期刊文献+
共找到2,789篇文章
< 1 2 140 >
每页显示 20 50 100
Role of Multi-scale Hierarchical Structures in Regulating Wetting State and Wetting Properties of Structured Surfaces
1
作者 Yue Jiang Xinyi Li +5 位作者 Zhichao Ma Zhihui Zhang Cuie Wen Zhonghao Jiang Nan Lin Luquan Ren 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第3期1347-1359,共13页
Amplifying the intrinsic wettability of substrate material by changing the solid/liquid contact area is considered to be the main mechanism for controlling the wettability of rough or structured surfaces.Through theor... Amplifying the intrinsic wettability of substrate material by changing the solid/liquid contact area is considered to be the main mechanism for controlling the wettability of rough or structured surfaces.Through theoretical analysis and experimental exploration,we have found that in addition to this wettability structure amplification effect,the surface structure also simultaneously controls surface wettability by regulating the wetting state via changing the threshold Young angles of the Cassie-Baxter and Wenzel wetting regions.This wetting state regulation effect provides us with an alternative strategy to overcome the inherent limitation in surface chemistry by tailoring surface structure.The wetting state regulation effect created by multi-scale hierarchical structures is quite significant and plays is a crucial role in promoting the superhydrophobicity,superhydrophilicity and the transition between these two extreme wetting properties,as well as stabilizing the Cassie-Baxter superhydrophobic state on the fabricated lotus-like hierarchically structured Cu surface and the natural lotus leaf. 展开更多
关键词 hierarchical structure Wetting state regulation Wetting transition SUPERHYDROPHOBICITY SUPERHYDROPHILICITY
原文传递
Hierarchical structures on platinum-iridium substrates enhancing conducting polymer adhesion
2
作者 Linze Li Changqing Jiang Luming Li 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第6期889-898,共10页
Conducting polymers(CPs),including poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS),are promising coating materials for neural electrodes.However,the weak adhesion of CP coatings to substrates such a... Conducting polymers(CPs),including poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS),are promising coating materials for neural electrodes.However,the weak adhesion of CP coatings to substrates such as platinum-iridium is a significant challenge that limits their practical application.To address this issue,we used femtosecond laser-prepared hierarchical structures on platinum-iridium(Pt-Ir)substrates to enhance the adhesion of PEDOT:PSS coatings.Next,we used cyclic voltammetry(CV)stress and accelerated aging tests to evaluate the stability of both drop cast and electrodeposited PEDOT:PSS coatings on Pt-Ir substrates,both with and without hierarchical structures.Our results showed that after 2000 CV cycles or five weeks of aging at 60℃,the morphology and electrochemical properties of the coatings on the Pt-Ir substrates with hierarchical structures remained relatively stable.In contrast,we found that smooth Pt-Ir substrate surfaces caused delamination of the PEDOT:PSS coating and exhibited both decreased charge storage capacity and increased impedance.Overall,enhancing the stability of PEDOT:PSS coatings used on common platinum-iridium neural electrodes offers great potential for improving their electrochemical performance and developing new functionalities. 展开更多
关键词 hierarchical structures Femtosecond laser Conducting polymers Neural electrodes Stability
下载PDF
Achieving the synergistic of strength and ductility in Mg-15Gd-1Zn-0.4Zr alloy with hierarchical structure
3
作者 Kun Jiang Minghang Zhou +3 位作者 Haoxin Wu Senzhong Liu Yujuan Wu Yong Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2937-2951,共15页
