期刊文献+
共找到439篇文章
< 1 2 22 >
每页显示 20 50 100
MSADCN:Multi-Scale Attentional Densely Connected Network for Automated Bone Age Assessment
1
作者 Yanjun Yu Lei Yu +2 位作者 Huiqi Wang Haodong Zheng Yi Deng 《Computers, Materials & Continua》 SCIE EI 2024年第2期2225-2243,共19页
Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate resul... Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate results.Most deep learning-based BAA methods feed the extracted critical points of images into the network by providing additional annotations.This operation is costly and subjective.To address these problems,we propose a multi-scale attentional densely connected network(MSADCN)in this paper.MSADCN constructs a multi-scale dense connectivity mechanism,which can avoid overfitting,obtain the local features effectively and prevent gradient vanishing even in limited training data.First,MSADCN designs multi-scale structures in the densely connected network to extract fine-grained features at different scales.Then,coordinate attention is embedded to focus on critical features and automatically locate the regions of interest(ROI)without additional annotation.In addition,to improve the model’s generalization,transfer learning is applied to train the proposed MSADCN on the public dataset IMDB-WIKI,and the obtained pre-trained weights are loaded onto the Radiological Society of North America(RSNA)dataset.Finally,label distribution learning(LDL)and expectation regression techniques are introduced into our model to exploit the correlation between hand bone images of different ages,which can obtain stable age estimates.Extensive experiments confirm that our model can converge more efficiently and obtain a mean absolute error(MAE)of 4.64 months,outperforming some state-of-the-art BAA methods. 展开更多
关键词 Bone age assessment deep learning attentional densely connected network muti-scale
下载PDF
Underwater Image Enhancement Based on Multi-scale Adversarial Network
2
作者 ZENG Jun-yang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期70-77,共8页
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea... In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm. 展开更多
关键词 Underwater image enhancement Generative adversarial network multi-scale feature extraction Residual dense block
下载PDF
结合强化学习和DenseNet的远程监督关系抽取模型
3
作者 冯轩闻 袁新瑞 +1 位作者 孙霞 高厦 《计算机应用与软件》 北大核心 2024年第2期138-144,208,共8页
