期刊文献+
共找到6,945篇文章
< 1 2 250 >
每页显示 20 50 100
A semi-analytical model for coupled flow in stress-sensitive multi-scale shale reservoirs with fractal characteristics 被引量:2
1
作者 Qian Zhang Wen-Dong Wang +4 位作者 Yu-Liang Su Wei Chen Zheng-Dong Lei Lei Li Yong-Mao Hao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期327-342,共16页
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes... A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation. 展开更多
关键词 multi-scale coupled flow Stress sensitivity Shale oil Micro-scale effect Fractal theory
下载PDF
Multi-Scale Design and Optimization of Composite Material Structure for Heavy-Duty Truck Protection Device
2
作者 Yanhui Zhang Lianhua Ma +3 位作者 Hailiang Su Jirong Qin Zhining Chen Kaibiao Deng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1961-1980,共20页
In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,t... In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect. 展开更多
关键词 structural optimization front underrun protection device carbon fiber reinforced plastic multi-scale model lightweight design
下载PDF
Multi-scale complexity entropy causality plane: An intrinsic measure for indicating two-phase flow structures
3
作者 窦富祥 金宁德 +2 位作者 樊春玲 高忠科 孙斌 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第12期85-96,共12页
We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of ... We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of different oil-in-water flows. We first take several typical time series for example to investigate the characteristic of the MS-CECP and find that the MS-CECP not only describes the continuous loss of dynamical structure with the increase of scale, but also reflects the determinacy of the system. Then we calculate the MS-CECP for the conductance fluctuating signals measured from oil–water two-phase flow loop test facility. The results indicate that the MS-CECP could be an intrinsic measure for indicating oil-in-water two-phase flow structures. 展开更多
关键词 oil–water two-phase flow fluid dynamics complexity entropy multi-scale
下载PDF
Improved multi-scale inverse bottleneck residual network based on triplet parallel attention for apple leaf disease identification
4
作者 Lei Tang Jizheng Yi Xiaoyao Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期901-922,共22页
Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from ima... Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from image texture and structural information. The difficulties in disease feature extraction in complex backgrounds slow the related research progress. To address the problems, this paper proposes an improved multi-scale inverse bottleneck residual network model based on a triplet parallel attention mechanism, which is built upon ResNet-50, while improving and combining the inception module and ResNext inverse bottleneck blocks, to recognize seven types of apple leaf(including six diseases of alternaria leaf spot, brown spot, grey spot, mosaic, rust, scab, and one healthy). First, the 3×3 convolutions in some of the residual modules are replaced by multi-scale residual convolutions, the convolution kernels of different sizes contained in each branch of the multi-scale convolution are applied to extract feature maps of different sizes, and the outputs of these branches are multi-scale fused by summing to enrich the output features of the images. Second, the global layer-wise dynamic coordinated inverse bottleneck structure is used to reduce the network feature loss. The inverse bottleneck structure makes the image information less lossy when transforming from different dimensional feature spaces. The fusion of multi-scale and layer-wise dynamic coordinated inverse bottlenecks makes the model effectively balances computational efficiency and feature representation capability, and more robust with a combination of horizontal and vertical features in the fine identification of apple leaf diseases. Finally, after each improved module, a triplet parallel attention module is integrated with cross-dimensional interactions among channels through rotations and residual transformations, which improves the parallel search efficiency of important features and the recognition rate of the network with relatively small computational costs while the dimensional dependencies are improved. To verify the validity of the model in this paper, we uniformly enhance apple leaf disease images screened from the public data sets of Plant Village, Baidu Flying Paddle, and the Internet. The final processed image count is 14,000. The ablation study, pre-processing comparison, and method comparison are conducted on the processed datasets. The experimental results demonstrate that the proposed method reaches 98.73% accuracy on the adopted datasets, which is 1.82% higher than the classical ResNet-50 model, and 0.29% better than the apple leaf disease datasets before preprocessing. It also achieves competitive results in apple leaf disease identification compared to some state-ofthe-art methods. 展开更多
关键词 multi-scale module inverse bottleneck structure triplet parallel attention apple leaf disease
下载PDF
Regulation effect of the grille spacing of a funnel-type grating water–sediment separation structure on the debris flow performance
