期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A High Resolution Convolutional Neural Network with Squeeze and Excitation Module for Automatic Modulation Classification
1
作者 Duan Ruifeng Zhao Yuanlin +3 位作者 Zhang Haiyan Li Xinze Cheng Peng Li Yonghui 《China Communications》 SCIE CSCD 2024年第10期132-147,共16页
Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior perfo... Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior performances in classification accuracy and robustness. In this paper, we propose a novel, high resolution and multi-scale feature fusion convolutional neural network model with a squeeze-excitation block, referred to as HRSENet,to classify different kinds of modulation signals.The proposed model establishes a parallel computing mechanism of multi-resolution feature maps through the multi-layer convolution operation, which effectively reduces the information loss caused by downsampling convolution. Moreover, through dense skipconnecting at the same resolution and up-sampling or down-sampling connection at different resolutions, the low resolution representation of the deep feature maps and the high resolution representation of the shallow feature maps are simultaneously extracted and fully integrated, which is benificial to mine signal multilevel features. Finally, the feature squeeze and excitation module embedded in the decoder is used to adjust the response weights between channels, further improving classification accuracy of proposed model.The proposed HRSENet significantly outperforms existing methods in terms of classification accuracy on the public dataset “Over the Air” in signal-to-noise(SNR) ranging from-2dB to 20dB. The classification accuracy in the proposed model achieves 85.36% and97.30% at 4dB and 10dB, respectively, with the improvement by 9.71% and 5.82% compared to LWNet.Furthermore, the model also has a moderate computation complexity compared with several state-of-the-art methods. 展开更多
关键词 automatic modulation classification deep learning feature squeeze-and-excitation HIGH-RESOLUTION multi-scale
下载PDF
Disease Recognition of Apple Leaf Using Lightweight Multi-Scale Network with ECANet 被引量:4
2
作者 Helong Yu Xianhe Cheng +2 位作者 Ziqing Li Qi Cai Chunguang Bi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第9期711-738,共28页
To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease rec... To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease recognition is proposed.Based on the deep residual network(ResNet18),the multi-scale feature extraction layer is constructed by group convolution to realize the compression model and improve the extraction ability of different sizes of lesion features.By improving the identity mapping structure to reduce information loss.By introducing the efficient channel attention module(ECANet)to suppress noise from a complex background.The experimental results show that the average precision,recall and F1-score of the LW-ResNet on the test set are 97.80%,97.92%and 97.85%,respectively.The parameter memory is 2.32 MB,which is 94%less than that of ResNet18.Compared with the classic lightweight networks SqueezeNet and MobileNetV2,LW-ResNet has obvious advantages in recognition performance,speed,parameter memory requirement and time complexity.The proposed model has the advantages of low computational cost,low storage cost,strong real-time performance,high identification accuracy,and strong practicability,which can meet the needs of real-time identification task of apple leaf disease on resource-constrained devices. 展开更多
关键词 Apple disease recognition deep residual network multi-scale feature efficient channel attention module lightweight network
下载PDF
Modulation recognition network of multi-scale analysis with deep threshold noise elimination
3
作者 Xiang LI Yibing LI +1 位作者 Chunrui TANG Yingsong LI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第5期742-758,共17页
To improve the accuracy of modulated signal recognition in variable environments and reduce the impact of factors such as lack of prior knowledge on recognition results,researchers have gradually adopted deep learning... To improve the accuracy of modulated signal recognition in variable environments and reduce the impact of factors such as lack of prior knowledge on recognition results,researchers have gradually adopted deep learning techniques to replace traditional modulated signal processing techniques.To address the problem of low recognition accuracy of the modulated signal at low signal-to-noise ratios,we have designed a novel modulation recognition network of multi-scale analysis with deep threshold noise elimination to recognize the actually collected modulated signals under a symmetric cross-entropy function of label smoothing.The network consists of a denoising encoder with deep adaptive threshold learning and a decoder with multi-scale feature fusion.The two modules are skip-connected to work together to improve the robustness of the overall network.Experimental results show that this method has better recognition accuracy at low signal-to-noise ratios than previous methods.The network demonstrates a flexible self-learning capability for different noise thresholds and the effectiveness of the designed feature fusion module in multi-scale feature acquisition for various modulation types. 展开更多
关键词 Signal noise elimination Deep adaptive threshold learning network multi-scale feature fusion modulation ecognition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部