The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results ...The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation.展开更多
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso...Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.展开更多
This paper introduces a multi-scale morphological edge detection algorithm to extract SAR image edge which suffers seriously from noise. Combining the basic theme of morphology with that of multi-scale analysis, the a...This paper introduces a multi-scale morphological edge detection algorithm to extract SAR image edge which suffers seriously from noise. Combining the basic theme of morphology with that of multi-scale analysis, the algorithm presents the outstanding characteristics of accuracy and robustness. Comparative Experiments reveal its fine performance.展开更多
A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected...A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments.展开更多
Recently,deep learning-based image inpainting methods have made great strides in reconstructing damaged regions.However,these methods often struggle to produce satisfactory results when dealing with missing images wit...Recently,deep learning-based image inpainting methods have made great strides in reconstructing damaged regions.However,these methods often struggle to produce satisfactory results when dealing with missing images with large holes,leading to distortions in the structure and blurring of textures.To address these problems,we combine the advantages of transformers and convolutions to propose an image inpainting method that incorporates edge priors and attention mechanisms.The proposed method aims to improve the results of inpainting large holes in images by enhancing the accuracy of structure restoration and the ability to recover texture details.This method divides the inpainting task into two phases:edge prediction and image inpainting.Specifically,in the edge prediction phase,a transformer architecture is designed to combine axial attention with standard self-attention.This design enhances the extraction capability of global structural features and location awareness.It also balances the complexity of self-attention operations,resulting in accurate prediction of the edge structure in the defective region.In the image inpainting phase,a multi-scale fusion attention module is introduced.This module makes full use of multi-level distant features and enhances local pixel continuity,thereby significantly improving the quality of image inpainting.To evaluate the performance of our method.comparative experiments are conducted on several datasets,including CelebA,Places2,and Facade.Quantitative experiments show that our method outperforms the other mainstream methods.Specifically,it improves Peak Signal-to-Noise Ratio(PSNR)and Structure Similarity Index Measure(SSIM)by 1.141~3.234 db and 0.083~0.235,respectively.Moreover,it reduces Learning Perceptual Image Patch Similarity(LPIPS)and Mean Absolute Error(MAE)by 0.0347~0.1753 and 0.0104~0.0402,respectively.Qualitative experiments reveal that our method excels at reconstructing images with complete structural information and clear texture details.Furthermore,our model exhibits impressive performance in terms of the number of parameters,memory cost,and testing time.展开更多
Edge detection is one of the core steps of image processing and computer vision.Accurate and fine image edge will make further target detection and semantic segmentation more effective.Holistically-Nested edge detecti...Edge detection is one of the core steps of image processing and computer vision.Accurate and fine image edge will make further target detection and semantic segmentation more effective.Holistically-Nested edge detection(HED)edge detection network has been proved to be a deep-learning network with better performance for edge detection.However,it is found that when the HED network is used in overlapping complex multi-edge scenarios for automatic object identification.There will be detected edge incomplete,not smooth and other problems.To solve these problems,an image edge detection algorithm based on improved HED and feature fusion is proposed.On the one hand,features are extracted using the improved HED network:the HED convolution layer is improved.The residual variable convolution block is used to replace the normal convolution enhancement model to extract features from edges of different sizes and shapes.Meanwhile,the empty convolution is used to replace the original pooling layer to expand the receptive field and retain more global information to obtain comprehensive feature information.On the other hand,edges are extracted using Otsu algorithm:Otsu-Canny algorithm is used to adaptively adjust the threshold value in the global scene to achieve the edge detection under the optimal threshold value.Finally,the edge extracted by improved HED network and Otsu-Canny algorithm is fused to obtain the final edge.Experimental results show that on the Berkeley University Data Set(BSDS500)the optimal data set size(ODS)F-measure of the proposed algorithm is 0.793;the average precision(AP)of the algorithm is 0.849;detection speed can reach more than 25 frames per second(FPS),which confirms the effectiveness of the proposed method.展开更多
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba...In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.展开更多