5
作者 LI Shuai GU Tianfeng +2 位作者 WANG Jiading WANG Fei LI Pu 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2283-2304,共22页
The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve t... The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve the water–sediment separation ability of the structure.The new funnel-type grating water–sediment separation structure(FGWSS)combines vertical and horizontal structures and provides a satisfactory water–sediment separation effect.However,the regulation effect of the grille spacing of the structure on the debris flow performance has not been studied.The regulation effect of the structure grille spacing on the debris flow performance is studied through a flume test,and the optimal structure grille spacing is obtained.An empirical equation of the relationship between the relative grille spacing of the structure and the sediment separation rate is established.Finally,the influence of the water–sediment separation structure on the regulation effect of debris flows is examined from two aspects:external factors(properties of debris flows)and internal factors(structural factors).The experimental results show that the gradation characteristics of solid particles in debris flows constitute a key factor affecting the regulation effect of the structure on the debris flow performance.The optimum grille spacing of the FGWSS matches the particle size corresponding to the material distribution curves d85~d90 of the debris flow.The total separation rate of debris flow particles is related to the grille spacing of the structure and the content of coarse and fine particles in the debris flow. 展开更多
关键词 Debris flow Water–sediment separation structure Grille spacing Performance regulation effect
下载PDF
Modeling of multiphase flow in low permeability porous media:Effect of wettability and pore structure properties
6
作者 Xiangjie Qin Yuxuan Xia +3 位作者 Juncheng Qiao Jiaheng Chen Jianhui Zeng Jianchao Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1127-1139,共13页
Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the ef... Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery. 展开更多
关键词 Low permeability porous media Water-oil flow WETTABILITY Pore structures Dual porosity pore network model(PNM) Free surface model
下载PDF
Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model 被引量:6
7
作者 Jun Yan Zunyi Duan +1 位作者 Erik Lund Guozhong Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期430-441,共12页
This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the ... This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries. 展开更多
关键词 Composite frame structure multi-scale optimization Topology optimization Fiber winding angle structural compliance
下载PDF
Multi-scale fatigue damage model for steel structures working under high temperature 被引量:1
8
作者 Huajing Guo Bin Sun Zhaoxia Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第3期615-623,共9页
In order to better understand the fatigue mechanisms of steel structures working under high temperature, a multi-scale fatigue damage model at high temperature is developed. In the developed model, the macroscopic fat... In order to better understand the fatigue mechanisms of steel structures working under high temperature, a multi-scale fatigue damage model at high temperature is developed. In the developed model, the macroscopic fatigue damage of metallic materials due to the collective behavior of micro-cracks is quantified by using the generalized self-consistent method. The influence of temperature on fatigue damage of steel structures is quantified by using the previous creep damage model. In addition, the fatigue damage at room temperature and creep damage is coupled in the multi-scale fatigue damage model. The validity of the developed multi-scale damage model is verified by comparing the predicted damage evolution curve with the experimental data. It shows that the developed model is effectiveness. Finally, the fatigue analysis on steel crane runway girders (CRGs) of industrial steel melt shop is performed based on the developed model. 展开更多
关键词 Steel structures High temperature multi-scale damage model MICROCRACKS GENERALIZED self-consistentmethod
下载PDF
EXPERIMENTAL STUDY ON COHERENT VORTEX STRUCTURES IN DIFFERENTIALLY ROTATING QUASI TWO DIMENSIONAL ZONAL FLOW
9
作者 何钰泉 梁宝社 刘书声 《Transactions of Tianjin University》 EI CAS 1998年第2期86-89,共4页
An experimental system for forming a rotating paraboloid shaped shallow water with a free surface was conducted to study coherent vortex structures in a differentially rotating quasi two dimensional zonal flow.Flow... An experimental system for forming a rotating paraboloid shaped shallow water with a free surface was conducted to study coherent vortex structures in a differentially rotating quasi two dimensional zonal flow.Flow visualization and laser light scattering techniques were used to obtain the information of spatial flow patterns.Experimental results show that the coexistence of Coriolis effect and strong shear in latitudinal zones may lead to formation of coherent vortices.Power spectra analysis and photographs which were taken in a reference frame rotating with the observed vortices also justified the emergence,drift and evolution of persistent vortices on the large scale.Locked vortex state manifests the cyclone and anticyclone asymmetry. 展开更多
