期刊文献+
共找到176篇文章
< 1 2 9 >
每页显示 20 50 100
Seismic energy dispersion compensation by multi-scale morphology
1
作者 Yu Junqing Wang Runqiu +5 位作者 Liu Taoran Zhang Zhenglong Wu Jian Jiang Yongyong Sun Lipeng Xia Pei 《Petroleum Science》 SCIE CAS CSCD 2014年第3期376-384,共9页
Seismic energy decays while propagating subsurface, which may reduce the resolution of seismic data. This paper studies the method of seismic energy dispersion compensation which provides the basic principles for mult... Seismic energy decays while propagating subsurface, which may reduce the resolution of seismic data. This paper studies the method of seismic energy dispersion compensation which provides the basic principles for multi-scale morphology and the spectrum simulation method. These methods are applied in seismic energy compensation. First of all, the seismic data is decomposed into multiple scales and the effective frequency bandwidth is selectively broadened for some scales by using a spectrum simulation method. In this process, according to the amplitude spectrum of each scale, the best simulation range is selected to simulate the middle and low frequency components to ensure the authenticity of the simulation curve which is calculated by the median method, and the high frequency component is broadened. Finally, these scales are reconstructed with reasonable coefficients, and the compensated seismic data can be obtained. Examples are shown to illustrate the feasibility of the energy compensation method. 展开更多
关键词 Seismic wave multi-scale morphology dispersion compensation high resolution median method spectrum simulation
下载PDF
Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment 被引量:4
2
作者 Shang-Qu Yan Han Zhang +2 位作者 Bei Liu Hao Tang Sheng-You Qian 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期601-607,共7页
In high intensity focused ultrasound(HIFU)treatment,it is crucial to accurately identify denatured and normal biological tissues.In this paper,a novel method based on compressed sensing(CS)and refined composite multi-... In high intensity focused ultrasound(HIFU)treatment,it is crucial to accurately identify denatured and normal biological tissues.In this paper,a novel method based on compressed sensing(CS)and refined composite multi-scale fuzzy entropy(RCMFE)is proposed.First,CS is used to denoise the HIFU echo signals.Then the multi-scale fuzzy entropy(MFE)and RCMFE of the denoised HIFU echo signals are calculated.This study analyzed 90 cases of HIFU echo signals,including 45 cases in normal status and 45 cases in denatured status,and the results show that although both MFE and RCMFE can be used to identify denatured tissues,the intra-class distance of RCMFE on each scale factor is smaller than