关系抽取是信息获取领域的重要任务之一。为了更好地解决数据集中的噪声问题和句子深层次语义表征,提出一种结合强化学习和密集连接卷积神经网络的远程监督关系抽取模型,模型分为句子选择器和关系分类器。在句子选择器中,基于强化学习... 关系抽取是信息获取领域的重要任务之一。为了更好地解决数据集中的噪声问题和句子深层次语义表征,提出一种结合强化学习和密集连接卷积神经网络的远程监督关系抽取模型,模型分为句子选择器和关系分类器。在句子选择器中,基于强化学习的方法能有效过滤噪声语句,提升输入数据质量;在关系分类器中,通过DenseNet深层网络中的特征复用,学习更丰富的语义特征。在NYT数据集上的实验结果表明句子选择器能够有效过滤噪声,该模型的关系抽取性能相比基线模型得到有效提高。 展开更多
关键词 关系抽取 远程监督 强化学习 卷积神经网络 密集连接
下载PDF
基于DenseNet与PointNet融合算法的三维点云分割
4
作者 吴烈权 周志峰 +1 位作者 时云 任朴林 《应用光学》 CAS 北大核心 2024年第5期982-991,共10页
点云分割对于智能驾驶、物体检测和识别、逆向工程等任务非常重要。PointNet是一种能够直接处理点云数据的方法,近年来在点云分割任务中得到广泛应用,但其分割精度较低,而PointNet++的计算成本又较高。针对以上问题,提出一种融合DenseNe... 点云分割对于智能驾驶、物体检测和识别、逆向工程等任务非常重要。PointNet是一种能够直接处理点云数据的方法,近年来在点云分割任务中得到广泛应用,但其分割精度较低,而PointNet++的计算成本又较高。针对以上问题,提出一种融合DenseNet和PointNet的算法,用于点云分割,并引入三分支混合注意力机制,以提高PointNet在提取局部特征方面的能力。基于密集连接卷积网络(DenseNet)思想,提出用DenseNet-STN和DenseNet-MLP结构来替代PointNet中的空间变换网络(STN)和多层感知机(MLP);同时,使用Add连接代替密集块(DenseBlock)中的Concat连接,以提高对点特征间相关性的准确性,同时不显著增加模型复杂度。DenseNet-PointNet能够提高复杂分类问题的泛化能力,实现对复杂函数更好的逼近,从而提高点云分割的准确率。有效性和消融实验结果表明,本文算法具有良好的性能。点云分割实验结果表明,DenseNet-PointNet在大多数类别中的交并比(IoU)都高于PointNet的IoU,并在部分类别中也高于PointNet++,参数量是PointNet++的47.6%,浮点运算量(FLOPs)是PointNet++的49.1%。实验结果验证了DenseNet-PointNet的可行性和有效性。 展开更多
关键词 点云分割 密集连接卷积网络 PointNet denseNet-PointNet
下载PDF
基于DenseNet卷积神经网络的短期风电预测方法
5
作者 殷林飞 蒙雨洁 《综合智慧能源》 CAS 2024年第7期12-20,共9页
风能作为一种清洁、可再生的能源,在能源转型中扮演着至关重要的角色,准确预测风电出力对电力系统的安全高效运行非常重要,然而风速的波动性和随机性,对风电预测带来了挑战。为了提高风电预测的准确性,提出了一种基于DenseNet卷积神经... 风能作为一种清洁、可再生的能源,在能源转型中扮演着至关重要的角色,准确预测风电出力对电力系统的安全高效运行非常重要,然而风速的波动性和随机性,对风电预测带来了挑战。为了提高风电预测的准确性,提出了一种基于DenseNet卷积神经网络的短期风电预测模型。该模型通过精简DenseNet201网络得到了拥有出色的密集连接结构和适当深度、宽度的DenseNet160网络,不仅能缓解训练过程中梯度消失现象,还能通过密集连接将浅层的信息反映到深层,实现深度监督。基于巴西纳塔尔地区378 d的风力数据集,采用DenseNet160网络以及27种算法对未来一天的风力发电情况进行预测。结果表明:DenseNet160网络的平均绝对误差、均方误差以及平均绝对百分误差比其他算法分别降低了至少10.89%,4.98%,8.68%;同时,与使用相同数据集的混合经济模型相比,DenseNet160网络的MAE值小了25.56%。说明该模型能精准地拟合风力发电数据,获得可靠的风力预测结果。 展开更多
关键词 风电预测 可再生能源 denseNet 卷积神经网络 密集连接 梯度消失
下载PDF
基于DSC-DenseNet的流程工业系统故障监测
6
作者 汪凯 亚森江·加入拉 《机床与液压》 北大核心 2024年第7期226-230,共5页
田纳西-伊士曼过程数据高纬度、高耦合,存在数据特征难以提取的问题。为进一步提高流程工业系统中故障监测的识别率,现将一维稠密卷积网络(1D-DenseNet)与深度可分离卷积(DSC)结合,利用DenseNet的高效特征提取能力,并结合DSC减少计算参... 田纳西-伊士曼过程数据高纬度、高耦合,存在数据特征难以提取的问题。为进一步提高流程工业系统中故障监测的识别率,现将一维稠密卷积网络(1D-DenseNet)与深度可分离卷积(DSC)结合,利用DenseNet的高效特征提取能力,并结合DSC减少计算参数、提高诊断效率,以提供基于DSC-DenseNet的故障监测方式。先将数据进行归一化整理,并加入随机种子避免过拟合,随后将处理后的结果作为DSC-DenseNet的输入进行特征提取,然后将输出结果传入全连接层进行故障分类;最后在TEP数据集上进行准确率测试。结果证明:基于DSC-DenseNet的方法能有效分辨故障类型,故障分类准确率达到98.8%。并证明DSC-DenseNet比传统DenseNet有更好的故障识别效果。 展开更多