关键词 coherent structure rotating shallow water shear flow
下载PDF
Multi-scale pore fractal characteristics of differently ranked coal and its impact on gas adsorption 被引量:3
10
作者 Zhongbei Li Ting Ren +4 位作者 Xiangchun Li Ming Qiao Xiaohan Yang Lihai Tan Baisheng Nie 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第4期389-401,共13页
Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied usin... Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied using high-pressure mercury injection(HPMI),low-pressure nitrogen adsorption(LPGA-N2),and scanning electron microscopy(SEM)test methods.Based on the Frankel,Halsey and Hill(FHH)fractal theory,the Menger sponge model,Pores and Cracks Analysis System(PCAS),pore volume complexity(D_(v)),coal surface irregularity(Ds)and pore distribution heterogeneity(D_(p))were studied and evaluated,respectively.The effect of three fractal dimensions on the gas adsorption ability was also analyzed with high-pressure isothermal gas adsorption experiments.Results show that pore structures within these coal samples have obvious fractal characteristics.A noticeable segmentation effect appears in the Dv1and Dv2fitting process,with the boundary size ranging from 36.00 to 182.95 nm,which helps differentiate diffusion pores and seepage fractures.The D values show an asymmetric U-shaped trend as the coal metamorphism increases,demonstrating that coalification greatly affects the pore fractal dimensions.The three fractal dimensions can characterize the difference in coal microstructure and reflect their influence on gas adsorption ability.Langmuir volume(V_(L))has an evident and positive correlation with Dsvalues,whereas Langmuir pressure(P_(L))is mainly affected by the combined action of Dvand Dp.This study will provide valuable knowledge for the appraisal of coal seam gas reservoirs of differently ranked coals. 展开更多
关键词 multi-scale pore structure Fractal theory Fractal characteristics Differently ranked coal Coalbed gas adsorption
下载PDF
CFD Simulation of Flow Features and Vorticity Structures in Tuna-Like Swimming 被引量:10
11
作者 杨亮 苏玉民 《China Ocean Engineering》 SCIE EI 2011年第1期73-82,共10页
The theoretical research on the propulsive principle of aquatic animal becomes more important and attracted more researchers to make efforts on it. In the present study, a computational fluid dynamic (CFD) simulatio... The theoretical research on the propulsive principle of aquatic animal becomes more important and attracted more researchers to make efforts on it. In the present study, a computational fluid dynamic (CFD) simulation of a three-dimensional traveling-wave undulations body of tuna has been developed to investigate the fluid flow features and vorticity structures around this body when moving in a straight line. The undulation only takes place in the posterior half of the fish, and the tuna-tail is considered as a lunate fin oscillating with the mode combined swaying with yawing. A Reynolds-averaged Navier-Stokes (RANS) equation is developed, employing a control-volume method and a k-omega SST turbulent model; meanwhile an unstructured tetrahedral grid, which is generated for the three-dimensional geometry, is used based on the deformation of the hind parts of the body and corresponding movement of the tail. We calculated the hydrodynamic performance of tuna-like body when a tuna swims in a uniform velocity, and compared the input power coefficient, output power coefficient and propulsive efficiency of the oscillating tuna-tail with or without body vortex shedding. Additionally, the load distribution on the body, flow features and vorticity structures around the body were demonstrated. The effect of interaction between the body-generated vortices and the tail-generated vorticity on the hydrodynamic performance can be obtained. 展开更多
关键词 CFD flow features vorticity structures hydrodynamic performance
下载PDF
Instantaneous and time-averaged flow structures around a blunt double-cone with or without supersonic film cooling visualized via nano-tracer planar laser scattering 被引量:3
12
作者 朱杨柱 易仕和 +2 位作者 何霖 田立丰 周勇为 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期368-373,共6页
In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scatt... In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scattering (NPLS), which has a high spatiotemporal resolution. Three experimental cases with different injection mass flux rates were carried out. Many typical flow structures were clearly shown, such as shock waves, expansion fans, shear layers, mixing layers, and turbulent boundary layers. The analysis of two NPLS images with an interval of 5 us revealed the temporal evolution characteristics of flow structures. With matched pressures, the laminar length of the mixing layer was longer than that in the case with a larger mass flux rate, but the full covered region was shorter. Structures like K-H (Kelvin-Helmholtz) vortices were clearly seen in both flows. Without injection, the flow was similar to the supersonic flow over a backward- facing step, and the structures were relatively simpler, and there was a longer laminar region. Large scale structures such as hairpin vortices were visualized. In addition, the results were compared in part with the schlieren images captured by others under similar conditions. 展开更多