MFE,and the inter-class distance is larger than MFE.Compared with MFE,RCMFE can calculate the complexity of the signal more accurately and improve the stability,compactness,and separability.When RCMFE is selected as the characteristic parameter,the RCMFE difference between denatured and normal biological tissues is more evident than that of MFE,which helps doctors evaluate the treatment effect more accurately.When the scale factor is selected as 16,the best distinguishing effect can be obtained. 展开更多
关键词 compressed sensing high intensity focused ultrasound(HIFU)echo signal multi-scale fuzzy entropy refined composite multi-scale fuzzy entropy
下载PDF
A novel signal feature extraction technology based on empirical wavelet transform and reverse dispersion entropy 被引量:3
3
作者 Yu-xing Li Shang-bin Jiao Xiang Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1625-1635,共11页
Feature extraction is an important part of signal processing,which is significant for signal detection,classification,and recognition.The nonlinear dynamic analysis method can extract the nonlinear characteristics of ... Feature extraction is an important part of signal processing,which is significant for signal detection,classification,and recognition.The nonlinear dynamic analysis method can extract the nonlinear characteristics of signals and is widely used in different fields.Reverse dispersion entropy(RDE)proposed by us recently,as a nonlinear dynamic analysis method,has the advantages of fast computing speed and strong anti-noise ability,which is more suitable for measuring the complexity of signal than traditional permutation entropy(PE)and dispersion entropy(DE).Empirical wavelet transform(EWT),based on the theory of wavelet analysis,can decompose a complex non-stationary signal into a number of empirical wavelet functions(EWFs)with compact support set spectrum,which has better decomposition performance than empirical mode decomposition(EMD)and its improved algorithms.Considering the advantages of RDE and EWT,on the one hand,we introduce EWT into the field of underwater acoustic signal processing and fault diagnosis to improve the signal decomposition accuracy;on the other hand,we use RDE as the features of EWFs to improve the signal separability and stability.Finally,we propose a novel signal feature extraction technology based on EWT and RDE in this paper.Experimental results show that the proposed feature extraction technology can effectively extract the complexity features of actual signals.Moreover,it also has higher distinguishing ability for different types of signals than five latest feature extraction technologies. 展开更多
关键词 Feature extraction Empirical mode decomposition Empirical wavelet transform Permutation entropy Reverse dispersion entropy
