Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variati...Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variations inUAV flight altitude,differences in object scales,as well as factors like flight speed and motion blur.To enhancethe detection efficacy of small targets in drone aerial imagery,we propose an enhanced You Only Look Onceversion 7(YOLOv7)algorithm based on multi-scale spatial context.We build the MSC-YOLO model,whichincorporates an additional prediction head,denoted as P2,to improve adaptability for small objects.We replaceconventional downsampling with a Spatial-to-Depth Convolutional Combination(CSPDC)module to mitigatethe loss of intricate feature details related to small objects.Furthermore,we propose a Spatial Context Pyramidwith Multi-Scale Attention(SCPMA)module,which captures spatial and channel-dependent features of smalltargets acrossmultiple scales.This module enhances the perception of spatial contextual features and the utilizationof multiscale feature information.On the Visdrone2023 and UAVDT datasets,MSC-YOLO achieves remarkableresults,outperforming the baseline method YOLOv7 by 3.0%in terms ofmean average precision(mAP).The MSCYOLOalgorithm proposed in this paper has demonstrated satisfactory performance in detecting small targets inUAV aerial photography,providing strong support for practical applications.展开更多
Attribute reduction of formal decision context mainly uses the relationship between two concept lattices generated by the condition and decision attributes to remove redundant condition attributes.By using decision at...Attribute reduction of formal decision context mainly uses the relationship between two concept lattices generated by the condition and decision attributes to remove redundant condition attributes.By using decision attributes to observe the covering of objects,this study defines two types of consistent sets and reducts in a consistent formal decision context based on neighbourhood systems.Four types of reductions in inconsistent formal decision contexts are also studied.The methods to calculate all types of reductions are formulated by discernibility matrix.Finally,an approach to obtain the decision rules in consistent formal decision context is proposed.展开更多
为了使“区间”形式加以表述的不确定信息的提取具有侧重性,需提取出对象(属性)集对应的属性(对象)区间集。本文在模糊形式背景中,通过引入2个阈值,将单边区间集与经典半概念结合,提取出属性(对象)集对应的对象(属性)区间集,从而提出区...为了使“区间”形式加以表述的不确定信息的提取具有侧重性,需提取出对象(属性)集对应的属性(对象)区间集。本文在模糊形式背景中,通过引入2个阈值,将单边区间集与经典半概念结合,提取出属性(对象)集对应的对象(属性)区间集,从而提出区间集外延–集合内涵(集合外延–区间集内涵)(interval set extent-set intent(set extent-interval set intent),ISE-SI(SE-ISI))型单边区间集模糊半概念。全体ISE-SI(SE-ISI)型单边区间集模糊半概念构成格,并给出基于格搜寻全体ISE-SI(SE-ISI)型单边区间集模糊半概念的算法。通过与已有成果对比,显示出这2种知识表示形式的多方优势。本文所得结果在知识表示及提取方法上具有适用范围广、实际应用强等优点。展开更多
The research mainly discuss that public speeches should be made and delivered in accordance of speaking situation. By investigating different sample public speeches, it can be found that proper use of"context of ...The research mainly discuss that public speeches should be made and delivered in accordance of speaking situation. By investigating different sample public speeches, it can be found that proper use of"context of situation"plays an important role in making public speeches appropriate both in linguistic scope and in social scope. The research also gives some suggestions on writing of public speeches.展开更多
There is an intimate correlation between rough set theory and formal concept analysis theory, so rough set approximations can be realized by means of formal concept analysis. For any given multiple valued information ...There is an intimate correlation between rough set theory and formal concept analysis theory, so rough set approximations can be realized by means of formal concept analysis. For any given multiple valued information system, the realization of rough set approximation operation has two major steps, firstly convert the information system from multiple valued one to single valued formal context, secondly realize rough set approximation operations aided by concept lattice, which is equivalent to a query operation under some necessary conditions.展开更多
基金the Key Research and Development Program of Hainan Province(Grant Nos.ZDYF2023GXJS163,ZDYF2024GXJS014)National Natural Science Foundation of China(NSFC)(Grant Nos.62162022,62162024)+2 种基金the Major Science and Technology Project of Hainan Province(Grant No.ZDKJ2020012)Hainan Provincial Natural Science Foundation of China(Grant No.620MS021)Youth Foundation Project of Hainan Natural Science Foundation(621QN211).
