scattering power
下载PDF
Block Incremental Dense Tucker Decomposition with Application to Spatial and Temporal Analysis of Air Quality Data
2
作者 SangSeok Lee HaeWon Moon Lee Sael 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期319-336,共18页
How can we efficiently store and mine dynamically generated dense tensors for modeling the behavior of multidimensional dynamic data?Much of the multidimensional dynamic data in the real world is generated in the form... How can we efficiently store and mine dynamically generated dense tensors for modeling the behavior of multidimensional dynamic data?Much of the multidimensional dynamic data in the real world is generated in the form of time-growing tensors.For example,air quality tensor data consists of multiple sensory values gathered from wide locations for a long time.Such data,accumulated over time,is redundant and consumes a lot ofmemory in its raw form.We need a way to efficiently store dynamically generated tensor data that increase over time and to model their behavior on demand between arbitrary time blocks.To this end,we propose a Block IncrementalDense Tucker Decomposition(BID-Tucker)method for efficient storage and on-demand modeling ofmultidimensional spatiotemporal data.Assuming that tensors come in unit blocks where only the time domain changes,our proposed BID-Tucker first slices the blocks into matrices and decomposes them via singular value decomposition(SVD).The SVDs of the time×space sliced matrices are stored instead of the raw tensor blocks to save space.When modeling from data is required at particular time blocks,the SVDs of corresponding time blocks are retrieved and incremented to be used for Tucker decomposition.The factor matrices and core tensor of the decomposed results can then be used for further data analysis.We compared our proposed BID-Tucker with D-Tucker,which our method extends,and vanilla Tucker decomposition.We show that our BID-Tucker is faster than both D-Tucker and vanilla Tucker decomposition and uses less memory for storage with a comparable reconstruction error.We applied our proposed BID-Tucker to model the spatial and temporal trends of air quality data collected in South Korea from 2018 to 2022.We were able to model the spatial and temporal air quality trends.We were also able to verify unusual events,such as chronic ozone alerts and large fire events. 展开更多
关键词 Dynamic decomposition tucker tensor tensor factorization spatiotemporal data tensor analysis air quality
下载PDF
Gearbox Fault Diagnosis using Adaptive Zero Phase Time-varying Filter Based on Multi-scale Chirplet Sparse Signal Decomposition 被引量:16
3
作者 WU Chunyan LIU Jian +2 位作者 PENG Fuqiang YU Dejie LI Rong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期831-838,共8页
When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To o... When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion. 展开更多
关键词 zero phase time-varying filter multi-scale CHIRPLET sparse signal decomposition speed-changing gearbox fault diagnosis
下载PDF
Multi-scale spatial relationships between soil total nitrogen and influencing factors in a basin landscape based on multivariate empirical mode decomposition
4
作者 ZHU Hongfen CAO Yi +3 位作者 JING Yaodong LIU Geng BI Rutian YANG Wude 《Journal of Arid Land》 SCIE CSCD 2019年第3期385-399,共15页
The relationships between soil total nitrogen(STN)and influencing factors are scale-dependent.The objective of this study was to identify the multi-scale spatial relationships of STN with selected environmental factor... The relationships between soil total nitrogen(STN)and influencing factors are scale-dependent.The objective of this study was to identify the multi-scale spatial relationships of STN with selected environmental factors(elevation,slope and topographic wetness index),intrinsic soil factors(soil bulk density,sand content,silt content,and clay content)and combined environmental factors(including the first two principal components(PC1 and PC2)of the Vis-NIR soil spectra)along three sampling transects located at the upstream,midstream and downstream of Taiyuan Basin on the Chinese Loess Plateau.We separated the multivariate data series of STN and influencing factors at each transect into six intrinsic mode functions(IMFs)and one residue by multivariate empirical mode decomposition(MEMD).Meanwhile,we obtained the predicted equations of STN based on MEMD by stepwise multiple linear regression(SMLR).The results indicated that the dominant scales of explained variance in STN were at scale 995 m for transect 1,at scales 956 and 8852 m for transect 2,and at scales 972,5716 and 12,317 m for transect 3.Multi-scale correlation coefficients between STN and influencing factors were less significant in transect 3 than in transects 1 and 2.The goodness of fit root mean square error(RMSE),normalized root mean square error(NRMSE),and coefficient of determination(R2)indicated that the prediction of STN at the sampling scale by summing all of the predicted IMFs and residue was more accurate than that by SMLR directly.Therefore,the multi-scale method of MEMD has a good potential in characterizing the multi-scale spatial relationships between STN and influencing factors at the basin landscape scale. 展开更多
关键词 intrinsic MODE function MULTIVARIATE empirical MODE decomposition multi-scale spatial relationship sampling TRANSECT soil total nitrogen Chinese LOESS PLATEAU