关键词 稠密连接网络 深度可分离卷积 故障诊断 田纳西伊士曼过程
下载PDF
基于多任务NR-DenseNet网络的航班延误预测模型 被引量:1
7
作者 屈景怡 肖敏 +1 位作者 李佳怡 解文凯 《信号处理》 CSCD 北大核心 2023年第3期550-560,共11页
不同于目前大多数只倾向于研究单一的分类或回归任务的航班延误预测方法,该文提出一种基于多任务NR-DenseNet网络的航班延误预测模型,旨在同时实现航班延误等级分类预测与延误时间回归预测。首先,预处理相关数据;其次,建立多任务学习特... 不同于目前大多数只倾向于研究单一的分类或回归任务的航班延误预测方法,该文提出一种基于多任务NR-DenseNet网络的航班延误预测模型,旨在同时实现航班延误等级分类预测与延误时间回归预测。首先,预处理相关数据;其次,建立多任务学习特征提取共享层,使用NR-DenseNet网络提取任务之间的共享参数,深度挖掘任务之间的相关特征;然后,建立多任务学习特定任务层,通过回归器与分类器分别输出特定任务的预测结果;最后,采用损失加权方法对两个任务损失函数进行优化,平衡任务间的收敛速度,提高模型泛化性。将模型应用在宁波机场数据集中,与单任务模型相比回归任务平均MSE降低了23.4%,平均MAE降低了14.2%,分类平均准确率提升了2.7%。实验结果表明,该文方法提升了分类任务的准确率降低了回归任务的误差,可以有效提升模型性能。 展开更多
关键词 航班延误 多任务学习 回归预测 分类预测 非线性回归密集连接网络
下载PDF
DenseNet结合空间通道注意力机制的环境声音分类 被引量:1
8
作者 董绍江 刘伟 《重庆理工大学学报(自然科学)》 北大核心 2023年第11期179-187,共9页
音乐信息识别(MIR)和自动语音识别(ASR)都是以结构化声音为特点的声音识别,环境声音识别在声音识别领域的难度很大。为了充分利用从环境声中提取的Log-Mel谱图的空间特征与通道特征,提出了一种基于密集连接卷积网络(DenseNet)的空间通... 音乐信息识别(MIR)和自动语音识别(ASR)都是以结构化声音为特点的声音识别,环境声音识别在声音识别领域的难度很大。为了充分利用从环境声中提取的Log-Mel谱图的空间特征与通道特征,提出了一种基于密集连接卷积网络(DenseNet)的空间通道注意力机制。使用DenseNet对Log-Mel谱图进行特征提取,引入空间通道注意力机制使网络更加关注显著特征;为了解决数据不足导致的过拟合问题,将混合数据增强的方法应用于Log-Mel谱图,从而保证了数据的多样性;在2个公共数据集(ESC-50和ESC-10)验证所提方法的有效性。结果表明:所提的空间通道注意力机制模型能够使神经网络对环境声音的识别率分别达到79.3%(ESC-50)和94.3%(ESC-10)。 展开更多
关键词 环境声音分类 空间通道注意力机制 密集连接卷积网络 混合数据增强
下载PDF
基于DenseNet与声学层析成像的温度场高分辨率重建
9
作者 张立峰 李晶 《动力工程学报》 CAS CSCD 北大核心 2023年第5期622-630,共9页
提出一种虚拟观测结合密集连接网络(DenseNet)的两阶段声学层析成像温度场高分辨率重建算法。以总体最小二乘为目标,采用虚拟观测法对超声飞行时间(TOF)进行重建,得到粗网格下的温度分布;然后利用搭建的DenseNet预测细化网格的温度分布... 提出一种虚拟观测结合密集连接网络(DenseNet)的两阶段声学层析成像温度场高分辨率重建算法。以总体最小二乘为目标,采用虚拟观测法对超声飞行时间(TOF)进行重建,得到粗网格下的温度分布;然后利用搭建的DenseNet预测细化网格的温度分布信息,采用双输入模型,同时利用模块化输出方法对典型的温度场模型进行数值仿真。结果表明:该算法的重建质量和抗噪性均优于常用的虚拟观测方法、Landweber迭代法、Tikhonov算法及代数重建(ART)方法。 展开更多
关键词 声学层析成像 温度分布 高分辨率重建 虚拟观测 密集连接网络 模块化输出
下载PDF
Multi-Scale Attention-Based Deep Neural Network for Brain Disease Diagnosis 被引量:1
10
作者 Yin Liang Gaoxu Xu Sadaqat ur Rehman 《Computers, Materials & Continua》 SCIE EI 2022年第9期4645-4661,共17页
Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD)... Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD).Recently,an increasing number of studies have focused on employing deep learning techniques to analyze FC patterns for brain disease classification.However,the high dimensionality of the FC features and the interpretation of deep learning results are issues that need to be addressed in the FC-based brain disease classification.In