下载PDF
Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting 被引量:16
4
作者 李一兵 葛娟 +1 位作者 林云 叶方 《Journal of Central South University》 SCIE EI CAS 2014年第11期4254-4260,共7页
In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on m... In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value. 展开更多
关键词 emitter recognition multi-scale wavelet entropy feature weighting uneven weight factor stability weight factor
下载PDF
The Study of Image Segmentation Based on the Combination of the Wavelet Multi-scale Edge Detection and the Entropy Iterative Threshold Selection 被引量:3
5
作者 ZHANG Qian HE Jian-feng +3 位作者 MA Lei PAN Li-peng LIU Jun-qing CHEN Hong-lei 《Chinese Journal of Biomedical Engineering(English Edition)》 2013年第4期154-160,共7页
This paper proposes an image segmentation method based on the combination of the wavelet multi-scale edge detection and the entropy iterative threshold selection.Image for segmentation is divided into two parts by hig... This paper proposes an image segmentation method based on the combination of the wavelet multi-scale edge detection and the entropy iterative threshold selection.Image for segmentation is divided into two parts by high- and low-frequency.In the high-frequency part the wavelet multiscale was used for the edge detection,and the low-frequency part conducted on segmentation using the entropy iterative threshold selection method.Through the consideration of the image edge and region,a CT image of the thorax was chosen to test the proposed method for the segmentation of the lungs.Experimental results show that the method is efficient to segment the interesting region of an image compared with conventional methods. 展开更多
关键词 wavelet multi-scale entropy iterative threshold lung images
下载PDF
Black Hole Entropy with Modified Dispersion Relations
6
作者 WANG Fu-Jun GUI Yuan-Xing ZHANG Yu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第8期261-263,共3页
There is much interest in resolving the quantum corrections to Bekenstein-Hawking entropy with a large length scale limit. The leading correction term & given by the logarithm of black hole area with a model-dependen... There is much interest in resolving the quantum corrections to Bekenstein-Hawking entropy with a large length scale limit. The leading correction term & given by the logarithm of black hole area with a model-dependent coefficient. Recently the research for quantum gravity implies the emergence of a modification of the energy-momentum dispersion relation (MDR), which plays an important role in the modified black hole thermodynamics. In this paper, we investigate the quantum corrections to Bekenstein-Hawking entropy in four-dimensional Sehwarzschild black hole and Reissner-Nordstrom black hole respectively based on MDR. 展开更多