A new model is proposed in this paper on color edge detection that uses the second derivative operators and data fusion mechanism.The secondorder neighborhood shows the connection between the current pixel and the sur...A new model is proposed in this paper on color edge detection that uses the second derivative operators and data fusion mechanism.The secondorder neighborhood shows the connection between the current pixel and the surroundings of this pixel.This connection is for each RGB component color of the input image.Once the image edges are detected for the three primary colors:red,green,and blue,these colors are merged using the combination rule.Then,the final decision is applied to obtain the segmentation.This process allows different data sources to be combined,which is essential to improve the image information quality and have an optimal image segmentation.Finally,the segmentation results of the proposed model are validated.Moreover,the classification accuracy of the tested data is assessed,and a comparison with other current models is conducted.The comparison results show that the proposed model outperforms the existing models in image segmentation.展开更多
Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolvi...Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolving characteristics are difficult to be measured. On that account, a dynamic evolving model of complex network with fusion nodes and overlap edges(CNFNOEs) is proposed. Firstly, we define some related concepts of CNFNOEs, and analyze the conversion process of fusion relationship and hierarchy relationship. According to the property difference of various nodes and edges, fusion nodes and overlap edges are subsequently split, and then the CNFNOEs is transformed to interlacing layered complex networks(ILCN). Secondly,the node degree saturation and attraction factors are defined. On that basis, the evolution algorithm and the local world evolution model for ILCN are put forward. Moreover, four typical situations of nodes evolution are discussed, and the degree distribution law during evolution is analyzed by means of the mean field method.Numerical simulation results show that nodes unreached degree saturation follow the exponential distribution with an error of no more than 6%; nodes reached degree saturation follow the distribution of their connection capacities with an error of no more than 3%; network weaving coefficients have a positive correlation with the highest probability of new node and initial number of connected edges. The results have verified the feasibility and effectiveness of the model, which provides a new idea and method for exploring CNFNOE's evolving process and law. Also, the model has good application prospects in structure and dynamics research of transportation network, communication network, social contact network,etc.展开更多
Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhanc...Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhancement and visual improvement.To deal with these problems,a sub-regional infrared-visible image fusion method(SRF)is proposed.First,morphology and threshold segmentation is applied to extract targets interested in infrared images.Second,the infrared back-ground is reconstructed based on extracted targets and the visible image.Finally,target and back-ground regions are fused using a multi-scale transform.Experimental results are obtained using public data for comparison and evaluation,which demonstrate that the proposed SRF has poten-tial benefits over other methods.展开更多
The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients ar...The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients around the zero value are very few, so we cannot sparsely represent low-frequency image information. The low-frequency component contains the main energy of the image and depicts the profile of the image. Direct fusion of the low-frequency component will not be conducive to obtain highly accurate fusion result. Therefore, this paper presents an infrared and visible image fusion method combining the multi-scale and top-hat transforms. On one hand, the new top-hat-transform can effectively extract the salient features of the low-frequency component. On the other hand, the multi-scale transform can extract highfrequency detailed information in multiple scales and from diverse directions. The combination of the two methods is conducive to the acquisition of more characteristics and more accurate fusion results. Among them, for the low-frequency component, a new type of top-hat transform is used to extract low-frequency features, and then different fusion rules are applied to fuse the low-frequency features and low-frequency background; for high-frequency components, the product of characteristics method is used to integrate the detailed information in high-frequency. Experimental results show that the proposed algorithm can obtain more detailed information and clearer infrared target fusion results than the traditional multiscale transform methods. Compared with the state-of-the-art fusion methods based on sparse representation, the proposed algorithm is simple and efficacious, and the time consumption is significantly reduced.展开更多
Due to the lack of long-range association and spatial location information,fine details and accurate boundaries of complex clothing images cannot always be obtained by using the existing deep learning-based methods.Th...Due to the lack of long-range association and spatial location information,fine details and accurate boundaries of complex clothing images cannot always be obtained by using the existing deep learning-based methods.This paper presents a convolutional structure with multi-scale fusion to optimize the step of clothing feature extraction and a self-attention module to capture long-range association information.The structure enables the self-attention mechanism to directly participate in the process of information exchange through the down-scaling projection operation of the multi-scale framework.In addition,the improved self-attention module introduces the extraction of 2-dimensional relative position information to make up for its lack of ability to extract spatial position features from clothing images.The experimental results based on the colorful fashion parsing dataset(CFPD)show that the proposed network structure achieves 53.68%mean intersection over union(mIoU)and has better performance on the clothing parsing task.展开更多