Currently,the hierarchical structure is one of the most effective means to enhance the strength and plasticity of metal materials,since the strain localization can be effectively delayed by the coordination of the uni... Currently,the hierarchical structure is one of the most effective means to enhance the strength and plasticity of metal materials,since the strain localization can be effectively delayed by the coordination of the unique microstructure.In this study,a hierarchical structure of Mg-15Gd-1Zn-0.4Zr(GZ151K)alloys containing grain,twin,and precipitation structural units was prepared by ultrasonic surface rolling process(USRP)and recrystallization annealing(RU).The results showed that the stress gradient generated by USRP formed a twin gradient structure,which will activate the twin-assisted precipitation(TAP)effect and twin-induced recrystallization(TIR)effect during RU.Then,the twin gradient structure transformed into a twin-precipitation gradient structure,and finally into a hierarchical structure with grain-twinprecipitation as the increasement of recrystallization degree.Besides,the dual gradient structure with twin and precipitation structural units had the highest strength and microhardness owing to the precipitation strengthening.However,the hierarchical structure with grain,twin,and precipitation structural units exhibited the most excellent combination of strength and plasticity under grain refinement and precipitation strengthening. 展开更多
关键词 Mg-Gd-Zn alloy hierarchical structure Microstructure evolution Mechanical properties Recrystallization kinetics
下载PDF
Nano-Au-decorated hierarchical porous cobalt sulfide derived from ZIF-67 toward optimized oxygen evolution catalysis:Important roles of microstructures and electronic modulation
4
作者 Hongyu Gong Guanliang Sun +6 位作者 Wenhua Shi Dongwei Li Xiangjun Zheng Huan Shi Xiu Liang Ruizhi Yang Changzhou Yuan 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期1-14,共14页
Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au... Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au nanoparticles(NPs)(denoted as HP-Au@CoxSy@ZIF-67)hybrid is synthesized by low-temperature sulfuration treatment.The well-defined macroporous-mesoporous-microporous structure is obtained based on the combination of polystyrene spheres,as-formed CoxSy nanosheets,and ZIF-67 frameworks.This novel three-dimensional hierarchical structure significantly enlarges the three-phase interfaces,accelerating the mass transfer and exposing the active centers for oxygen evolution reaction.The electronic structure of Co is modulated by Au through charge transfer,and a series of experiments,together with theoretical analysis,is performed to ascertain the electronic modulation of Co by Au.Meanwhile,HP-Au@CoxSy@ZIF-67 catalysts with different amounts of Au were synthesized,wherein Au and NaBH4 reductant result in an interesting“competition effect”to regulate the relative ratio of Co^(2+)/Co^(3+),and moderate Au assists the electrochemical performance to reach the highest value.Consequently,the optimized HP-Au@CoxSy@ZIF-67 exhibits a low overpotential of 340 mV at 10 mA cm^(-2)and a Tafel slope of 42 mV dec-1 for OER in 0.1 M aqueous KOH,enabling efficient water splitting and Zn-air battery performance.The work here highlights the pivotal roles of both microstructural and electronic modulation in enhancing electrocatalytic activity and presents a feasible strategy for designing and optimizing advanced electrocatalysts. 展开更多
关键词 Au nanoparticles cobalt sulfide electronic modulation hierarchical porous structure oxygen evolution reaction
下载PDF
Multi-Scale Design and Optimization of Composite Material Structure for Heavy-Duty Truck Protection Device
5
作者 Yanhui Zhang Lianhua Ma +3 位作者 Hailiang Su Jirong Qin Zhining Chen Kaibiao Deng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1961-1980,共20页
In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,t... In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect. 展开更多
关键词 structural optimization front underrun protection device carbon fiber reinforced plastic multi-scale model lightweight design
下载PDF
Remarkably Enhanced Methane Sensing Performance at Room Temperature via Constructing a Self-Assembled Mulberry-Like ZnO/SnO_(2) Hierarchical Structure
6
作者 Xun Li Tian Tan +5 位作者 Wei Ji Wanling Zhou Yuwen Bao Xiaohong Xia Zhangfan Zeng Yun Gao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期337-344,共8页