下载PDF
Discrete Wavelet Multi-scale Decomposition of the Temporal Gravity Variations in North China
5
作者 Liu Fang Zhu Yiqing Chen Shi 《Earthquake Research in China》 2014年第3期360-369,共10页
On the basis of the absolute and relative gravity observations in North China,spatial dynamic variation of regional gravity fields is obtained. A multi-scale decomposition technique is used to separate anomalies at di... On the basis of the absolute and relative gravity observations in North China,spatial dynamic variation of regional gravity fields is obtained. A multi-scale decomposition technique is used to separate anomalies at different depths,and give some explanation to gravity variation at different time space scales. Gravity variation trends in North China are improved. Based on this result and the analysis of wavelet power spectrum,the images of the depth of wavelet approximation and detail are obtained. The results obtained are of scientific significance for the deep understanding of potential seismic risk in North China from gravity variations in different time space scales. 展开更多
关键词 Wavelet decomposition multi-scale Gravity variation field POWERSPECTRUM North China
下载PDF
Empirical data decomposition and its applications in image compression 被引量:2
6
作者 Deng Jiaxian Wu Xiaoqin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期164-170,共7页
A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, i... A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, is automatically determined by observed data, and is able to implement multi-resolution analysis as wavelet transform. The algorithm is suitable for analyzing non-stationary data and can effectively wipe off the relevance of observed data. Then through discussing the applications of EDD in image compression, the paper presents a 2-dimension data decomposition framework and makes some modifications of contexts used by Embedded Block Coding with Optimized Truncation (EBCOT) . Simulation results show that EDD is more suitable for non-stationary image data compression. 展开更多
关键词 Image processing Image compression Empirical data decomposition NON-STATIONARY NONLINEAR data decomposition framework
下载PDF
Data decomposition method for full-core Monte Carlo transport–burnup calculation 被引量:2
7
作者 Hong-Fei Liu Peng Ge +2 位作者 Sheng-Peng Yu Jing Song Xiao-Lei Zheng 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第2期40-47,共8页
Monte Carlo transport simulations of a full-core reactor with a high-fidelity structure have been made possible by modern-day computing capabilities. Performing transport–burnup calculations of a full-core model typi... Monte Carlo transport simulations of a full-core reactor with a high-fidelity structure have been made possible by modern-day computing capabilities. Performing transport–burnup calculations of a full-core model typically includes millions of burnup areas requiring hundreds of gigabytes of memory for burnup-related tallies. This paper presents the study of a parallel computing method for full-core Monte Carlo transport–burnup calculations and the development of a thread-level data decomposition method. The proposed method decomposes tally accumulators into different threads and improves the parallel communication pattern and memory access efficiency. A typical pressurized water reactor burnup assembly along with the benchmark for evaluation and validation of reactor simulations model was used to test the proposed method.The result indicates that the method effectively reduces memory consumption and maintains high parallel efficiency. 展开更多
关键词 MONTE Carlo BURNUP CALCULATION data decomposition BEAVRS SuperMC
下载PDF
Denoising of seismic data via multi-scale ridgelet transform 被引量:4
8
作者 Henglei Zhang Tianyou Liu Yuncui Zhang 《Earthquake Science》 CSCD 2009年第5期493-498,共6页
Noise has traditionally been suppressed or eliminated in seismic data sets by the use of Fourier filters and, to a lesser degree, nonlinear statistical filters. Although these methods are quite useful under specific c... Noise has traditionally been suppressed or eliminated in seismic data sets by the use of Fourier filters and, to a lesser degree, nonlinear statistical filters. Although these methods are quite useful under specific conditions, they may produce undesirable effects for the low signal to noise ratio data. In this paper, a new method, multi-scale ridgelet transform, is used in the light of the theory of ridgelet transform. We employ wavelet transform to do sub-band decomposition for the signals and then use non-linear thresholding in ridgelet domain for every block. In other words, it is based on the idea of partition, at sufficiently fine scale, a curving singularity looks straight, and so ridgelet transform can work well in such cases. Applications on both synthetic data and actual seismic data from Sichuan basin, South China, show that the new method eliminates the noise portion of the signal more efficiently and retains a greater amount of geologic data than other methods, the quality and consecutiveness of seismic event are improved obviously as well as the quality of section is improved. 展开更多
关键词 ridgelet transform multi-scale random noise sub-band decomposition complex Morlet wavelet
下载PDF