To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. W...To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. We also propose a fast algorithm for computing 3D volumetric curvature. In comparison to conventional volumetric curvature attributes, its main improvements and key algorithms introduce multi-frequency components expansion in time-frequency domain and the corresponding multi-scale adaptive differential operator in the wavenumber domain, into the volumetric curvature calculation. This methodology can simultaneously depict seismic multi-scale features in both time and space. Additionally, we use data fusion of volumetric curvatures at various scales to take full advantage of the geologic features and anomalies extracted by curvature measurements at different scales. The 3D MSVC can highlight geologic anomalies and reduce noise at the same time. Thus, it improves the interpretation efficiency of curvature attributes analysis. The 3D MSVC is applied to both land and marine 3D seismic data. The results demonstrate that it can indicate the spatial distribution of reservoirs, detect faults and fracture zones, and identify their multi-scale properties.展开更多
Academic and industrial communities have been paying significant attention to the 6th Generation (6G) wireless communication systems after the commercial deployment of 5G cellular communications. Among the emerging te...Academic and industrial communities have been paying significant attention to the 6th Generation (6G) wireless communication systems after the commercial deployment of 5G cellular communications. Among the emerging technologies, Vehicular Edge Computing (VEC) can provide essential assurance for the robustness of Artificial Intelligence (AI) algorithms to be used in the 6G systems. Therefore, in this paper, a strategy for enhancing the robustness of AI model deployment using 6G-VEC is proposed, taking the object detection task as an example. This strategy includes two stages: model stabilization and model adaptation. In the former, the state-of-the-art methods are appended to the model to improve its robustness. In the latter, two targeted compression methods are implemented, namely model parameter pruning and knowledge distillation, which result in a trade-off between model performance and runtime resources. Numerical results indicate that the proposed strategy can be smoothly deployed in the onboard edge terminals, where the introduced trade-off outperforms the other strategies available.展开更多
The numerous photos captured by low-price Internet of Things(IoT)sensors are frequently affected by meteorological factors,especially rainfall.It causes varying sizes of white streaks on the image,destroying the image...The numerous photos captured by low-price Internet of Things(IoT)sensors are frequently affected by meteorological factors,especially rainfall.It causes varying sizes of white streaks on the image,destroying the image texture and ruining the performance of the outdoor computer vision system.Existing methods utilise training with pairs of images,which is difficult to cover all scenes and leads to domain gaps.In addition,the network structures adopt deep learning to map rain images to rain-free images,failing to use prior knowledge effectively.To solve these problems,we introduce a single image derain model in edge computing that combines prior knowledge of rain patterns with the learning capability of the neural network.Specifically,the algorithm first uses Residue Channel Prior to filter out the rainfall textural features then it uses the Feature Fusion Module to fuse the original image with the background feature information.This results in a pre-processed image which is fed into Half Instance Net(HINet)to recover a high-quality rain-free image with a clear and accurate structure,and the model does not rely on any rainfall assumptions.Experimental results on synthetic and real-world datasets show that the average peak signal-to-noise ratio of the model decreases by 0.37 dB on the synthetic dataset and increases by 0.43 dB on the real-world dataset,demonstrating that a combined model reduces the gap between synthetic data and natural rain scenes,improves the generalization ability of the derain network,and alleviates the overfitting problem.展开更多
The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prosta...The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prostate segmentation,but due to the variability caused by prostate diseases,automatic segmentation of the prostate presents significant challenges.In this paper,we propose an attention-guided multi-scale feature fusion network(AGMSF-Net)to segment prostate MRI images.We propose an attention mechanism for extracting multi-scale features,and introduce a 3D transformer module to enhance global feature representation by adding it during the transition phase from encoder to decoder.In the decoder stage,a feature fusion module is proposed to obtain global context information.We evaluate our model on MRI images of the prostate acquired from a local hospital.The relative volume difference(RVD)and dice similarity coefficient(DSC)between the results of automatic prostate segmentation and ground truth were 1.21%and 93.68%,respectively.To quantitatively evaluate prostate volume on MRI,which is of significant clinical significance,we propose a unique AGMSF-Net.The essential performance evaluation and validation experiments have demonstrated the effectiveness of our method in automatic prostate segmentation.展开更多