Development of metal oxide semiconductors-based methane sensors with good response and low power consumption is one of the major challenges to realize the real-time monitoring of methane leakage.In this work,a self-as... Development of metal oxide semiconductors-based methane sensors with good response and low power consumption is one of the major challenges to realize the real-time monitoring of methane leakage.In this work,a self-assembled mulberry-like ZnO/SnO_(2)hierarchical structure is constructed by a two-step hydrothermal method.The resultant sensor works at room temperature with excellent response of~56.1%to 2000 ppm CH_(4)at 55%relative humidity.It is found that the strain induced at the ZnO/SnO_(2)interface greatly enhances the piezoelectric polarization on the ZnO surface and that the band bending results in the accumulation of chemically adsorbed O_(2)^(-)ions close to the interface,leading to significant improvement in the sensing performance of the methane gas sensor at room temperature. 展开更多
关键词 HETEROJUNCTION methane sensor oxygen vacancy piezoelectric polarization ZnO/SnO_(2)hierarchical structure
下载PDF
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification
7
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight Convolutional Neural Network Depthwise Dilated Separable Convolution hierarchical multi-scale Feature Fusion
下载PDF
Structural Engineering of Hierarchical Magnetic/Carbon Nanocomposites via In Situ Growth for High-Efficient Electromagnetic Wave Absorption 被引量:1
8
作者 Xianyuan Liu Jinman Zhou +1 位作者 Ying Xue Xianyong Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期262-278,共17页
Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative stru... Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative structural design concepts is crucial for expanding the application field of electromagnetic wave absorption.Particularly,hierarchical structure engineering has emerged as a promising approach to enhance the physical and chemical properties of materials,providing immense potential for creating versatile electromagnetic wave absorption materials.Herein,an exceptional multi-dimensional hierarchical structure was meticulously devised,unleashing the full microwave attenuation capabilities through in situ growth,selfreduction,and multi-heterogeneous interface integration.The hierarchical structure features a three-dimensional carbon framework,where magnetic nanoparticles grow in situ on the carbon skeleton,creating a necklace-like structure.Furthermore,magnetic nanosheets assemble within this framework.Enhanced impedance matching was achieved by precisely adjusting component proportions,and intelligent integration of diverse interfaces bolstered dielectric polarization.The obtain Fe_(3)O_(4)-Fe nanoparticles/carbon nanofibers/Al-Fe_(3)O_(4)-Fe nanosheets composites demonstrated outstanding performance with a minimum reflection loss(RLmin)value of−59.3 dB and an effective absorption bandwidth(RL≤−10 dB)extending up to 5.6 GHz at 2.2 mm.These notable accomplishments offer fresh insights into the precision design of high-efficient electromagnetic wave absorption materials. 展开更多
关键词 Electromagnetic wave absorption hierarchical structure In situ growth Self-reduction
下载PDF
Effects of hierarchical structure on the performance of tin oxide-supported platinum catalyst for room-temperature formaldehyde oxidation 被引量:6
9
作者 段媛媛 宋少青 +2 位作者 程蓓 余家国 姜传佳 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期199-206,共8页
Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-li... Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-like Pt/SnOx microspheres of 1 μm in diameter were composed of staggered petal-like nanosheets with a thickness of 20 nm.Pt nanoparticles(NPs) of 2-3 nm were well dispersed on the SnOx nanosheets.The catalyst was tested in the catalytic oxidation of gaseous formaldehyde(HCHO) at room temperature,and exhibited enhanced activity compared to Pt NPs supported on commercial SnO and ground SnOx.HCHO removal of 87%was achieved over the hierarchical Pt/SnOx after 1 h of reaction,which was 1.5 times that over the ground SnOx-supported Pt(Pt/g-SnOx),and the high activity was maintained after six recycles,showing the high stability of this catalyst.HCHO decomposition kinetics was modeled as a second order reaction.The reaction rate constant for Pt/SnOx was 5.6 times higher than Pt/g-SnOx.The hierarchical pore structure was beneficial for the diffusion and adsorption of HCHO molecules,and the highly dispersed Pt NPs on the SnOx nanosheets were the active sites for the oxidative decomposition of HCHO into CO2 and H2O.This study provided a promising approach for designing efficient catalysts for indoor HCHO removal at ambient temperature. 展开更多