关键词 blunt cone supersonic flow structure flow visualization supersonic film cooling
下载PDF
Power Flow Response Based Dynamic Topology Optimization of Bi-material Plate Structures 被引量:3
13
作者 XUE Xiaoguang LI Guoxi +1 位作者 XIONG Yeping GONG Jingzhong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期620-628,共9页
Work on dynamic topology optimization of engineering structures for vibration suppression has mainly addressed the maximization of eigenfrequencies and gaps between consecutive eigenfrequencies of free vibration, mini... Work on dynamic topology optimization of engineering structures for vibration suppression has mainly addressed the maximization of eigenfrequencies and gaps between consecutive eigenfrequencies of free vibration, minimization of the dynamic compliance subject to forced vibration, and minimization of the structural frequency response. A dynamic topology optimization method of bi-material plate structures is presented based on power flow analysis. Topology optimization problems formulated directly with the design objective of minimizing the power flow response are dealt with. In comparison to the displacement or velocity response, the power flow response takes not only the amplitude of force and velocity into account, but also the phase relationship of the two vector quantities. The complex expression of power flow response is derived based on time-harmonic external mechanical loading and Rayleigh damping. The mathematical formulation of topology optimization is established based on power flow response and bi-material solid isotropic material with penalization(SIMP) model. Computational optimization procedure is developed by using adjoint design sensitivity analysis and the method of moving asymptotes(MMA). Several numerical examples are presented for bi-material plate structures with different loading frequencies, which verify the feasibility and effectiveness of this method. Additionally, optimum results between topological design of minimum power flow response and minimum dynamic compliance are compared, showing that the present method has strong adaptability for structural dynamic topology optimization problems. The proposed research provides a more accurate and effective approach for dynamic topology optimization of vibrating structures. 展开更多
关键词 dynamic topology optimization power flow response BI-MATERIAL plate structures
下载PDF
Differential amplification method for flow structures analysis of centrifugal pump between design and off-design points 被引量:2
14
作者 ZHANG He-hui DENG Sheng-xiang QU Ying-jie 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1443-1449,共7页
The three-dimensional internal flow field of centrifugal pump is complex and variable with design parameters and operation conditions. The post-processing technique named differential amplification method was proposed... The three-dimensional internal flow field of centrifugal pump is complex and variable with design parameters and operation conditions. The post-processing technique named differential amplification method was proposed for the comparison study of different flow structures. The full steady flow fields of an industrial centrifugal pump working on-design and off-design points were numerically investigated by solving Reynolds average Navier-Stokes equations together with a shear-stress transport(SST) k-? turbulence model. And the numerically predicted performance curves of the studied pump agree well with test measurement results. Compared with the flow flied on design point under the help of differential amplification method, the disturbance caused by interaction between blade and volute tongue is very obvious and it extends to the diffuser pipe on the working point with 0.8 times rated flux. While on the point with 1.2 times rated flux, the flow distribution in impeller region is roughly even and it flows more to the bottom section of the diffuser pipe. The above method was proved to be good at displaying the subtle secondary flow structure changes with a higher resolution effect relative to single isolated case observation, which helps the optimization decision-making from multiple design cases. 展开更多
关键词 DIFFERENTIAL AMPLIFICATION COMPUTATIONAL fluid dynamics (CFD) flow structure CENTRIFUGAL PUMP
下载PDF
Lagrangian-based investigation of the transient flow structures around a pitching hydrofoil 被引量:2
15
作者 Qin Wu Biao Huang Guoyu Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第1期64-74,共11页