With the remarkable advancements in machine vision research and its ever-expanding applications,scholars have increasingly focused on harnessing various vision methodologies within the industrial realm.Specifically,de...With the remarkable advancements in machine vision research and its ever-expanding applications,scholars have increasingly focused on harnessing various vision methodologies within the industrial realm.Specifically,detecting vehicle floor welding points poses unique challenges,including high operational costs and limited portability in practical settings.To address these challenges,this paper innovatively integrates template matching and the Faster RCNN algorithm,presenting an industrial fusion cascaded solder joint detection algorithm that seamlessly blends template matching with deep learning techniques.This algorithm meticulously weights and fuses the optimized features of both methodologies,enhancing the overall detection capabilities.Furthermore,it introduces an optimized multi-scale and multi-template matching approach,leveraging a diverse array of templates and image pyramid algorithms to bolster the accuracy and resilience of object detection.By integrating deep learning algorithms with this multi-scale and multi-template matching strategy,the cascaded target matching algorithm effectively accurately identifies solder joint types and positions.A comprehensive welding point dataset,labeled by experts specifically for vehicle detection,was constructed based on images from authentic industrial environments to validate the algorithm’s performance.Experiments demonstrate the algorithm’s compelling performance in industrial scenarios,outperforming the single-template matching algorithm by 21.3%,the multi-scale and multitemplate matching algorithm by 3.4%,the Faster RCNN algorithm by 19.7%,and the YOLOv9 algorithm by 17.3%in terms of solder joint detection accuracy.This optimized algorithm exhibits remarkable robustness and portability,ideally suited for detecting solder joints across diverse vehicle workpieces.Notably,this study’s dataset and feature fusion approach can be a valuable resource for other algorithms seeking to enhance their solder joint detection capabilities.This work thus not only presents a novel and effective solution for industrial solder joint detection but lays the groundwork for future advancements in this critical area.展开更多
Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric vehicles.To overcome the imbalance of existing methods between multi-scale featu...Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric vehicles.To overcome the imbalance of existing methods between multi-scale feature fusion and global feature extraction,this paper introduces a novel multi-scale fusion(MSF)model based on gated recurrent unit(GRU),which is specifically designed for complex multi-step SOC prediction in practical BESSs.Pearson correlation analysis is first employed to identify SOC-related parameters.These parameters are then input into a multi-layer GRU for point-wise feature extraction.Concurrently,the parameters undergo patching before entering a dual-stage multi-layer GRU,thus enabling the model to capture nuanced information across varying time intervals.Ultimately,by means of adaptive weight fusion and a fully connected network,multi-step SOC predictions are rendered.Following extensive validation over multiple days,it is illustrated that the proposed model achieves an absolute error of less than 1.5%in real-time SOC prediction.展开更多
Grasp detection plays a critical role for robot manipulation.Mainstream pixel-wise grasp detection networks with encoder-decoder structure receive much attention due to good accuracy and efficiency.However,they usuall...Grasp detection plays a critical role for robot manipulation.Mainstream pixel-wise grasp detection networks with encoder-decoder structure receive much attention due to good accuracy and efficiency.However,they usually transmit the high-level feature in the encoder to the decoder,and low-level features are neglected.It is noted that low-level features contain abundant detail information,and how to fully exploit low-level features remains unsolved.Meanwhile,the channel information in high-level feature is also not well mined.Inevitably,the performance of grasp detection is degraded.To solve these problems,we propose a grasp detection network with hierarchical multi-scale feature fusion and inverted shuffle residual.Both low-level and high-level features in the encoder are firstly fused by the designed skip connections with attention module,and the fused information is then propagated to corresponding layers of the decoder for in-depth feature fusion.Such a hierarchical fusion guarantees the quality of grasp prediction.Furthermore,an inverted shuffle residual module is created,where the high-level feature from encoder is split in channel and the resultant split features are processed in their respective branches.By such differentiation processing,more high-dimensional channel information is kept,which enhances the representation ability of the network.Besides,an information enhancement module is added before the encoder to reinforce input information.The proposed method attains 98.9%and 97.8%in image-wise and object-wise accuracy on the Cornell grasping dataset,respectively,and the experimental results verify the effectiveness of the method.展开更多
基金the National Key R&D Program of China(2018AAA0103103).
文摘The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation.
文摘Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.
基金Supported the NatioIlal Naturel Science Foundation of China(No.69831040)
文摘This paper introduces a multi-scale morphological edge detection algorithm to extract SAR image edge which suffers seriously from noise. Combining the basic theme of morphology with that of multi-scale analysis, the algorithm presents the outstanding characteristics of accuracy and robustness. Comparative Experiments reveal its fine performance.
基金supported partly by the National Basic Research Program of China (2005CB724303)the National Natural Science Foundation of China (60671062) Shanghai Leading Academic Discipline Project (B112).
文摘A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments.
基金supported in part by the National Natural Science Foundation of China under Grant 62062061/in part by the Major Project Cultivation Fund of Xizang Minzu University under Grant 324112300447.
