Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied usin...Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied using high-pressure mercury injection(HPMI),low-pressure nitrogen adsorption(LPGA-N2),and scanning electron microscopy(SEM)test methods.Based on the Frankel,Halsey and Hill(FHH)fractal theory,the Menger sponge model,Pores and Cracks Analysis System(PCAS),pore volume complexity(D_(v)),coal surface irregularity(Ds)and pore distribution heterogeneity(D_(p))were studied and evaluated,respectively.The effect of three fractal dimensions on the gas adsorption ability was also analyzed with high-pressure isothermal gas adsorption experiments.Results show that pore structures within these coal samples have obvious fractal characteristics.A noticeable segmentation effect appears in the Dv1and Dv2fitting process,with the boundary size ranging from 36.00 to 182.95 nm,which helps differentiate diffusion pores and seepage fractures.The D values show an asymmetric U-shaped trend as the coal metamorphism increases,demonstrating that coalification greatly affects the pore fractal dimensions.The three fractal dimensions can characterize the difference in coal microstructure and reflect their influence on gas adsorption ability.Langmuir volume(V_(L))has an evident and positive correlation with Dsvalues,whereas Langmuir pressure(P_(L))is mainly affected by the combined action of Dvand Dp.This study will provide valuable knowledge for the appraisal of coal seam gas reservoirs of differently ranked coals.展开更多
The large-scale and small-scale errors could affect background error covariances for a regional numerical model with the specified grid resolution.Based on the different background error covariances influenced by diff...The large-scale and small-scale errors could affect background error covariances for a regional numerical model with the specified grid resolution.Based on the different background error covariances influenced by different scale errors,this study tries to construct a so-called"optimal background error covariances"to consider the interactions among different scale errors.For this purpose,a linear combination of the forecast differences influenced by information of errors at different scales is used to construct the new forecast differences for estimating optimal background error covariances.By adjusting the relative weight of the forecast differences influenced by information of smaller-scale errors,the relative influence of different scale errors on optimal background error covariances can be changed.For a heavy rainfall case,the corresponding optimal background error covariances can be estimated through choosing proper weighting factor for forecast differences influenced by information of smaller-scale errors.The data assimilation and forecast with these optimal covariances show that,the corresponding analyses and forecasts can lead to superior quality,compared with those using covariances that just introduce influences of larger-or smallerscale errors.Due to the interactions among different scale errors included in optimal background error covariances,relevant analysis increments can properly describe weather systems(processes)at different scales,such as dynamic lifting,thermodynamic instability and advection of moisture at large scale,high-level and low-level jet at synoptic scale,and convective systems at mesoscale and small scale,as well as their interactions.As a result,the corresponding forecasts can be improved.展开更多
针对人脸识别中每个人只有小规模训练样本的情况,在基于表示的分类(representation based classification,RBC)方法基础上使用由无关类组成的差异字典。差异字典一般由具有面部姿态变化与表情变化的人脸及其基准脸构成,需要训练样本为...针对人脸识别中每个人只有小规模训练样本的情况,在基于表示的分类(representation based classification,RBC)方法基础上使用由无关类组成的差异字典。差异字典一般由具有面部姿态变化与表情变化的人脸及其基准脸构成,需要训练样本为基准脸才能得到较好的识别效果。为防止小规模训练样本中有非基准脸使差异字典出现识别效果下降的情况,使用灰度对称脸将训练样本中的非基准脸转换为近似基准脸,进行差异字典的训练。实验结果表明,该人脸识别方法在小样本情况下的ORL、GT(Georgia tech)、FERET人脸库上具有良好的表现。展开更多
基金The first author would like to express sincere appreciation for the scholarship provided by China Scholarship Council(No.202006430006)and University of Wollongongfinancially supported by the ACARP Project C28006+1 种基金the National Key Research and Development Program of China(No.2018YFC0808301)the Natural Science Foundation of Beijing Municipality,China(No.8192036)。
文摘Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied using high-pressure mercury injection(HPMI),low-pressure nitrogen adsorption(LPGA-N2),and scanning electron microscopy(SEM)test methods.Based on the Frankel,Halsey and Hill(FHH)fractal theory,the Menger sponge model,Pores and Cracks Analysis System(PCAS),pore volume complexity(D_(v)),coal surface irregularity(Ds)and pore distribution heterogeneity(D_(p))were studied and evaluated,respectively.The effect of three fractal dimensions on the gas adsorption ability was also analyzed with high-pressure isothermal gas adsorption experiments.Results show that pore structures within these coal samples have obvious fractal characteristics.A noticeable segmentation effect appears in the Dv1and Dv2fitting process,with the boundary size ranging from 36.00 to 182.95 nm,which helps differentiate diffusion pores and seepage fractures.The D values show an asymmetric U-shaped trend as the coal metamorphism increases,demonstrating that coalification greatly affects the pore fractal dimensions.The three fractal dimensions can characterize the difference in coal microstructure and reflect their influence on gas adsorption ability.Langmuir volume(V_(L))has an evident and positive correlation with Dsvalues,whereas Langmuir pressure(P_(L))is mainly affected by the combined action of Dvand Dp.This study will provide valuable knowledge for the appraisal of coal seam gas reservoirs of differently ranked coals.
基金National Natural Science Foundation of China(41130964)National Special Funding Project for Meteorology(GYHY-201006004)
文摘The large-scale and small-scale errors could affect background error covariances for a regional numerical model with the specified grid resolution.Based on the different background error covariances influenced by different scale errors,this study tries to construct a so-called"optimal background error covariances"to consider the interactions among different scale errors.For this purpose,a linear combination of the forecast differences influenced by information of errors at different scales is used to construct the new forecast differences for estimating optimal background error covariances.By adjusting the relative weight of the forecast differences influenced by information of smaller-scale errors,the relative influence of different scale errors on optimal background error covariances can be changed.For a heavy rainfall case,the corresponding optimal background error covariances can be estimated through choosing proper weighting factor for forecast differences influenced by information of smaller-scale errors.The data assimilation and forecast with these optimal covariances show that,the corresponding analyses and forecasts can lead to superior quality,compared with those using covariances that just introduce influences of larger-or smallerscale errors.Due to the interactions among different scale errors included in optimal background error covariances,relevant analysis increments can properly describe weather systems(processes)at different scales,such as dynamic lifting,thermodynamic instability and advection of moisture at large scale,high-level and low-level jet at synoptic scale,and convective systems at mesoscale and small scale,as well as their interactions.As a result,the corresponding forecasts can be improved.
文摘针对人脸识别中每个人只有小规模训练样本的情况,在基于表示的分类(representation based classification,RBC)方法基础上使用由无关类组成的差异字典。差异字典一般由具有面部姿态变化与表情变化的人脸及其基准脸构成,需要训练样本为基准脸才能得到较好的识别效果。为防止小规模训练样本中有非基准脸使差异字典出现识别效果下降的情况,使用灰度对称脸将训练样本中的非基准脸转换为近似基准脸,进行差异字典的训练。实验结果表明,该人脸识别方法在小样本情况下的ORL、GT(Georgia tech)、FERET人脸库上具有良好的表现。