关键词 Formaldehyde catalytic oxidation Room temperature Tin oxide PLATINUM hierarchical structure FLOWER-LIKE
下载PDF
A Novel Hierarchical Porous 3D Structured Vanadium Nitride/Carbon Membranes for High-performance Supercapacitor Negative Electrodes 被引量:13
10
作者 Yage Wu Yunlong Yang +4 位作者 Xiaoning Zhao Yongtao Tan Ying Liu Zhen Wang Fen Ran 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期81-91,共11页
Transition-metal nitrides exhibit wide potential windows and good electrochemical performance, but usually experience imbalanced practical applications in the energy storage field due to aggregation, poor circulation ... Transition-metal nitrides exhibit wide potential windows and good electrochemical performance, but usually experience imbalanced practical applications in the energy storage field due to aggregation, poor circulation stability, and complicated syntheses. In this study, a novel and simple multiphase polymeric strategy was developed to fabricate hybrid vanadium nitride/carbon(VN/C) membranes for supercapacitor negative electrodes, in which VN nanoparticles were uniformly distributed in the hierarchical porous carbon 3D networks. The supercapacitor negative electrode based on VN/C membranes exhibited a high specific capacitance of 392.0 F g^(-1) at 0.5 A g^(-1) and an excellent rate capability with capacitance retention of 50.5% at 30 A g^(-1). For the asymmetric device fabricated using Ni(OH)_2//VN/C membranes, a high energy density of 43.0 Wh kg^(-1) at a power density of800 W kg^(-1) was observed. Moreover, the device also showed good cycling stability of 82.9% at a current density of 1.0 A g^(-1) after 8000 cycles. This work may throw a light on simply the fabrication of other high-performance transition-metal nitridebased supercapacitor or other energy storage devices. 展开更多
关键词 SUPERCAPACITORS Vanadium nitride/carbon 3D network hierarchical porous structure
下载PDF
Integration of Multiple Heterointerfaces in a Hierarchical 0D@2D@1D Structure for Lightweight,Flexible,and Hydrophobic Multifunctional Electromagnetic Protective Fabrics 被引量:11
11
作者 Shuo Zhang Xuehua Liu +4 位作者 Chenyu Jia Zhengshuo Sun Haowen Jiang Zirui Jia Guanglei Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期241-264,共24页
The development of wearable multifunctional electromagnetic protective fabrics with multifunctional,low cost,and high efficiency remains a challenge.Here,inspired by the unique flower branch shape of“Thunberg’s mead... The development of wearable multifunctional electromagnetic protective fabrics with multifunctional,low cost,and high efficiency remains a challenge.Here,inspired by the unique flower branch shape of“Thunberg’s meadowsweet”in nature,a nanofibrous composite membrane with hierarchical structure was constructed.Integrating sophisticated 0D@2D@1D hierarchical structures with multiple heterointerfaces can fully unleash the multifunctional application potential of composite membrane.The targeted induction method was used to precisely regulate the formation site and morphology of the metal–organic framework precursor,and intelligently integrate multiple heterostructures to enhance dielectric polarization,which improves the impedance matching and loss mechanisms of the electromagnetic wave absorbing materials.Due to the synergistic enhancement of electrospinning-derived carbon nanofiber“stems”,MOF-derived carbon nanosheet“petals”and transition metal selenide nano-particle“stamens”,the CoxSey/NiSe@CNSs@CNFs(CNCC)composite membrane obtains a minimum reflection loss value(RL_(min))of-68.40 dB at 2.6 mm and a maximum effective absorption bandwidth(EAB)of 8.88 GHz at a thin thickness of 2.0 mm with a filling amount of only 5 wt%.In addition,the multi-component and hierarchical heterostructure endow the fibrous membrane with excellent flexibility,water resistance,thermal management,and other multifunctional properties.This work provides unique perspectives for the precise design and rational application of multifunctional fabrics. 展开更多
关键词 Electrostatic spinning MOFs Bimetallic selenide hierarchical structures Multiple heterointerfaces Electromagnetic wave absorption
下载PDF
Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell 被引量:4
12
作者 Jingru Song Cuncai Fan +1 位作者 Hansong Ma Yueguang Wei 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第3期364-372,共9页