文摘Recently,deep learning-based image inpainting methods have made great strides in reconstructing damaged regions.However,these methods often struggle to produce satisfactory results when dealing with missing images with large holes,leading to distortions in the structure and blurring of textures.To address these problems,we combine the advantages of transformers and convolutions to propose an image inpainting method that incorporates edge priors and attention mechanisms.The proposed method aims to improve the results of inpainting large holes in images by enhancing the accuracy of structure restoration and the ability to recover texture details.This method divides the inpainting task into two phases:edge prediction and image inpainting.Specifically,in the edge prediction phase,a transformer architecture is designed to combine axial attention with standard self-attention.This design enhances the extraction capability of global structural features and location awareness.It also balances the complexity of self-attention operations,resulting in accurate prediction of the edge structure in the defective region.In the image inpainting phase,a multi-scale fusion attention module is introduced.This module makes full use of multi-level distant features and enhances local pixel continuity,thereby significantly improving the quality of image inpainting.To evaluate the performance of our method.comparative experiments are conducted on several datasets,including CelebA,Places2,and Facade.Quantitative experiments show that our method outperforms the other mainstream methods.Specifically,it improves Peak Signal-to-Noise Ratio(PSNR)and Structure Similarity Index Measure(SSIM)by 1.141~3.234 db and 0.083~0.235,respectively.Moreover,it reduces Learning Perceptual Image Patch Similarity(LPIPS)and Mean Absolute Error(MAE)by 0.0347~0.1753 and 0.0104~0.0402,respectively.Qualitative experiments reveal that our method excels at reconstructing images with complete structural information and clear texture details.Furthermore,our model exhibits impressive performance in terms of the number of parameters,memory cost,and testing time.
基金This research was funded by College Student Innovation and Entrepreneurship Training Program,Grant Numbers 2021055Z and S202110082031the Special Project for Cultivating Scientific and Technological Innovation Ability of College and Middle School Students in Hebei Province,Grant Numbers 2021H011404 and 2021H010203.
文摘Edge detection is one of the core steps of image processing and computer vision.Accurate and fine image edge will make further target detection and semantic segmentation more effective.Holistically-Nested edge detection(HED)edge detection network has been proved to be a deep-learning network with better performance for edge detection.However,it is found that when the HED network is used in overlapping complex multi-edge scenarios for automatic object identification.There will be detected edge incomplete,not smooth and other problems.To solve these problems,an image edge detection algorithm based on improved HED and feature fusion is proposed.On the one hand,features are extracted using the improved HED network:the HED convolution layer is improved.The residual variable convolution block is used to replace the normal convolution enhancement model to extract features from edges of different sizes and shapes.Meanwhile,the empty convolution is used to replace the original pooling layer to expand the receptive field and retain more global information to obtain comprehensive feature information.On the other hand,edges are extracted using Otsu algorithm:Otsu-Canny algorithm is used to adaptively adjust the threshold value in the global scene to achieve the edge detection under the optimal threshold value.Finally,the edge extracted by improved HED network and Otsu-Canny algorithm is fused to obtain the final edge.Experimental results show that on the Berkeley University Data Set(BSDS500)the optimal data set size(ODS)F-measure of the proposed algorithm is 0.793;the average precision(AP)of the algorithm is 0.849;detection speed can reach more than 25 frames per second(FPS),which confirms the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (62271255,61871218)the Fundamental Research Funds for the Central University (3082019NC2019002)+1 种基金the Aeronautical Science Foundation (ASFC-201920007002)the Program of Remote Sensing Intelligent Monitoring and Emergency Services for Regional Security Elements。
文摘In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.
文摘A new model is proposed in this paper on color edge detection that uses the second derivative operators and data fusion mechanism.The secondorder neighborhood shows the connection between the current pixel and the surroundings of this pixel.This connection is for each RGB component color of the input image.Once the image edges are detected for the three primary colors:red,green,and blue,these colors are merged using the combination rule.Then,the final decision is applied to obtain the segmentation.This process allows different data sources to be combined,which is essential to improve the image information quality and have an optimal image segmentation.Finally,the segmentation results of the proposed model are validated.Moreover,the classification accuracy of the tested data is assessed,and a comparison with other current models is conducted.The comparison results show that the proposed model outperforms the existing models in image segmentation.