Study on Key Techniques for Multi-scale Expression of Laneway Traverse Data in MGIS 被引量:5
9
作者 ZHANG Hai-rong YU Jing-song-di LIU Wei 《Journal of China University of Mining and Technology》 EI 2007年第4期508-512,共5页
The multi-scale expression of enormously complicated laneway data requires differentiation of both contents and the way the contents are expressed. To accomplish multi-scale expression laneway data must support multi-... The multi-scale expression of enormously complicated laneway data requires differentiation of both contents and the way the contents are expressed. To accomplish multi-scale expression laneway data must support multi-scale transformation and have consistent topological relationships. Although the laneway data generated by traverse survey-ing is non-scale data it is still impossible to construct a multi-scale spatial database directly from it. In this paper an al-gorithm is presented to first calculate the laneway mid-line to support multi-scale transformation; then to express topo-logical relationships arising from the data structure; and,finally,a laneway spatial database is built and multi-scale ex-pression is achieved using components GIS-SuperMap Objects. The research result is of great significance for improv-ing the efficiency of laneway data storage and updating,for ensuring consistency of laneway data expression and for extending the potential value of a mine spatial database. 展开更多
关键词 multi-scale expression traverse data MGIS laneway mid-line
下载PDF
A multi-scale second-order autoregressive recursive filter approach for the sea ice concentration analysis
10
作者 Lu Yang Xuefeng Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第3期115-126,共12页
To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregress... To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future. 展开更多
关键词 second-order auto-regressive filter multi-scale recursive filter sea ice concentration three-dimensional variational data assimilation
下载PDF
Study on the Improvement of the Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise in Hydrology Based on RBFNN Data Extension Technology 被引量:3
11
作者 Jinping Zhang Youlai Jin +2 位作者 Bin Sun Yuping Han Yang Hong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第2期755-770,共16页
The complex nonlinear and non-stationary features exhibited in hydrologic sequences make hydrological analysis and forecasting difficult.Currently,some hydrologists employ the complete ensemble empirical mode decompos... The complex nonlinear and non-stationary features exhibited in hydrologic sequences make hydrological analysis and forecasting difficult.Currently,some hydrologists employ the complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)method,a new time-frequency analysis method based on the empirical mode decomposition(EMD)algorithm,to decompose non-stationary raw data in order to obtain relatively stationary components for further study.However,the endpoint effect in CEEMDAN is often neglected,which can lead to decomposition errors that reduce the accuracy of the research results.In this study,we processed an original runoff sequence using the radial basis function neural network(RBFNN)technique to obtain the extension sequence before utilizing CEEMDAN decomposition.Then,we compared the decomposition results of the original sequence,RBFNN extension sequence,and standard sequence to investigate the influence of the endpoint effect and RBFNN extension on the CEEMDAN method.The results indicated that the RBFNN extension technique effectively reduced the error of medium and low frequency components caused by the endpoint effect.At both ends of the components,the extension sequence more accurately reflected the true fluctuation characteristics and variation trends.These advances are of great significance to the subsequent study of hydrology.Therefore,the CEEMDAN method,combined with an appropriate extension of the original runoff series,can more precisely determine multi-time scale characteristics,and provide a credible basis for the analysis of hydrologic time series and hydrological forecasting. 展开更多
关键词 Complete ensemble empirical mode decomposition with adaptive noise data extension radial basis function neural network multi-time scales runoff
下载PDF
A method for rapid transmission of multi-scale vector river data via the Internet 被引量:1
12
作者 Yang Weifang Jonathon Li 《Geodesy and Geodynamics》 2012年第2期34-41,共8页
Due to the conflict between huge amount of map data and limited network bandwidth, rapid trans- mission of vector map data over the Internet has become a bottleneck of spatial data delivery in web-based environment. T... Due to the conflict between huge amount of map data and limited network bandwidth, rapid trans- mission of vector map data over the Internet has become a bottleneck of spatial data delivery in web-based environment. This paper proposed an approach to organizing and transmitting multi-scale vector river network data via the Internet progressively. This approach takes account of two levels of importance, i.e. the importance of river branches and the importance of the points belonging to each river branch, and forms data packages ac- cording to these. Our experiments have shown that the proposed approach can reduce 90% of original data while preserving the river structure well. 展开更多