In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated bioma- terial is Hyriopsis cumingii, a typical limnetic ... In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated bioma- terial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar" structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variationsection pillars sized on the order of several tens of microns. The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively. The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material. In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones. 展开更多
关键词 Biomaterial hierarchical structure - Mechan-ical property Nanoindentation size effect Trans-scalemechanics
下载PDF
One-dimensional ZnS-based Hetero-,Core/shell and Hierarchical Nanostructures 被引量:3
13
作者 Ujjal K.Gautam Yoshio BANDO Dmitri GOLBERG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第4期520-528,共9页
A focus of the current nanotechnology has shifted from routine fabrication of nanostructures to designing functional electronic devices and realizing their immense potentials for applications. Due to infusion of multi... A focus of the current nanotechnology has shifted from routine fabrication of nanostructures to designing functional electronic devices and realizing their immense potentials for applications. Due to infusion of multi-functionality into a single system, the utilization of hetero-, core/shell and hierarchical nanostructures has become the key issue for building such devices. ZnS, due to its direct wide bandgap, high index of refraction, high transparency in the visible range and intrinsic polarity, is one of the most useful semiconductors for a wide range of electronics applications. This article provides a dense review of the state-of-the-art research activities in one-dimensional (1D) ZnS-based hetero-, core/shell and hierarchical nanostructures. The particular emphasis is put on their syntheses and applications. 展开更多
关键词 HETEROstructureS Core/shell hierarchical structures ZNS NANODEVICES
下载PDF
Nitrogen and sulfur co-doped graphene aerogel with hierarchically porous structure for high-performance supercapacitors 被引量:7
14
作者 Zhiwei Lu Xiaochao Xu +3 位作者 Yujuan Chen Xiaohui Wang Li Sun Kelei Zhuo 《Green Energy & Environment》 CSCD 2020年第1期69-75,共7页
Supercapacitors with unique performance have been widely utilized in many fields. Herein, we report a nitrogen and sulfur co-doped graphene aerogel(N/S-GA-2) prepared using a low toxic precursor for high-performance s... Supercapacitors with unique performance have been widely utilized in many fields. Herein, we report a nitrogen and sulfur co-doped graphene aerogel(N/S-GA-2) prepared using a low toxic precursor for high-performance supercapacitors. The as-obtained material possesses a hierarchically porous structure and a large number of electrochemical active sites. At a current density of 1 Ag^-1, the specific capacitance of the N/S-GA-2 for supercapacitors with the ionic liquid as the electrolyte is 169.4 Fg^-1, and the corresponding energy density is 84.5 Wh kg^-1.At a power density of 8.9 k W kg^-1, the energy density can reach up to 75.7 Wh kg^-1, showing that the N/S-GA-2 has an excellent electrochemical performance. Consequently, the N/S-GA-2 can be used as a promising candidate of electrode materials for supercapacitors with high power density and high energy density. 展开更多
关键词 Graphene aerogel hierarchically porous structure SUPERCAPACITOR Ionic liquid
下载PDF
Tuning Metallic Co0.85Se Quantum Dots/Carbon Hollow Polyhedrons with Tertiary Hierarchical Structure for High-Performance Potassium Ion Batteries 被引量:7
15
作者 Zhiwei Liu Kun Han +7 位作者 Ping Li Wei Wang Donglin He Qiwei Tan Leying Wang Yang Li Mingli Qin Xuanhui Qu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期660-673,共14页