基金supported by the National Natural Science Foundation of China(615730176140149961174162)
文摘Multiple complex networks, each with different properties and mutually fused, have the problems that the evolving process is time varying and non-equilibrium, network structures are layered and interlacing, and evolving characteristics are difficult to be measured. On that account, a dynamic evolving model of complex network with fusion nodes and overlap edges(CNFNOEs) is proposed. Firstly, we define some related concepts of CNFNOEs, and analyze the conversion process of fusion relationship and hierarchy relationship. According to the property difference of various nodes and edges, fusion nodes and overlap edges are subsequently split, and then the CNFNOEs is transformed to interlacing layered complex networks(ILCN). Secondly,the node degree saturation and attraction factors are defined. On that basis, the evolution algorithm and the local world evolution model for ILCN are put forward. Moreover, four typical situations of nodes evolution are discussed, and the degree distribution law during evolution is analyzed by means of the mean field method.Numerical simulation results show that nodes unreached degree saturation follow the exponential distribution with an error of no more than 6%; nodes reached degree saturation follow the distribution of their connection capacities with an error of no more than 3%; network weaving coefficients have a positive correlation with the highest probability of new node and initial number of connected edges. The results have verified the feasibility and effectiveness of the model, which provides a new idea and method for exploring CNFNOE's evolving process and law. Also, the model has good application prospects in structure and dynamics research of transportation network, communication network, social contact network,etc.
基金supported by the China Postdoctoral Science Foundation Funded Project(No.2021M690385)the National Natural Science Foundation of China(No.62101045).
文摘Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhancement and visual improvement.To deal with these problems,a sub-regional infrared-visible image fusion method(SRF)is proposed.First,morphology and threshold segmentation is applied to extract targets interested in infrared images.Second,the infrared back-ground is reconstructed based on extracted targets and the visible image.Finally,target and back-ground regions are fused using a multi-scale transform.Experimental results are obtained using public data for comparison and evaluation,which demonstrate that the proposed SRF has poten-tial benefits over other methods.
基金Project supported by the National Natural Science Foundation of China(Grant No.61402368)Aerospace Support Fund,China(Grant No.2017-HT-XGD)Aerospace Science and Technology Innovation Foundation,China(Grant No.2017 ZD 53047)
文摘The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients around the zero value are very few, so we cannot sparsely represent low-frequency image information. The low-frequency component contains the main energy of the image and depicts the profile of the image. Direct fusion of the low-frequency component will not be conducive to obtain highly accurate fusion result. Therefore, this paper presents an infrared and visible image fusion method combining the multi-scale and top-hat transforms. On one hand, the new top-hat-transform can effectively extract the salient features of the low-frequency component. On the other hand, the multi-scale transform can extract highfrequency detailed information in multiple scales and from diverse directions. The combination of the two methods is conducive to the acquisition of more characteristics and more accurate fusion results. Among them, for the low-frequency component, a new type of top-hat transform is used to extract low-frequency features, and then different fusion rules are applied to fuse the low-frequency features and low-frequency background; for high-frequency components, the product of characteristics method is used to integrate the detailed information in high-frequency. Experimental results show that the proposed algorithm can obtain more detailed information and clearer infrared target fusion results than the traditional multiscale transform methods. Compared with the state-of-the-art fusion methods based on sparse representation, the proposed algorithm is simple and efficacious, and the time consumption is significantly reduced.
文摘Due to the lack of long-range association and spatial location information,fine details and accurate boundaries of complex clothing images cannot always be obtained by using the existing deep learning-based methods.This paper presents a convolutional structure with multi-scale fusion to optimize the step of clothing feature extraction and a self-attention module to capture long-range association information.The structure enables the self-attention mechanism to directly participate in the process of information exchange through the down-scaling projection operation of the multi-scale framework.In addition,the improved self-attention module introduces the extraction of 2-dimensional relative position information to make up for its lack of ability to extract spatial position features from clothing images.The experimental results based on the colorful fashion parsing dataset(CFPD)show that the proposed network structure achieves 53.68%mean intersection over union(mIoU)and has better performance on the clothing parsing task.
基金supported by the National Natural Science Foundation of China (No. 41004054) Research Fund for the Doctoral Program of Higher Education of China (No. 20105122120002)Natural Science Key Project, Sichuan Provincial Department of Education (No. 092A011)
文摘To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. We also propose a fast algorithm for computing 3D volumetric curvature. In comparison to conventional volumetric curvature attributes, its main improvements and key algorithms introduce multi-frequency components expansion in time-frequency domain and the corresponding multi-scale adaptive differential operator in the wavenumber domain, into the volumetric curvature calculation. This methodology can simultaneously depict seismic multi-scale features in both time and space. Additionally, we use data fusion of volumetric curvatures at various scales to take full advantage of the geologic features and anomalies extracted by curvature measurements at different scales. The 3D MSVC can highlight geologic anomalies and reduce noise at the same time. Thus, it improves the interpretation efficiency of curvature attributes analysis. The 3D MSVC is applied to both land and marine 3D seismic data. The results demonstrate that it can indicate the spatial distribution of reservoirs, detect faults and fracture zones, and identify their multi-scale properties.