关键词 vector river data multi-scale progressive transmission river structure
下载PDF
Physics-informed neural network-based petroleum reservoir simulation with sparse data using domain decomposition 被引量:1
13
作者 Jiang-Xia Han Liang Xue +4 位作者 Yun-Sheng Wei Ya-Dong Qi Jun-Lei Wang Yue-Tian Liu Yu-Qi Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3450-3460,共11页
Recent advances in deep learning have expanded new possibilities for fluid flow simulation in petroleum reservoirs.However,the predominant approach in existing research is to train neural networks using high-fidelity ... Recent advances in deep learning have expanded new possibilities for fluid flow simulation in petroleum reservoirs.However,the predominant approach in existing research is to train neural networks using high-fidelity numerical simulation data.This presents a significant challenge because the sole source of authentic wellbore production data for training is sparse.In response to this challenge,this work introduces a novel architecture called physics-informed neural network based on domain decomposition(PINN-DD),aiming to effectively utilize the sparse production data of wells for reservoir simulation with large-scale systems.To harness the capabilities of physics-informed neural networks(PINNs)in handling small-scale spatial-temporal domain while addressing the challenges of large-scale systems with sparse labeled data,the computational domain is divided into two distinct sub-domains:the well-containing and the well-free sub-domain.Moreover,the two sub-domains and the interface are rigorously constrained by the governing equations,data matching,and boundary conditions.The accuracy of the proposed method is evaluated on two problems,and its performance is compared against state-of-the-art PINNs through numerical analysis as a benchmark.The results demonstrate the superiority of PINN-DD in handling large-scale reservoir simulation with limited data and show its potential to outperform conventional PINNs in such scenarios. 展开更多
关键词 Physical-informed neural networks Fluid flow simulation Sparse data Domain decomposition
下载PDF
Electrical Data Matrix Decomposition in Smart Grid 被引量:1
14
作者 Qian Dang Huafeng Zhang +3 位作者 Bo Zhao Yanwen He Shiming He Hye-Jin Kim 《Journal on Internet of Things》 2019年第1期1-7,共7页
As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry ... As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry high-speed and real time data,data losses and data quality degradation may happen constantly. For this problem,according to the strong spatial and temporal correlation of electricity data which isgenerated by human’s actions and feelings, we build a low-rank electricity data matrixwhere the row is time and the column is user. Inspired by matrix decomposition, we dividethe low-rank electricity data matrix into the multiply of two small matrices and use theknown data to approximate the low-rank electricity data matrix and recover the missedelectrical data. Based on the real electricity data, we analyze the low-rankness of theelectricity data matrix and perform the Matrix Decomposition-based method on the realdata. The experimental results verify the efficiency and efficiency of the proposed scheme. 展开更多
关键词 Electrical data recovery matrix decomposition low-rankness smart grid
下载PDF
Multi-Aspect Incremental Tensor Decomposition Based on Distributed In-Memory Big Data Systems
15
作者 Hye-Kyung Yang Hwan-Seung Yong 《Journal of Data and Information Science》 CSCD 2020年第2期13-32,共20页
Purpose:We propose In Par Ten2,a multi-aspect parallel factor analysis three-dimensional tensor decomposition algorithm based on the Apache Spark framework.The proposed method reduces re-decomposition cost and can han... Purpose:We propose In Par Ten2,a multi-aspect parallel factor analysis three-dimensional tensor decomposition algorithm based on the Apache Spark framework.The proposed method reduces re-decomposition cost and can handle large tensors.Design/methodology/approach:Considering that tensor addition increases the size of a given tensor along all axes,the proposed method decomposes incoming tensors using existing decomposition results without generating sub-tensors.Additionally,In Par Ten2 avoids the calculation of Khari–Rao products and minimizes shuffling by using the Apache Spark platform.Findings:The performance of In Par Ten2 is evaluated by comparing its execution time and accuracy with those of existing distributed tensor decomposition methods on various datasets.The results confirm that In Par Ten2 can process large tensors and reduce the re-calculation cost of tensor decomposition.Consequently,the proposed method is faster than existing tensor decomposition algorithms and can significantly reduce re-decomposition cost.Research limitations:There are several Hadoop-based distributed tensor decomposition algorithms as well as MATLAB-based decomposition methods.However,the former require longer iteration time,and therefore their execution time cannot be compared with that of Spark-based algorithms,whereas the latter run on a single machine,thus limiting their ability to handle large data.Practical implications:The proposed algorithm can reduce re-decomposition cost when tensors are added to a given tensor by decomposing them based on existing decomposition results without re-decomposing the entire tensor.Originality/value:The proposed method can handle large tensors and is fast within the limited-memory framework of Apache Spark.Moreover,In Par Ten2 can handle static as well as incremental tensor decomposition. 展开更多