The objective of this paper is to address the transient flow structures around a pitching hydrofoil by com- bining physical and numerical studies. In order to predict the dynamic behavior of the flow structure effecti... The objective of this paper is to address the transient flow structures around a pitching hydrofoil by com- bining physical and numerical studies. In order to predict the dynamic behavior of the flow structure effectively, the Lagrangian coherent structures (LCS) defined by the ridges of the finite-time Lyapunov exponent (FTLE) are utilized under the framework of Navier-Stokes flow computations. In the numerical simulations, the k-w shear stress trans- port (SST) turbulence model, coupled with a two-equation F-Reo transition model, is used for the turbulence closure. Results are presented for a NACA66 hydrofoil undergoing slowly and rapidly pitching motions from 0° to 15° then back to 0° at a moderate Reynolds number Re = 7.5 × 105. The results reveal that the transient flow structures can be observed by the LCS method. For the slowly pitching case, it consists of five stages: quasi-steady and laminar, transition from laminar to turbulent, vortex development, large-scale vortex shedding, and reverting to laminar. The observation of LCS and Lagrangian particle tracers elucidates that the trailing edge vortex is nearly attached and stable during the vortex development stage and the interaction between the leading and trailing edge vortex caused by the adverse pres- sure gradient forces the vortexes to shed downstream during the large-scale vortex shedding stage, which corresponds to obvious fluctuations of the hydrodynamic response. For the rapidly pitching case, the inflection is hardly to be observed and the stall is delayed. The vortex formation, interaction, and shedding occurred once instead of being repeated three times, which is responsible for just one fluctuation in the hydrody- namic characteristics. The numerical results also show that the FTLE field has the potential to identify the transient flows, and the LCS can represent the divergence extent of infinite neighboring particles and capture the interface of the vortex region. 展开更多
关键词 Transient flow structure Pitching hydrofoilFinite-time Lyapunov exponent Lagrangian coherentstructures
下载PDF
SEDIMENTARY MACRO-STRUCTURES AND FORMING MECHANISM OF DEBRIS FLOW 被引量:1
16
作者 刘耕年 崔之久 《Chinese Geographical Science》 SCIE CSCD 1999年第1期33-39,共7页
The discussion on sedimentary macro-structures and their forming mechanics of debris flow is based on thedata of present processes and ancient deposits of Dongchuan in Yunnan Province, Wudu in Gansu Province and Fuxin... The discussion on sedimentary macro-structures and their forming mechanics of debris flow is based on thedata of present processes and ancient deposits of Dongchuan in Yunnan Province, Wudu in Gansu Province and Fuxin inLiaoning Province. Non-cohesive debris flow, which is 1. 3 -1. 7 t/m3 in density, follows hydraulic fluid and flow model. In the hydraulic fluid of flood, electrolytic water combines clay into pulp to transport solid debris. The sedimentary structures show fluid processes as stone-line structure, imbricated structure and stone supporting-sustructure. A part of non-cohesive debris flow with a density of 1. 7 -1. 9t/m3 follows granular model. Debris is in the action of friction, collision and dispersion which forces as debris moving upward to form reverse graded load. The sedimentary structures of granular flow show reverse graded bedding, reverse-normal graded bedding, imbricated verticalstructure and circling linear structure.Cohesive debris flow, which is 1. 9 - 2. 3 t/m3 in density, follows structural two phase flow (viscoplastic) model. The sedimentary structures of cohesive debris flow show reverse graded-chaotic structure,bottom mud-chaotic structure and outwedging structure. 展开更多
关键词 DEBRIS flow SEDIMENTARY structure FORMING mechanism
下载PDF
Temporal change of plankton size structure preserved by Lugol's solution:a FlowCAM study
17
作者 Zijia LIU Yuan DONG +3 位作者 Qian P.LI Zhengchao WU Zaiming GE Mengzhen MA 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第1期290-299,共10页
Plankton size structure is crucial for understanding marine ecosystem dynamics and the associated biogeochemical processes.A fixation step by acid Lugol’s solution has been commonly employed to preserve plankton samp... Plankton size structure is crucial for understanding marine ecosystem dynamics and the associated biogeochemical processes.A fixation step by acid Lugol’s solution has been commonly employed to preserve plankton samples in the field.However,the acid Lugol’s solution can bias the estimation of size structure and the preserved plankton size structure can vary with time.Here,we explore the impact of sample storage time on the size-structure of the plankton community preserved by Lugol’s solution.Two short-term experiments and one long-term experiment were conducted to explore the change of plankton community size structure with the storage time:covering from a week to a month,and to nearly seven months based on particle-size data obtained by continuous Flow Cytometer and Microscope(FlowCAM)measurements.We found a linear change of plankton size with the storage time in short-term periods(less than 3 months)with a decrease of the slope but an increase of the intercept for the normalized biomass size spectrum(NBS S).However,there were opposite trends for NBSS with increasing slope but decreasing intercept after3 months.The potential causes of the distinct patterns of the NBSS parameters are addressed in terms of the interplay between particle aggregation and fragmentation.We found large changes in plankton biovolume and abundance among different size classes,which may indicate a distinct effect of acid Lugol’s solution on various plankton size classes.The mechanism driving temporal change in the size-structure of the Lugolfixed plankton community was further discussed in terms of particle aggregation and fragmentation.Finally,we emphasize that the effect of storage time should be taken into account when interpreting or comparing data of plankton community acquired from samples with various storage durations. 展开更多