关键词 black hole entropy dispersion relation
下载PDF
Multi-scale complexity entropy causality plane: An intrinsic measure for indicating two-phase flow structures
7
作者 窦富祥 金宁德 +2 位作者 樊春玲 高忠科 孙斌 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第12期85-96,共12页
We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of ... We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of different oil-in-water flows. We first take several typical time series for example to investigate the characteristic of the MS-CECP and find that the MS-CECP not only describes the continuous loss of dynamical structure with the increase of scale, but also reflects the determinacy of the system. Then we calculate the MS-CECP for the conductance fluctuating signals measured from oil–water two-phase flow loop test facility. The results indicate that the MS-CECP could be an intrinsic measure for indicating oil-in-water two-phase flow structures. 展开更多
关键词 oil–water two-phase flow fluid dynamics complexity entropy multi-scale
下载PDF
Wi-Wheat+:Contact-free wheat moisture sensing with commodity WiFi based on entropy
8
作者 Weidong Yang Erbo Shen +3 位作者 Xuyu Wang Shiwen Mao Yuehong Gong Pengming Hu 《Digital Communications and Networks》 SCIE CSCD 2023年第3期698-709,共12页
In this paper,we propose a contact-free wheat moisture monitoring system,termed Wi-Wheatþ,to address the several limitations of the existing grain moisture detection technologies,such as time-consuming process,ex... In this paper,we propose a contact-free wheat moisture monitoring system,termed Wi-Wheatþ,to address the several limitations of the existing grain moisture detection technologies,such as time-consuming process,expensive equipment,low accuracy,and difficulty in real-time monitoring.The proposed system is based on Commodity WiFi and is easy to deploy.Leveraging WiFi CSI data,this paper proposes a feature extraction method based on multi-scale and multi-channel entropy.The feasibility and stability of the system are validated through experiments in both Line-Of-Sight(LOS)and Non-Line-Of-Sight(NLOS)scenarios,where ten types of wheat moisture content are tested using multi-class Support Vector Machine(SVM).Compared with the Wi-Wheat system proposed in our prior work,Wi-Wheatþhas higher efficiency,requiring only a simple training process,and can sense more wheat moisture content levels. 展开更多
关键词 Channel state information(CSI) WIFI multi-scale entropy Multi-class support vector machine(SVM) Radio frequency(RF)sensing
下载PDF
基于tSNE多特征融合的JTC轨旁设备故障检测 被引量:2
9
作者 武晓春 郜文祥 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第3期1244-1255,共12页