基金supported by the National Key Research and Development Program of China(2020YFB1807500), the National Natural Science Foundation of China (62072360, 62001357, 62172438,61901367), the key research and development plan of Shaanxi province(2021ZDLGY02-09, 2020JQ-844)the Natural Science Foundation of Guangdong Province of China(2022A1515010988)+2 种基金Key Project on Artificial Intelligence of Xi'an Science and Technology Plan(2022JH-RGZN-0003)Xi'an Science and Technology Plan(20RGZN0005)the Xi'an Key Laboratory of Mobile Edge Computing and Security (201805052-ZD3CG36).
文摘Academic and industrial communities have been paying significant attention to the 6th Generation (6G) wireless communication systems after the commercial deployment of 5G cellular communications. Among the emerging technologies, Vehicular Edge Computing (VEC) can provide essential assurance for the robustness of Artificial Intelligence (AI) algorithms to be used in the 6G systems. Therefore, in this paper, a strategy for enhancing the robustness of AI model deployment using 6G-VEC is proposed, taking the object detection task as an example. This strategy includes two stages: model stabilization and model adaptation. In the former, the state-of-the-art methods are appended to the model to improve its robustness. In the latter, two targeted compression methods are implemented, namely model parameter pruning and knowledge distillation, which result in a trade-off between model performance and runtime resources. Numerical results indicate that the proposed strategy can be smoothly deployed in the onboard edge terminals, where the introduced trade-off outperforms the other strategies available.
基金supported by the National Natural Science Foundation of China under Grant no.41975183,and Grant no.41875184 and Supported by a grant from State Key Laboratory of Resources and Environmental Information System.
文摘The numerous photos captured by low-price Internet of Things(IoT)sensors are frequently affected by meteorological factors,especially rainfall.It causes varying sizes of white streaks on the image,destroying the image texture and ruining the performance of the outdoor computer vision system.Existing methods utilise training with pairs of images,which is difficult to cover all scenes and leads to domain gaps.In addition,the network structures adopt deep learning to map rain images to rain-free images,failing to use prior knowledge effectively.To solve these problems,we introduce a single image derain model in edge computing that combines prior knowledge of rain patterns with the learning capability of the neural network.Specifically,the algorithm first uses Residue Channel Prior to filter out the rainfall textural features then it uses the Feature Fusion Module to fuse the original image with the background feature information.This results in a pre-processed image which is fed into Half Instance Net(HINet)to recover a high-quality rain-free image with a clear and accurate structure,and the model does not rely on any rainfall assumptions.Experimental results on synthetic and real-world datasets show that the average peak signal-to-noise ratio of the model decreases by 0.37 dB on the synthetic dataset and increases by 0.43 dB on the real-world dataset,demonstrating that a combined model reduces the gap between synthetic data and natural rain scenes,improves the generalization ability of the derain network,and alleviates the overfitting problem.
基金This work was supported in part by the National Natural Science Foundation of China(Grant#:82260362)in part by the National Key R&D Program of China(Grant#:2021ZD0111000)+1 种基金in part by the Key R&D Project of Hainan Province(Grant#:ZDYF2021SHFZ243)in part by the Major Science and Technology Project of Haikou(Grant#:2020-009).
文摘The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prostate segmentation,but due to the variability caused by prostate diseases,automatic segmentation of the prostate presents significant challenges.In this paper,we propose an attention-guided multi-scale feature fusion network(AGMSF-Net)to segment prostate MRI images.We propose an attention mechanism for extracting multi-scale features,and introduce a 3D transformer module to enhance global feature representation by adding it during the transition phase from encoder to decoder.In the decoder stage,a feature fusion module is proposed to obtain global context information.We evaluate our model on MRI images of the prostate acquired from a local hospital.The relative volume difference(RVD)and dice similarity coefficient(DSC)between the results of automatic prostate segmentation and ground truth were 1.21%and 93.68%,respectively.To quantitatively evaluate prostate volume on MRI,which is of significant clinical significance,we propose a unique AGMSF-Net.The essential performance evaluation and validation experiments have demonstrated the effectiveness of our method in automatic prostate segmentation.