关键词 Lugol’s PLANKTON size structure flow Cytometer and Microscope(flowCAM)
下载PDF
Numerical study of the flow structures in flat plate and the wall-mounted hump induced by the unsteady DBD plasma 被引量:1
18
作者 Jianyang YU Huaping LIU +1 位作者 Ruoyu WANG Fu CHEN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第1期57-63,共7页
In this work,the dielectric-barrier-discharge plasma actuator was employed to study the flow structures induced by the plasma actuator over a flat plate and a wall-mounted hump.A phenomenological dielectric-barrier-di... In this work,the dielectric-barrier-discharge plasma actuator was employed to study the flow structures induced by the plasma actuator over a flat plate and a wall-mounted hump.A phenomenological dielectric-barrier-discharge plasma model which regarded the plasma effect as the body force was implemented into the Navier–Stokes equations solved by the method of large eddy simulations.The results show that a series of vortex pairs,which indicated dipole formation and periodicity distribution were generated in the boundary layer when the plasma was applied to the flow over a flat plane.They would enhance the energy exchanged between the near wall region and the free stream.Besides,their spatial trajectories are deeply affected by the actuation strength.When the actuator was engaged in the flow over a wall-mounted hump,the vortex pairs were also produced,which was able to delay flow separation as well as to promote flow reattachment and reduce the generation of a vortex,achieving the goal of reducing dissipation and decreasing flow resistance. 展开更多
关键词 DBD plasma flow structure large eddy simulations fluid dynamic
下载PDF
Investigation on 3Dt wake flow structures of swimming bionic fish 被引量:1
19
作者 G.-X.Shen G.-K.Tan G.-J.Lai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第5期1494-1508,共15页
A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robo... A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robotic fish model was studied at high spatial resolution. The study was performed in a water channel. A robot fish model was designed and built. The model was fixed onto a rigid support frame- work using a cable-supporting method, with twelve stretched wires. The entire tail of the model can perform prescribed motions in two degrees of freedom, mainly in carangiform mode, by driving its afterbody and lunate caudal fin respectively. The DSPIV system was set up to operate in a trans- lational manner, measuring velocity field in a series of parallel slices. Phase locked measurements were repeated for a number of runs, allowing reconstruction of phase average flow field. Vortex structures with phase history of the wake were obtained. The study reveals some new and complex three-dimensional flow structures in the wake of the fish, including "reverse hairpin vortex" and "reverse Karman S-H vortex rings", allowing insight into physics of this complex flow. 展开更多
关键词 Fish swimming 3D flow structure Unsteadyhydrodynamics DSPIV measurement - Vortex ring
下载PDF
Flow Structure and Short-Term Riverbed Evolution in Curved Flumes
20
作者 Shuxian Gao Yonggang Cao +1 位作者 Yuchuan Bai Yanhua Yang 《Fluid Dynamics & Materials Processing》 EI 2023年第2期487-500,共14页
River bending is the major effect responsible for bed topography and bank changes.In this study,fluid velocity(measured by a three-dimensional Doppler advanced point current meter)and bed topographical data have been ... River bending is the major effect responsible for bed topography and bank changes.In this study,fluid velocity(measured by a three-dimensional Doppler advanced point current meter)and bed topographical data have been collected in 40 sections of an experimental model.The whole flume was composed of an organic glass bend,upstream and downstream water tanks,two transition straight sections,a circulation pump,and a connection pipeline.Each section has been found to be characterized by a primary circulation and a small reverse circulation,with some sections even presenting three more or more circulation structures.The minimum circulation intensity has been detected in proximity to the top of the curved channel,while a region with small longitudinal velocity has been observed near the concave bank of each bend,corresponding to the flat bed formed after a short period of scouring.The maximum sediment deposition and scour depth in the presence of a uniform distribution of living flexible vegetation within 10 cm of the flume wall have been found to be smaller than those observed in the tests conducted without vegetation. 展开更多
关键词 Continuous curved flume experimental study flow structure bed short-term evolution living flexible vegetation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部