无绝缘轨道电路(Jointless Track Circuit,JTC)的轨旁设备在室外长期运营过程中,其可靠性会逐渐降低,进而给列车行车安全带来严重威胁。以轨道电路读取器(Track Circuit Reader,TCR)感应电压为基础,针对JTC故障诊断研究中轨旁设备故障... 无绝缘轨道电路(Jointless Track Circuit,JTC)的轨旁设备在室外长期运营过程中,其可靠性会逐渐降低,进而给列车行车安全带来严重威胁。以轨道电路读取器(Track Circuit Reader,TCR)感应电压为基础,针对JTC故障诊断研究中轨旁设备故障类型复杂和故障特征提取不充分等问题,提出一种基于t分布随机邻域嵌入(t-distribution Stochastic Neighbor Embedding,tSNE)多特征融合的JTC轨旁设备故障检测模型。首先,根据不同轨旁设备故障对TCR感应电压信号的影响,分析各轨旁设备的故障特性。其次,提取TCR感应电压信号的方差、有效值、峰值因子等幅值域特征,以及排列熵、散布熵特征构成原始故障特征集。为了去除其中的冗余信息,得到具有较高判别性的融合流形特征,利用tSNE算法进行特征融合。最后输入深度残差网络(Deep Residual Network,DRN)得到故障检测混淆矩阵,实现轨旁设备故障定位。实验结果表明:tSNE算法融合后的特征在异类和同类故障样本之间分别有较大的类间间距和较小的类内间距,相比主成分分析(Principal Component Analysis, PCA)、随机相似性嵌入(Stochastic Proximity Embedding, SPE)、随机邻域嵌入(Stochastic Neighbor Embedding,SNE)算法具有更优的融合特征提取效果。此外,结合DRN可以有效识别多种轨旁设备故障,达到98.28%的故障检测准确率。通过现场信号进行实例验证,结果表明该故障检测模型能满足铁路现场对室外设备进行故障定位的实际需求。 展开更多
关键词 轨旁设备 幅值域 排列熵 散布熵 多特征融合 故障检测
下载PDF
基于声信号的离心泵故障诊断研究
10
作者 陈剑 姜涛 陈品 《电子测量与仪器学报》 CSCD 北大核心 2024年第5期169-177,共9页
各种原因使得工业现场设备状态监测的首选测量信号是声信号时,提出一种基于声信号的设备状态监测方法显得尤为必要。以某型离心泵为依据对象,对现场采集的声信号提取梅尔倒谱系数(MFCC)作为信号的初始特征,然后计算这些MFCC初始特征的... 各种原因使得工业现场设备状态监测的首选测量信号是声信号时,提出一种基于声信号的设备状态监测方法显得尤为必要。以某型离心泵为依据对象,对现场采集的声信号提取梅尔倒谱系数(MFCC)作为信号的初始特征,然后计算这些MFCC初始特征的散布熵(DE)值,并通过主成分分析法(PCA)对矩阵进行降维,从而构造特征矩阵。利用蝙蝠优化算法(BA)对支持向量机(SVM)的惩罚系数与核函数参数进行优化,对离心泵的多种故障工况开展诊断,并与多种诊断方法进行比较。实验结果表明,经过BA优化后的模型在诊断准确率上提高了21.7%;在该模型的基础上利用DE对MFCC提取的信号进行深度挖掘,使模型诊断的准确率提高2.05%。 展开更多
关键词 离心泵故障诊断 声信号 梅尔倒谱散布熵 蝙蝠优化算法 支持向量机
下载PDF
基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的风电机组变桨轴承退化状态评估
11
作者 王晓龙 李英晟 +1 位作者 付锐棋 何玉灵 《动力工程学报》 CAS CSCD 北大核心 2024年第5期782-791,共10页
针对风电机组变桨轴承服役过程环境噪声干扰严重、退化状态评估精度低的问题,提出一种基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的退化状态评估模型。该模型将监测数据状态特征获取过程由单通道拓展为多通道进行,通过提... 针对风电机组变桨轴承服役过程环境噪声干扰严重、退化状态评估精度低的问题,提出一种基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的退化状态评估模型。该模型将监测数据状态特征获取过程由单通道拓展为多通道进行,通过提出的多元精细复合多尺度波动散布熵算法来获取多通道监测数据的多尺度状态特征,并将累积和检验算法与欧氏距离矩阵测度方法相结合,用于定量衡量基准样本与待分析样本间的差异,从而实现变桨轴承退化状态评估。风电机组变桨轴承全寿命周期加速疲劳实验验证结果表明:该模型能够及时捕捉到变桨轴承的初始退化时刻并且准确跟踪整个退化过程。 展开更多
关键词 风电机组 变桨轴承 退化状态评估 多元精细复合多尺度波动散布熵 累积欧氏距离矩阵测度
下载PDF
基于HMFDE和t-SNE的旋转机械故障诊断方法
12
作者 尹久 张杰 《机电工程》 CAS 北大核心 2024年第6期1058-1067,共10页
针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用... 针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用特征加权提出了混合多尺度波动散布熵方法,并将其用于提取旋转机械振动信号的故障特征;随后,采用t-SNE方法对混合故障特征进行了特征降维,挑选出了最能够反映故障特性的特征子集,构建了敏感特征样本;最后,采用郊狼优化算法对极限学习机的输入权重和隐含层阈值进行了优化,完成了旋转机械的故障识别和分类;以齿轮箱和滚动轴承故障数据集为对象,对基于HMFDE、t-SNE和COA-ELM的故障诊断方法进行了实验,验证了方法的有效性。研究结果表明:采用HMFDE-t-SNE-CAO-ELM故障诊断方法可以取得100%的故障识别准确率,该方法能够有效地诊断旋转机械的不同故障类型和损伤;相较于基于单一类型特征的故障诊断方法,其准确率分别可以提高0.68%、22.42%、29.18%(齿轮箱)和1.43%、8.23%、23.67%(滚动轴承),虽然牺牲了一定的计算效率,但准确率得到了明显的提高;相较于其他常规故障分类器,COA-ELM的故障识别准确率具有明显的优势。 展开更多
关键词 旋转机械 故障诊断 齿轮箱 滚动轴承 混合多尺度波动散布熵 t分布-随机邻域嵌入 郊狼优化算法 极限学习机
下载PDF
基于时移多尺度波动散布熵和改进核极限学习机的水电机组故障诊断 被引量:1