Potassium-ion batteries(KIBs)are a potential candidate to lithium-ion batteries(LIBs)but possess unsatisfactory capacity and rate properties.Herein,the metallic cobalt selenide quantum dots(Co0.85Se-QDs)encapsulated i... Potassium-ion batteries(KIBs)are a potential candidate to lithium-ion batteries(LIBs)but possess unsatisfactory capacity and rate properties.Herein,the metallic cobalt selenide quantum dots(Co0.85Se-QDs)encapsulated in mesoporous carbon matrix were designed via a direct hydrothermal method.Specifically,the cobalt selenide/carbon composite(Co0.85Se-QDs/C)possesses tertiary hierarchical structure,which is the primary quantum dots,the secondary petals flake,and the tertiary hollow micropolyhedron framework.Co0.85Se-QDs are homogenously embedded into the carbon petals flake,which constitute the hollow polyhedral framework.This unique structure can take the advantages of both nanoscale and microscale features:Co0.85Se-QDs can expand in a multidimensional and ductile carbon matrix and reduce the K-intercalation stress in particle dimensions;the micropetals can restrain the agglomeration of active materials and promote the transportation of potassium ion and electron.In addition,the hollow carbon framework buffers volume expansion,maintains the structural integrity,and increases the electronic conductivity.Benefiting from this tertiary hierarchical structure,outstanding K-storage performance(402 mAh g?1 after 100 cycles at 50 mA g?1)is obtained when Co0.85Se-QDs/C is used as KIBs anode.More importantly,the selenization process in this work is newly reported and can be generally extended to prepare other quantum dots encapsulated in edge-limited frameworks for excellent energy storage. 展开更多
关键词 Cobalt SELENIDES Quantum DOTS Potassium-ion batteries TERTIARY hierarchical structure HOLLOW dodecahedron
下载PDF
Hydrogen etching induced hierarchical meso/micro-pore structure with increased active density to boost ORR performance of Fe-N-C catalyst 被引量:4
16
作者 Liqin Gao Meiling Xiao +3 位作者 Zhao Jin Changpeng Liu Junjie Ge Wei Xing 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期17-23,I0002,共8页
Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the ac... Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the active site hosts, its hostility to electron/mass transfer could lead to the incomplete fulfillment of the catalytic activity. Besides, the formation of inactive metallic Fe particles during the conventional catalyst synthesis could also decrease the active site density and complicate the identification of real active site. Herein, we developed a facial hydrogen etching methodology to yield single site Fe-N-C catalysts featured with micro/mesoporous hierarchical structure. The hydrogen concentration in pyrolysis process was designated to effectively regulate the pore structure and active site density of the resulted catalysts.The optimized sample achieves excellent ORR catalytic performance with an ultralow H2O2 yield(1%)and superb stability over 10,000 cycles. Our finding provides new thoughts for the rational design of hierarchically porous carbon-based materials and highly promising non-precious metal ORR catalysts. 展开更多
关键词 hierarchical meso/micro-pore structure HYDROGEN ETCHING Single site Fe-N-C catalysts Carbon-nitrogen-coordinated iron(FeN4) Oxygen reduction reaction
下载PDF
A novel 300 kW arc plasma inverter system based on hierarchical controlled building block structure 被引量:4
17
作者 王振民 黄石生 《China Welding》 EI CAS 2008年第4期12-16,共5页
To date, the high power arc plasma technology is widely used. A next generation high power arc plasma system based on building block structure is presented. The whole arc plasma inverter system is composed of 12 paral... To date, the high power arc plasma technology is widely used. A next generation high power arc plasma system based on building block structure is presented. The whole arc plasma inverter system is composed of 12 paralleled units to increase the system output capability. The hierarchical control system is adopted to improve the reliability and flexibility of the high power arc plasma inverter. To ensure the reliable turn on and off of the IGBT module in each building block unit, a special pulse drive circuit is designed by using pulse transformer. The experimental result indicates that the high power arc plasma inverter system can transfer 300 kW arc plasma energy reliably with high efficiency. 展开更多
关键词 PLASMA plasma inverter hierarchical system pulse drive circuit building block structure
下载PDF
MULTI-HIERARCHICAL STRUCTURE AND JUMP OF TEMPERATUREFOR THE GLOBE, CHINA AND YUNNAN OVER THE PAST 100 YEARS 被引量:2
18
作者 尤卫红 段旭 +1 位作者 邓自旺 伍从斌 《Journal of Tropical Meteorology》 SCIE 1999年第1期106-112,共7页