关键词 PARAFAC Tensor decomposition Incremental tensor decomposition Apache Spark Big data
下载PDF
Computer Data Processing of the Hydrogen Peroxide Decomposition Reaction
16
作者 余逸男 胡良剑 《Journal of Donghua University(English Edition)》 EI CAS 2003年第2期28-30,共3页
Two methods of computer data processing, linear fitting and nonlinear fitting, are applied to compute the rate constant for hydrogen peroxide decomposition reaction. The results indicate that not only the new methods ... Two methods of computer data processing, linear fitting and nonlinear fitting, are applied to compute the rate constant for hydrogen peroxide decomposition reaction. The results indicate that not only the new methods work with no necessity to measure the final oxygen volume, but also the fitting errors decrease evidently. 展开更多
关键词 data processing curve fitting first order reaction hydrogen peroxide decomposition
下载PDF
Decomposition of Graphs Representing the Contents of Multimedia Data
17
作者 Hochin Teruhisa 《通讯和计算机(中英文版)》 2010年第4期43-49,共7页
关键词 多媒体内容 分解图 数据模型 多媒体数据 递归调用 火焰传播 实例 递归图
下载PDF
The algorithm of 3D multi-scale volumetric curvature and its application 被引量:13
18
作者 陈学华 杨威 +2 位作者 贺振华 钟文丽 文晓涛 《Applied Geophysics》 SCIE CSCD 2012年第1期65-72,116,共9页
To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. W... To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. We also propose a fast algorithm for computing 3D volumetric curvature. In comparison to conventional volumetric curvature attributes, its main improvements and key algorithms introduce multi-frequency components expansion in time-frequency domain and the corresponding multi-scale adaptive differential operator in the wavenumber domain, into the volumetric curvature calculation. This methodology can simultaneously depict seismic multi-scale features in both time and space. Additionally, we use data fusion of volumetric curvatures at various scales to take full advantage of the geologic features and anomalies extracted by curvature measurements at different scales. The 3D MSVC can highlight geologic anomalies and reduce noise at the same time. Thus, it improves the interpretation efficiency of curvature attributes analysis. The 3D MSVC is applied to both land and marine 3D seismic data. The results demonstrate that it can indicate the spatial distribution of reservoirs, detect faults and fracture zones, and identify their multi-scale properties. 展开更多
关键词 3D multi-scale volumetric curvature adaptive differential operator in wavenumber domain multi-frequency expansion in time-frequency domain fault detection fracture zone data fusion
下载PDF
Thermal decomposition of ammonium hexafluoroaluminate and preparation of aluminum fluoride 被引量:1
19
作者 胡宪伟 李琳 +4 位作者 高炳亮 石忠宁 李欢 刘敬敬 王兆文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期2087-2092,共6页
The thermal decomposition process of (NH4)3AlF6 was studied by DTA-TGA method and the related thermodynamic data were obtained. The results show that AlF3 is obtained after three-step decomposition reaction of (NH4... The thermal decomposition process of (NH4)3AlF6 was studied by DTA-TGA method and the related thermodynamic data were obtained. The results show that AlF3 is obtained after three-step decomposition reaction of (NH4)3AlF6, and the solid products of the first two decomposition reactions are NH4AlF4 and AlF3(NH4F)0.69, respectively. The three reactions occur at 194.9, 222.5 and 258.4 ℃, respectively. Gibbs free energy changes of pertinent materials at the reaction temperatures were calculated. Enthalpy and entropy changes of the three reactions were analyzed by DSC method. Anhydrous aluminum fluoride was prepared. The XRD analysis and mass loss calculation show that AlF3 with high purity can be obtained by heating (NH4)3AlF6 at 400 ℃ for 3 h. 展开更多
关键词 ammonium hexafluoroaluminate thermal decomposition aluminum fluoride thermodynamic data
下载PDF
Decomposition-Based Visual Function Specification and Auto-Generation of Function
20
作者 沈军 顾冠群 《Journal of Southeast University(English Edition)》 EI CAS 2002年第1期28-32,共5页
On the software module, this paper proposes a visual specification language(VSL). Based on decomposition, the language imitates men's thinking procedure that decomposes aproblem into smaller ones, then independent... On the software module, this paper proposes a visual specification language(VSL). Based on decomposition, the language imitates men's thinking procedure that decomposes aproblem into smaller ones, then independently solves the results of every small problem to get theresult of original problem (decomposition and synthesis). Besides, the language mixes visual withspecification. With computer supporting, we can implement the software module automatically. It willgreatly improve the quality of software and raise the efficiency of software development. Thesimple definition of VSL, the principle of auto-generation, an example and the future research areintroduced. 展开更多
关键词 software specification function decomposition data dependent visualprogramming
下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部