13
作者 徐哲熙 刘婷 +3 位作者 任晟民 陈建林 吴凤娇 王斌 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期41-51,共11页
水电在能源供给结构改革中承担重要角色,随着风、光、潮汐等新型能源的不断接入,水电机组的负荷运行范围不断加宽,导致水电机组发生事故的概率增加,因此,开展水电机组智能故障诊断研究具有十分重要的现实意义。本文针对水电机组振动信... 水电在能源供给结构改革中承担重要角色,随着风、光、潮汐等新型能源的不断接入,水电机组的负荷运行范围不断加宽,导致水电机组发生事故的概率增加,因此,开展水电机组智能故障诊断研究具有十分重要的现实意义。本文针对水电机组振动信号中蕴含大量噪声信号,干扰故障诊断的问题,提出一种时移多尺度波动散布熵和改进核极限学习机相结合的水电机组故障诊断方法。首先,结合信息熵理论与时移思想,在多尺度波动散布熵的基础上,采用时移理论替代多尺度波动散布熵(MFDE)中传统的粗粒化过程,提出时移多尺度波动散布熵(TSMFDE),通过仿真实验,证明所提方法具有良好的时序长度鲁棒性、抗噪性及特征提取能力,解决了传统多尺度熵粗粒化不足的问题。然后,利用具有可移植性强、寻优能力强和收敛速度快等特征的算术优化算法(AOA)对核极限学习机(KELM)的正则化参数和核函数参数进行寻优,建立AOA-KELM分类器,解决了KELM超参数难以调节的问题。最终,通过转子试验台模拟实验,将TSMFDE提取的特征输入分类器中,完成模式识别工作。仿真结果表明,所提模型取得最高的诊断精度,达到了100.0%,相对于其他流行模型,本文所提模型展现了明显的优势,验证了所提模型的良好诊断精度。 展开更多
关键词 时移多尺度波动散布熵 核极限学习机 算术优化算法 水电机组 故障诊断
下载PDF
模糊散布熵及其应用
14
作者 胡保华 朱宗俊 +3 位作者 金飞翔 鲁翠萍 修磊 王勇 《计算机工程与应用》 CSCD 北大核心 2024年第2期326-336,共11页
散布熵(dispersion entropy,DispEn)是近期提出的一种衡量信号不规则程度的动力学指标。相比于样本熵,散布熵可同时检测信号幅度和频率的变化,计算时间也大大缩短。然而,由于散布熵是基于取整函数(阶跃函数)设置的,对数据长度和参数选... 散布熵(dispersion entropy,DispEn)是近期提出的一种衡量信号不规则程度的动力学指标。相比于样本熵,散布熵可同时检测信号幅度和频率的变化,计算时间也大大缩短。然而,由于散布熵是基于取整函数(阶跃函数)设置的,对数据长度和参数选择较敏感,特别是类的数量(量化级别),某些情况下由噪声引起的信号幅值的微小变化会改变量化序列从而引起熵值剧烈波动。为解决这些局限性,结合模糊隶属度函数提出了模糊散布熵(fuzzy dispersion entropy,FuzzyDispEn)。在FuzzyDispEn中,基于欧式距离实现嵌入向量与量化级别的模糊化隶属。使用合成时间序列信号测试FuzzyDispEn相比DispEn的性能。结果表明,与DispEn相比,FuzzyDispEn对信号数据长度、参数选择的灵敏度更低,而且抗噪性更好。FuzzyDispEn还应用于脑电与轴承信号的复杂度检测,实验结果表明在真实物理信号分析方面FuzzyDispEn的性能表现同样优于DispEn。结果表明模糊散布熵可为信号复杂度测量提供一种新的方法。 展开更多
关键词 模糊散布熵 模糊隶属度函数 复杂性 脑电信号 轴承信号
下载PDF
基于多尺度散布熵的磁声发射信号特征识别方法
15
作者 李梦俊 沈功田 +1 位作者 沈永娜 王强 《机电工程》 北大核心 2024年第1期158-165,共8页
在工程中对设备进行应力检测和微损伤检测时,采集磁声发射信号易受噪声干扰,同时其特征的提取也存在困难,为此,将变分模态分解与散布熵相结合,提出了一种基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法。首先,设计搭建了检测... 在工程中对设备进行应力检测和微损伤检测时,采集磁声发射信号易受噪声干扰,同时其特征的提取也存在困难,为此,将变分模态分解与散布熵相结合,提出了一种基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法。首先,设计搭建了检测实验平台,采集了Q345钢静载拉伸实验中0 MPa~400 MPa应力状态下的MAE信号;然后,采用变分模态分解方法,对磁声发射信号进行了自适应分解,生成了一系列从低频到高频分布的本征模态函数(IMF)分量;其次,计算了每个本征模态函数分量的散布熵值,构建了MAE信号的特征向量矩阵;最后,将特征向量矩阵输入到基于支持向量机建立的识别分类模型中,进行了信号的训练和识别。研究结果表明:使用基于自适应多尺度散布熵的磁声发射(MAE)信号特征识别方法,能够自适应地实现MAE信号的多尺度化目的,并且准确地识别出不同应力状态下的信号特征,分类识别准确率高达95.3704%,验证了该方法的有效性;说明基于自适应多尺度散布熵和多分类支持向量机的信号特征识别方法能够快速且有效地识别不同应力状态,在信号特征识别方面具有较好的应用潜力。 展开更多
关键词 磁声发射 变分模态分解 散布熵 Q345钢 信号特征识别 本征模态函数
下载PDF
基于小波包Teager散布熵的轨道车辆路基振动特征提取方法研究
16
作者 张敏 孙龙印 +1 位作者 夏拓 张雄 《机械强度》 CAS CSCD 北大核心 2024年第4期771-777,共7页
变压器等电气设备的吊装、转运环节是疏于监控的薄弱环节,极易发生由机械冲击引起的二次损伤。对变压器轨道运输车行进过程中受路基振动引起的冲击响应开展研究。首先,建立了轨道运输车⁃变压器耦合分析模型,利用有限元分析得出轨道运输... 变压器等电气设备的吊装、转运环节是疏于监控的薄弱环节,极易发生由机械冲击引起的二次损伤。对变压器轨道运输车行进过程中受路基振动引起的冲击响应开展研究。首先,建立了轨道运输车⁃变压器耦合分析模型,利用有限元分析得出轨道运输车⁃变压器耦合分析模型在路基振动作用下的核心响应区域。然后,提出了一种基于小波包散布熵的非周期瞬态响应特征提取方法。该方法通过小波包最优子带树结构对整个频带进行良好的稀疏性分割,将包含多种信息的一维数据分解到不同维度,实现信号的有效分解,通过Teager能量算子(Teager Energy Operator,TEO)增强子带信号的冲击特性,利用散布熵选取包含冲击响应特征的子带信号。最后,通过路基振动仿真信号验证了所提方法能够准确从耦合路径干扰中提取出非周期性瞬态冲击响应成分。 展开更多