An analysis has been conducted of the multi-hierarchical structure and jump of temperature variation for the globe, China and Yunnan Province over the past 100 years using an auto-adaptive, multi-resolution data filte... An analysis has been conducted of the multi-hierarchical structure and jump of temperature variation for the globe, China and Yunnan Province over the past 100 years using an auto-adaptive, multi-resolution data filter set up in You, Lin and Deng (1997). The result is shown below in three aspects. (l1 The variation of global temperature in this period is marked by warming on a large scale and can be divided into three stages of being cold (prior to 1919), warm (between 1920 and 1978) and warmer (since 1 979). Well-defined jumps are with the variation in correspondence with the hierarchical evolution on such scale, occurring in 1920 and 1979 when there is the most substantial jump towards warming. For the evolution on smaller scales, however, the variation has shown more of alternations of cold and warm temperatures. The preceding hierarchical structure and warming jump are added with new ones. (2) The trend in which temperature varies is much the same for China and the Yunnan Province, but it is not consistent with that globally, the largest difference being that a weak period of cold temperature in 1955 - 1978 across the globe was suspended in 1979 when it jumped to a significant warming,while a period of very cold temperature in 1955 - 1986 in China and Yunnan was not followed by warming in similar extent until 1987. (3) Though there are consistent hierarchical structure and jumping features throughout the year in Yunnan, significant changes with season are also present and the most striking difference is that temperature tends to vary consistently with China in winter and spring but with the globe in summer and fall. 展开更多
关键词 auto-adaptive MULTI-RESOLUTION data filter hierarchical structure CLIMATIC JUMP
下载PDF
Crashworthiness Design and Multi-Objective Optimization for Bio-Inspired Hierarchical Thin-Walled Structures 被引量:5
19
作者 Shaoqiang Xu Weiwei Li +2 位作者 Lin Li Tao Li Chicheng Ma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期929-947,共19页
Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are propose... Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are proposed to enhance structural energy absorption performance.The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load.The theoreticalmodel of themean crushing force is also derived based on the simplified super folded element theory.The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures.It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes.Furthermore,multiobjective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm,and the corresponding Pareto front diagram is obtained.This research provides a new idea for the crashworthiness design of thin-walled structures. 展开更多
关键词 Bionic structure crashworthiness design hierarchical tube multi-objective optimization
下载PDF
Fabrication and catalytic behavior of hierarchically-structured nylon 6 nanofiber membrane decorated with silver nanoparticles 被引量:4
20
作者 Huihui Zhao Weimin Kang +3 位作者 Xiaomin Ma Nanping Deng Zongjie Li Bowen Cheng 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第1期73-82,共10页
A hierarchically‐structured nylon 6 (PA6) nanofiber membrane decorated with silver nanoparticles (Ag NPs) was fabricated by electrospinning and impregnation methods. The as‐fabricated hierarchically‐structured Ag/P... A hierarchically‐structured nylon 6 (PA6) nanofiber membrane decorated with silver nanoparticles (Ag NPs) was fabricated by electrospinning and impregnation methods. The as‐fabricated hierarchically‐structured Ag/PA6 nanofiber membrane (HS‐Ag/PA6 NM) exhibits a morphology in which Ag NPs are deposited on the surfaces of both thick fibers and thin fibers. The content and size of theAg NPs can be controlled by varying the concentration of the silver colloid solution. Compared with the non‐hierarchically‐structured Ag/PA6 nanofiber membrane, HS‐Ag/PA6 NM has a higher specificsurface area and exhibits a higher degradation rate for methylene blue of 81.8%–98.1% within2 h. HS‐Ag/PA6 NM can be easily recycled and exhibits good reusability. It retains a degradation rate for methylene blue of 83.5% after five consecutive cycles. The hierarchically‐structured nanofiber membrane is therefore a potential nanocatalyst. 展开更多
关键词 ELECTROSPINNING hierarchical structure Ag nanoparticle PA6 nanofiber membrane CATALYSIS
下载PDF
上一页 1 2 140 下一页 到第
使用帮助 返回顶部