文摘Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variations inUAV flight altitude,differences in object scales,as well as factors like flight speed and motion blur.To enhancethe detection efficacy of small targets in drone aerial imagery,we propose an enhanced You Only Look Onceversion 7(YOLOv7)algorithm based on multi-scale spatial context.We build the MSC-YOLO model,whichincorporates an additional prediction head,denoted as P2,to improve adaptability for small objects.We replaceconventional downsampling with a Spatial-to-Depth Convolutional Combination(CSPDC)module to mitigatethe loss of intricate feature details related to small objects.Furthermore,we propose a Spatial Context Pyramidwith Multi-Scale Attention(SCPMA)module,which captures spatial and channel-dependent features of smalltargets acrossmultiple scales.This module enhances the perception of spatial contextual features and the utilizationof multiscale feature information.On the Visdrone2023 and UAVDT datasets,MSC-YOLO achieves remarkableresults,outperforming the baseline method YOLOv7 by 3.0%in terms ofmean average precision(mAP).The MSCYOLOalgorithm proposed in this paper has demonstrated satisfactory performance in detecting small targets inUAV aerial photography,providing strong support for practical applications.
基金This work was supported by the National Natural Science Foundation of China(nos.61573127 and 61502144)the Natural Science Foundation of Hebei Province(no.F2018205196)+1 种基金the Science and Technology Research Program of Higher Education Institutions of Hebei Province(nos.BJ2019014 and QN2017095)the Doctor Natural Science Foundation of Hebei Normal University(no.L2017B19).
文摘Attribute reduction of formal decision context mainly uses the relationship between two concept lattices generated by the condition and decision attributes to remove redundant condition attributes.By using decision attributes to observe the covering of objects,this study defines two types of consistent sets and reducts in a consistent formal decision context based on neighbourhood systems.Four types of reductions in inconsistent formal decision contexts are also studied.The methods to calculate all types of reductions are formulated by discernibility matrix.Finally,an approach to obtain the decision rules in consistent formal decision context is proposed.
文摘为了使“区间”形式加以表述的不确定信息的提取具有侧重性,需提取出对象(属性)集对应的属性(对象)区间集。本文在模糊形式背景中,通过引入2个阈值,将单边区间集与经典半概念结合,提取出属性(对象)集对应的对象(属性)区间集,从而提出区间集外延–集合内涵(集合外延–区间集内涵)(interval set extent-set intent(set extent-interval set intent),ISE-SI(SE-ISI))型单边区间集模糊半概念。全体ISE-SI(SE-ISI)型单边区间集模糊半概念构成格,并给出基于格搜寻全体ISE-SI(SE-ISI)型单边区间集模糊半概念的算法。通过与已有成果对比,显示出这2种知识表示形式的多方优势。本文所得结果在知识表示及提取方法上具有适用范围广、实际应用强等优点。
文摘The research mainly discuss that public speeches should be made and delivered in accordance of speaking situation. By investigating different sample public speeches, it can be found that proper use of"context of situation"plays an important role in making public speeches appropriate both in linguistic scope and in social scope. The research also gives some suggestions on writing of public speeches.
文摘There is an intimate correlation between rough set theory and formal concept analysis theory, so rough set approximations can be realized by means of formal concept analysis. For any given multiple valued information system, the realization of rough set approximation operation has two major steps, firstly convert the information system from multiple valued one to single valued formal context, secondly realize rough set approximation operations aided by concept lattice, which is equivalent to a query operation under some necessary conditions.