关键词 变压器 轨道运输车 路基振动 有限元分析 小波包 Teager 散布熵
下载PDF
基于DE-VMD和GMDE的往复压缩机轴承间隙故障诊断方法
17
作者 李彦阳 蔡剑华 曲孝海 《机电工程》 CAS 北大核心 2024年第4期683-690,共8页
针对往复压缩机轴承间隙故障特征提取困难、识别准确率不高等问题,提出了差分进化算法优化变分模态分解方法和广义多尺度散布熵相结合的往复压缩机间隙故障诊断方法。首先,采用差分进化算法对变分模态分解算法的两个核心参数进行了优化... 针对往复压缩机轴承间隙故障特征提取困难、识别准确率不高等问题,提出了差分进化算法优化变分模态分解方法和广义多尺度散布熵相结合的往复压缩机间隙故障诊断方法。首先,采用差分进化算法对变分模态分解算法的两个核心参数进行了优化,并利用优化后的变分模态分解方法对轴承间隙振动信号进行了信号分解和重构处理;然后,研究了多尺度散布熵的粗粒化过程,通过将方差粗粒化代替均值粗粒化,进行了多尺度处理,构建了广义多尺度散布熵算法,利用广义多尺度散布熵算法对重构信号进行了故障特征提取分析;最后,设计了核极限学习机模型对故障特征向量集进行了分类识别,完成了往复压缩机轴承间隙不同故障状态的智能诊断研究。研究结果表明,该故障诊断方法的识别准确率高达97%,高效地实现了轴承不同种类故障的智能诊断目的。 展开更多
关键词 往复压缩机 轴承故障诊断 变分模态分解 广义多尺度散布熵 核极限学习机 差分进化算法
下载PDF
基于置信规则库的汽车视镜系统声音信号故障诊断
18
作者 李国忠 贺强强 +1 位作者 张昊 尹晓静 《长春工业大学学报》 CAS 2024年第4期337-344,共8页
考虑到声音信号非接触、获取方便的优势,提出了一种基于置信规则库(Belief Rule Base, BRB)的汽车视镜系统声音信号故障诊断方法。首先,采用多尺度散布熵(Multiscale Dispersion Entropy, MDE)来提取视镜系统声音信号特征;然后,融合提... 考虑到声音信号非接触、获取方便的优势,提出了一种基于置信规则库(Belief Rule Base, BRB)的汽车视镜系统声音信号故障诊断方法。首先,采用多尺度散布熵(Multiscale Dispersion Entropy, MDE)来提取视镜系统声音信号特征;然后,融合提取的特征及专家知识建立BRB故障诊断模型;之后,采用协方差矩阵适应进化策略优化算法(Projection Covariance Matrix Adaptive Evolutionary Strategy, P-CMA-ES)对BRB中专家给定的初始参数进行优化,提高模型精度;最后,利用某型汽车视镜系统耐久试验过程的声音信号监测数据验证了所提方法的有效性和准确性。 展开更多
关键词 声音信号 多尺度散布熵 置信规则库 故障诊断
下载PDF
SPA-HRDE在机械设备声信号故障诊断中的应用
19
作者 刘儒林 汪进 谢忠志 《液压与气动》 北大核心 2024年第3期70-81,共12页
针对现有故障诊断方法存在接触式采集、精度低等问题,提出了一种结合平滑先验分析和层次反向散布熵的机械设备故障诊断方法。首先,通过SPA将声音信号分解为趋势项和去趋势项。随后,利用HRDE提取趋势项和去趋势项信号的层次熵值,构建故... 针对现有故障诊断方法存在接触式采集、精度低等问题,提出了一种结合平滑先验分析和层次反向散布熵的机械设备故障诊断方法。首先,通过SPA将声音信号分解为趋势项和去趋势项。随后,利用HRDE提取趋势项和去趋势项信号的层次熵值,构建故障特征样本;最后,利用蜜獾算法对支持向量机的关键参数进行搜索,建立参数最优的故障识别模型,将故障特征输入到HBA-SVM分类器中进行故障识别,并基于离心泵和滚动轴承两种机械设备的实验评估证实了所提方法的有效性。试验结果表明:该方法分别取得了100%和97%的故障识别精度。相较于其他故障诊断方法,该方法能够充分提取声信号中的故障信息,实现更高精度的故障诊断,具有很强的鲁棒性。 展开更多
关键词 声音信号 平滑先验分析 层次反向散布熵 机械设备 蜜獾算法 故障诊断
下载PDF
基于SORT映射的IRCMFDE在旋转机械故障诊断中的应用
20
作者 王潞红 邹平吉 《机电工程》 北大核心 2024年第1期11-21,共11页
针对旋转机械振动信号的强非线性和非平稳性,导致故障特征提取困难的问题,提出了一种基于SORT映射的改进精细复合多尺度波动散布熵(IRCMFDE)和蝙蝠算法优化的相关向量机(BA-RVM)的旋转机械故障诊断方法。首先,利用SORT映射函数替换了精... 针对旋转机械振动信号的强非线性和非平稳性,导致故障特征提取困难的问题,提出了一种基于SORT映射的改进精细复合多尺度波动散布熵(IRCMFDE)和蝙蝠算法优化的相关向量机(BA-RVM)的旋转机械故障诊断方法。首先,利用SORT映射函数替换了精细复合多尺度波动散布熵(RCMFDE)方法的正态累积分布函数,同时对RCMFDE方法的粗粒化方式进行了改进,提出了基于SORT映射的IRCMFDE方法;随后,利用IRCMFDE方法提取了旋转机械振动信号的故障特征,构造了故障特征集;最后,采用BA-RVM分类器对旋转机械的故障类型进行了智能化的识别和分类;将基于IRCMFDE和BA-RVM的故障诊断方法应用于滚动轴承、离心泵和齿轮箱的实验数据分析,并将其与现有故障诊断方法进行了对比分析。研究结果表明:基于IRCMFDE和BA-RVM的故障诊断方法能够有效地识别旋转机械的故障状态,识别准确率分别达到了100%、98%和99%,相比基于RCMFDE、精细复合多尺度熵、精细复合多尺度模糊熵、精细复合多尺度排列熵和精细复合多尺度散布熵的故障特征提取方法,该故障诊断方法的效率和平均识别准确率均优于对比方法,其更适合应用于旋转机械的在线实时故障监测。 展开更多
关键词 改进精细复合多尺度波动散布熵 SORT映射 蝙蝠算法优化的相关向量机 旋转机械 故障分类识别
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部