this paper,we proposed a multi-scale attention-based deep neural network(MSA-DNN)model to classify FC patterns for the ASD diagnosis.The model was implemented by adding a flexible multi-scale attention(MSA)module to the auto-encoder based backbone DNN,which can extract multi-scale features of the FC patterns and change the level of attention for different FCs by continuous learning.Our model will reinforce the weights of important FC features while suppress the unimportant FCs to ensure the sparsity of the model weights and enhance the model interpretability.We performed systematic experiments on the large multi-sites ASD dataset with both ten-fold and leaveone-site-out cross-validations.Results showed that our model outperformed classical methods in brain disease classification and revealed robust intersite prediction performance.We also localized important FC features and brain regions associated with ASD classification.Overall,our study further promotes the biomarker detection and computer-aided classification for ASD diagnosis,and the proposed MSA module is flexible and easy to implement in other classification networks. 展开更多
关键词 Autism spectrum disorder diagnosis resting-state fMRI deep neural network functional connectivity multi-scale attention module
下载PDF
基于CVMD-GRU-DenseNet混合模型的短期电力负荷预测 被引量:3
11
作者 章可 李丹 +2 位作者 孙光帆 谭雅 贺帅 《水电能源科学》 北大核心 2023年第1期207-211,166,共6页
针对电力负荷时序变化非线性和多周期性特点,提出一种基于分解-预测-重构框架的CVMD-GRU-DenseNet短期负荷预测方法。分解阶段依据子序列间的相关熵确定VMD最佳分解数,提高负荷序列分解质量;预测阶段针对各子序列特点筛选输入特征,规律... 针对电力负荷时序变化非线性和多周期性特点,提出一种基于分解-预测-重构框架的CVMD-GRU-DenseNet短期负荷预测方法。分解阶段依据子序列间的相关熵确定VMD最佳分解数,提高负荷序列分解质量;预测阶段针对各子序列特点筛选输入特征,规律性强的低频分量采用GRU神经网络预测模型,强随机性的高频分量采用DenseNet神经网络预测模型;最后将各分量的预测结果重构为负荷预测曲线。湖北某市四季的实际负荷算例结果表明,该方法能有效提高短期负荷预测精度,并具有较强的泛化能力。 展开更多
关键词 短期负荷预测 变分模态分解 相关熵 门控循环单元 密集连接卷积网络
下载PDF
基于SRDenseNet的指纹超分辨率重建研究 被引量:1
12
作者 钱鹏 刘满华 《计算机应用与软件》 北大核心 2023年第6期187-193,210,共8页
指纹识别是一种常用的生物特征识别技术,图像质量对指纹识别效果有着重要的影响。针对现有指纹图像质量低导致识别准确率差的问题,提出一种基于SRDenseNet的指纹超分辨率重建算法。该方法使用深度卷积神经网络为基本结构,加入了Dense块... 指纹识别是一种常用的生物特征识别技术,图像质量对指纹识别效果有着重要的影响。针对现有指纹图像质量低导致识别准确率差的问题,提出一种基于SRDenseNet的指纹超分辨率重建算法。该方法使用深度卷积神经网络为基本结构,加入了Dense块和Dense跳连接以充分利用多层次的特征信息,提出将全局均方差和平均局部结构相似度引入损失函数,有效提升深度卷积神经网络对指纹图像的分辨率提高与全局结构和局部细节重建的能力。在FVC数据集上进行测试和验证,将该方法与现有其他方法进行比较。结果表明,2、3、4倍率的超分辨率指纹图像的匹配等错误率分别从原来的5.456%、8.730%和16.091%下降至4.762%、7.500%和12.540%,实验证明了该方法的有效性。 展开更多
关键词 指纹识别 超分辨率 密集连接卷积神经网络 等错误率
下载PDF