基金supported in part by the National Key Research Project of China under Grant No.2023YFA1009402General Science and Technology Plan Items in Zhejiang Province ZJKJT-2023-02.
文摘With the remarkable advancements in machine vision research and its ever-expanding applications,scholars have increasingly focused on harnessing various vision methodologies within the industrial realm.Specifically,detecting vehicle floor welding points poses unique challenges,including high operational costs and limited portability in practical settings.To address these challenges,this paper innovatively integrates template matching and the Faster RCNN algorithm,presenting an industrial fusion cascaded solder joint detection algorithm that seamlessly blends template matching with deep learning techniques.This algorithm meticulously weights and fuses the optimized features of both methodologies,enhancing the overall detection capabilities.Furthermore,it introduces an optimized multi-scale and multi-template matching approach,leveraging a diverse array of templates and image pyramid algorithms to bolster the accuracy and resilience of object detection.By integrating deep learning algorithms with this multi-scale and multi-template matching strategy,the cascaded target matching algorithm effectively accurately identifies solder joint types and positions.A comprehensive welding point dataset,labeled by experts specifically for vehicle detection,was constructed based on images from authentic industrial environments to validate the algorithm’s performance.Experiments demonstrate the algorithm’s compelling performance in industrial scenarios,outperforming the single-template matching algorithm by 21.3%,the multi-scale and multitemplate matching algorithm by 3.4%,the Faster RCNN algorithm by 19.7%,and the YOLOv9 algorithm by 17.3%in terms of solder joint detection accuracy.This optimized algorithm exhibits remarkable robustness and portability,ideally suited for detecting solder joints across diverse vehicle workpieces.Notably,this study’s dataset and feature fusion approach can be a valuable resource for other algorithms seeking to enhance their solder joint detection capabilities.This work thus not only presents a novel and effective solution for industrial solder joint detection but lays the groundwork for future advancements in this critical area.
基金supported in part by the National Natural Science Foundation of China(No.62172036).
文摘Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric vehicles.To overcome the imbalance of existing methods between multi-scale feature fusion and global feature extraction,this paper introduces a novel multi-scale fusion(MSF)model based on gated recurrent unit(GRU),which is specifically designed for complex multi-step SOC prediction in practical BESSs.Pearson correlation analysis is first employed to identify SOC-related parameters.These parameters are then input into a multi-layer GRU for point-wise feature extraction.Concurrently,the parameters undergo patching before entering a dual-stage multi-layer GRU,thus enabling the model to capture nuanced information across varying time intervals.Ultimately,by means of adaptive weight fusion and a fully connected network,multi-step SOC predictions are rendered.Following extensive validation over multiple days,it is illustrated that the proposed model achieves an absolute error of less than 1.5%in real-time SOC prediction.
基金This work was supported by the National Natural Science Foundation of China(Nos.62073322 and 61633020)the CIE-Tencent Robotics X Rhino-Bird Focused Research Program(No.2022-07)the Beijing Natural Science Foundation(No.2022MQ05).
文摘Grasp detection plays a critical role for robot manipulation.Mainstream pixel-wise grasp detection networks with encoder-decoder structure receive much attention due to good accuracy and efficiency.However,they usually transmit the high-level feature in the encoder to the decoder,and low-level features are neglected.It is noted that low-level features contain abundant detail information,and how to fully exploit low-level features remains unsolved.Meanwhile,the channel information in high-level feature is also not well mined.Inevitably,the performance of grasp detection is degraded.To solve these problems,we propose a grasp detection network with hierarchical multi-scale feature fusion and inverted shuffle residual.Both low-level and high-level features in the encoder are firstly fused by the designed skip connections with attention module,and the fused information is then propagated to corresponding layers of the decoder for in-depth feature fusion.Such a hierarchical fusion guarantees the quality of grasp prediction.Furthermore,an inverted shuffle residual module is created,where the high-level feature from encoder is split in channel and the resultant split features are processed in their respective branches.By such differentiation processing,more high-dimensional channel information is kept,which enhances the representation ability of the network.Besides,an information enhancement module is added before the encoder to reinforce input information.The proposed method attains 98.9%and 97.8%in image-wise and object-wise accuracy on the Cornell grasping dataset,respectively,and the experimental results verify the effectiveness of the method.