Detection of influential nodes with multi-scale information
13
作者 Jing-En Wang San-Yang Liu +1 位作者 Ahmed Aljmiai Yi-Guang Bai 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第8期575-582,共8页
The identification of influential nodes in complex networks is one of the most exciting topics in network science.The latest work successfully compares each node using local connectivity and weak tie theory from a new... The identification of influential nodes in complex networks is one of the most exciting topics in network science.The latest work successfully compares each node using local connectivity and weak tie theory from a new perspective.We study the structural properties of networks in depth and extend this successful node evaluation from single-scale to multi-scale.In particular,one novel position parameter based on node transmission efficiency is proposed,which mainly depends on the shortest distances from target nodes to high-degree nodes.In this regard,the novel multi-scale information importance(MSII)method is proposed to better identify the crucial nodes by combining the network's local connectivity and global position information.In simulation comparisons,five state-of-the-art algorithms,i.e.the neighbor nodes degree algorithm(NND),betweenness centrality,closeness centrality,Katz centrality and the k-shell decomposition method,are selected to compare with our MSII.The results demonstrate that our method obtains superior performance in terms of robustness and spreading propagation for both real-world and artificial networks. 展开更多
关键词 influential nodes multi-scale network connectivity network transmission
下载PDF
基于LW-DenseNet的采煤机摇臂齿轮故障诊断 被引量:3
14
作者 孙晓春 丁华 +1 位作者 牛锐祥 王焱 《煤炭工程》 北大核心 2023年第11期186-192,共7页
为了提升采煤机摇臂齿轮故障诊断准确率、减小模型尺寸且方便部署到更多移动端与边缘设备上,搭建了基于轻量化密集连接卷积网络(LW-DenseNet)的采煤机摇臂齿轮故障诊断模型。采用可分离卷积代替传统卷积减少模型参数,提高诊断效率;通过... 为了提升采煤机摇臂齿轮故障诊断准确率、减小模型尺寸且方便部署到更多移动端与边缘设备上,搭建了基于轻量化密集连接卷积网络(LW-DenseNet)的采煤机摇臂齿轮故障诊断模型。采用可分离卷积代替传统卷积减少模型参数,提高诊断效率;通过密集连接机制增强特征传播,加强特征提取能力。利用采煤机摇臂加载试验台采集的摇臂齿轮振动信号进行训练并验证模型的有效性。实验结果表明,与多种诊断模型比较,所提方法仅以0.05 MB的模型大小即可达到99.276%的分类精度,并利用凯斯西储大学轴承数据集验证了模型具有良好的泛化性。最后对关键层利用t-SNE进行可视化表示,清晰地展现了模型良好的特征提取性能。 展开更多
关键词 采煤机摇臂 齿轮 可分离卷积 密集连接卷积网络 故障诊断
下载PDF
Novel Path Counting-Based Method for Fractal Dimension Estimation of the Ultra-Dense Networks
15
作者 Farid Nahli Alexander Paramonov +4 位作者 Naglaa F.Soliman Hussah Nasser AlEisa Reem Alkanhel Ammar Muthanna Abdelhamied A.Ateya 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期561-572,共12页
Next-generation networks,including the Internet of Things(IoT),fifth-generation cellular systems(5G),and sixth-generation cellular systems(6G),suf-fer from the dramatic increase of the number of deployed devices.This p... Next-generation networks,including the Internet of Things(IoT),fifth-generation cellular systems(5G),and sixth-generation cellular systems(6G),suf-fer from the dramatic increase of the number of deployed devices.This puts high constraints and challenges on the design of such networks.Structural changing of the network is one of such challenges that affect the network performance,includ-ing the required quality of service(QoS).The fractal dimension(FD)is consid-ered one of the main indicators used to represent the structure of the communication network.To this end,this work analyzes the FD of the network and its use for telecommunication networks investigation and planning.The clus-ter growing method for assessing the FD is introduced and analyzed.The article proposes a novel method for estimating the FD of a communication network,based on assessing the network’s connectivity,by searching for the shortest routes.Unlike the cluster growing method,the proposed method does not require multiple iterations,which reduces the number of calculations,and increases the stability of the results obtained.Thus,the proposed method requires less compu-tational cost than the cluster growing method and achieves higher stability.The method is quite simple to implement and can be used in the tasks of research and planning of modern and promising communication networks.The developed method is evaluated for two different network structures and compared with the cluster growing method.Results validate the developed method. 展开更多
关键词 Cluster growing connectIVITY dense networks fractal dimension network structure shortest route quality of service
下载PDF
基于UNet3+生成对抗网络的视频异常检测 被引量:1
16
作者 陈景霞 林文涛 +1 位作者 龙旻翔 张鹏伟 《计算机工程与设计》 北大核心 2024年第3期777-784,共8页
为解决传统视频异常检测方法在不同场景下多尺度特征提取不完全的问题,提出两种方法:一种是用于简单场景的基于UNet3+的生成对抗网络方法(简称U3P^(2)),另一种是用于复杂场景的基于UNet++的生成对抗网络方法(简称UP^(3))。两种方法分别... 为解决传统视频异常检测方法在不同场景下多尺度特征提取不完全的问题,提出两种方法:一种是用于简单场景的基于UNet3+的生成对抗网络方法(简称U3P^(2)),另一种是用于复杂场景的基于UNet++的生成对抗网络方法(简称UP^(3))。两种方法分别对连续输入的视频帧生成预测,引入多种损失函数和光流模型学习其外观与运动信息,通过计算AUC进行性能评估。U3P^(2)方法以6.3 M参数量在Ped2数据集的AUC提升约0.6%,而UP^(3)方法在Avenue数据集的AUC提升约0.8%,验证其能够有效应对不同场景下的异常检测任务。 展开更多
关键词 生成对抗网络 视频异常检测 U型卷积网络 全尺度跳跃连接 密集跳跃连接 光流模型 多尺度特征提取
下载PDF
基于多尺度残差注意力网络的水下图像增强 被引量:1
17
作者 陈清江 王炫钧 邵菲 《应用光学》 CAS 北大核心 2024年第1期89-98,共10页
针对水下图像由水的散射、吸收引起的色偏、色弱、信息丢失问题,提出了一种基于多尺度残差注意力网络的水下图像增强算法。该网络引入了改进的UNet3+-Avg结构与注意力机制,设计出多尺度密集特征提取模块与残差注意力恢复模块,以及由Char... 针对水下图像由水的散射、吸收引起的色偏、色弱、信息丢失问题,提出了一种基于多尺度残差注意力网络的水下图像增强算法。该网络引入了改进的UNet3+-Avg结构与注意力机制,设计出多尺度密集特征提取模块与残差注意力恢复模块,以及由Charbonnier损失和边缘损失相结合的联合损失函数,使该网络得以学习到多个尺度的丰富特征,在改善图像色彩的同时又可保留大量的物体边缘信息。增强后图像的平均峰值信噪比(PSNR)达到23.63 dB、结构相似度(SSIM)达到0.93。与其他水下图像增强网络的对比实验结果表明,由该网络所增强的图像在主观感受与客观评价上都取得了显著的效果。 展开更多
关键词 图像处理 水下图像增强 多尺度特征提取 密集连接 注意力机制
下载PDF
基于多维特征矩阵和改进稠密连接网络的情感分类
18
作者 李红利 刘浩雨 +1 位作者 张荣华 成怡 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第7期928-935,共8页
情感脑电信号是一种低信噪比的非平稳时间序列,传统的特征提取与分类方法难以提取不同情感状态时的有效特征并进行分类.针对以上情况,提出一种自动融合脑电信号不同频段和时频域特征的深度学习模型.首先,对预处理后的数据进行分频段处理... 情感脑电信号是一种低信噪比的非平稳时间序列,传统的特征提取与分类方法难以提取不同情感状态时的有效特征并进行分类.针对以上情况,提出一种自动融合脑电信号不同频段和时频域特征的深度学习模型.首先,对预处理后的数据进行分频段处理,提取各频段的微分熵特征.然后,在网络中接入的挤压激励模块,对不同频段特征的微分熵特征赋权值,来获取输入数据的有价值信息,再利用改进的稠密连接网络进行特征融合并分类识别,保证了网络层之间最大程度的信息传输.最后,利用SEED情感脑电信号三分类数据集对算法进行了验证,分类正确率可达96.03%,高于现有的基线学习算法,所提算法可进一步增强网络特征提取能力,具有较快的收敛速度,对提升分类器的性能研究具有重要意义. 展开更多
关键词 情感分类 稠密连接 多维特征矩阵 深度学习 挤压激励
下载PDF
结合句法增强与图注意力网络的方面级情感分类
19
作者 张泽宝 余翰男 +1 位作者 王勇 潘海为 《计算机科学》 CSCD 北大核心 2024年第5期200-207,共8页
方面级情感分类旨在识别给定特定方面文本的情感极性,在本领域中,将图神经网络与句法依赖解析相结合是当下热门的研究方向之一,此类方法通过句法解析捕捉句子中词与词之间的关系,依此构建图结构,输入图神经网络中得到情感极性。若句法... 方面级情感分类旨在识别给定特定方面文本的情感极性,在本领域中,将图神经网络与句法依赖解析相结合是当下热门的研究方向之一,此类方法通过句法解析捕捉句子中词与词之间的关系,依此构建图结构,输入图神经网络中得到情感极性。若句法解析器出现解析错误,将会对以图为基础的图神经网络模型产生巨大影响。为了增强解析器生成的句法依赖树的解析结果,文中提出了一种句法增强图注意力网络,该网络通过融合多个解析器的解析结果,提高句法依赖解析精度,得到更精准的依赖关系句法图;在图注意力网络中使用密集连接机制捕获更丰富的特征,更适配于增强后的句法图,同时引入方面注意力机制捕获方面语义特征。实验结果验证了句法增强方法的有效性,在3个基准数据集上的分类准确度都有所提高,在方面级情感分析领域具有较好的表现。 展开更多
关键词 方面级情感分析 依赖解析 句法增强 图注意力网络 密集连接
下载PDF
金字塔方差池化网络的图像超分辨率重建
20
作者 彭晏飞 李泳欣 +1 位作者 孟欣 崔芸 《液晶与显示》 CAS CSCD 北大核心 2024年第10期1380-1390,共11页
为减少高频信息丢失对图像重建造成的影响,进一步增强对特征信息的挖掘,以金字塔方差池化模块为核心构建了一个生成网络。首先,该网络利用不同级别的方差池化挖掘低分辨率图像蕴含的特征信息,并结合金字塔结构获取不同尺度与不同子区域... 为减少高频信息丢失对图像重建造成的影响,进一步增强对特征信息的挖掘,以金字塔方差池化模块为核心构建了一个生成网络。首先,该网络利用不同级别的方差池化挖掘低分辨率图像蕴含的特征信息,并结合金字塔结构获取不同尺度与不同子区域的上下文信息,从而进一步丰富特征信息量;然后,利用密集连接结构增强特征信息之间的关联性,以提高网络的表达能力;最后,引入组归一化操作来加强网络的收敛性。实验结果表明,该模型与其他方法在Set5、Set14、DIV2K100公开测试集上进行比较,在放大倍数因子为4时,峰值信噪比平均提高了0.509 dB,结构相似性平均提高了0.016。所提模型不仅在峰值信噪比和结构相似性上有一定的提高,其重建图像在视觉效果上也拥有更多的真实细节。 展开更多
关键词 图像超分辨率 生成对抗网络 方差池化 密集连接
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部