期刊文献+
共找到6,995篇文章
< 1 2 250 >
每页显示 20 50 100
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification
1
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet image Classification Lightweight Convolutional Neural Network Depthwise Dilated Separable Convolution Hierarchical multi-scale Feature Fusion
下载PDF
Machine Learning-based Identification of Contaminated Images in Light Curve Data Preprocessing
2
作者 Hui Li Rong-Wang Li +1 位作者 Peng Shu Yu-Qiang Li 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第4期287-295,共9页
Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometri... Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results. 展开更多
关键词 techniques:image processing methods:data analysis light pollution
下载PDF
Image Tamper Detection and Multi-Scale Self-Recovery Using Reference Embedding with Multi-Rate Data Protection 被引量:1
3
作者 Navid Daneshmandpour Habibollah Danyali Mohammad Sadegh Helfroush 《China Communications》 SCIE CSCD 2019年第11期154-166,共13页
This paper proposes a multi-scale self-recovery(MSSR)approach to protect images against content forgery.The main idea is to provide more resistance against image tampering while enabling the recovery process in a mult... This paper proposes a multi-scale self-recovery(MSSR)approach to protect images against content forgery.The main idea is to provide more resistance against image tampering while enabling the recovery process in a multi-scale quality manner.In the proposed approach,the reference data composed of several parts and each part is protected by a channel coding rate according to its importance.The first part,which is used to reconstruct a rough approximation of the original image,is highly protected in order to resist against higher tampering rates.Other parts are protected with lower rates according to their importance leading to lower tolerable tampering rate(TTR),but the higher quality of the recovered images.The proposed MSSR approach is an efficient solution for the main disadvantage of the current methods,which either recover a tampered image in low tampering rates or fails when tampering rate is above the TTR value.The simulation results on 10000 test images represent the efficiency of the multi-scale self-recovery feature of the proposed approach in comparison with the existing methods. 展开更多
关键词 TAMPER detection image recovery multi-scale SELF-RECOVERY tolerable tampering rate
下载PDF
Scale-space effect and scale hybridization in image intelligent recognition of geological discontinuities on rock slopes
4
作者 Mingyang Wang Enzhi Wang +1 位作者 Xiaoli Liu Congcong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1315-1336,共22页
Geological discontinuity(GD)plays a pivotal role in determining the catastrophic mechanical failure of jointed rock masses.Accurate and efficient acquisition of GD networks is essential for characterizing and understa... Geological discontinuity(GD)plays a pivotal role in determining the catastrophic mechanical failure of jointed rock masses.Accurate and efficient acquisition of GD networks is essential for characterizing and understanding the progressive damage mechanisms of slopes based on monitoring image data.Inspired by recent advances in computer vision,deep learning(DL)models have been widely utilized for image-based fracture identification.The multi-scale characteristics,image resolution and annotation quality of images will cause a scale-space effect(SSE)that makes features indistinguishable from noise,directly affecting the accuracy.However,this effect has not received adequate attention.Herein,we try to address this gap by collecting slope images at various proportional scales and constructing multi-scale datasets using image processing techniques.Next,we quantify the intensity of feature signals using metrics such as peak signal-to-noise ratio(PSNR)and structural similarity(SSIM).Combining these metrics with the scale-space theory,we investigate the influence of the SSE on the differentiation of multi-scale features and the accuracy of recognition.It is found that augmenting the image's detail capacity does not always yield benefits for vision-based recognition models.In light of these observations,we propose a scale hybridization approach based on the diffusion mechanism of scale-space representation.The results show that scale hybridization strengthens the tolerance of multi-scale feature recognition under complex environmental noise interference and significantly enhances the recognition accuracy of GD.It also facilitates the objective understanding,description and analysis of the rock behavior and stability of slopes from the perspective of image data. 展开更多
关键词 image processing Geological discontinuities Deep learning multi-scale Scale-space theory Scale hybridization
下载PDF
MSD-Net: Pneumonia Classification Model Based on Multi-Scale Directional Feature Enhancement
5
作者 Tao Zhou Yujie Guo +3 位作者 Caiyue Peng Yuxia Niu Yunfeng Pan Huiling Lu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4863-4882,共20页
Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot.However,there are some problems that the features of different sizes and different directions are not sufficient when extracting the f... Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot.However,there are some problems that the features of different sizes and different directions are not sufficient when extracting the features in lung X-ray images.A pneumonia classification model based on multi-scale directional feature enhancement MSD-Net is proposed in this paper.The main innovations are as follows:Firstly,the Multi-scale Residual Feature Extraction Module(MRFEM)is designed to effectively extract multi-scale features.The MRFEM uses dilated convolutions with different expansion rates to increase the receptive field and extract multi-scale features effectively.Secondly,the Multi-scale Directional Feature Perception Module(MDFPM)is designed,which uses a three-branch structure of different sizes convolution to transmit direction feature layer by layer,and focuses on the target region to enhance the feature information.Thirdly,the Axial Compression Former Module(ACFM)is designed to perform global calculations to enhance the perception ability of global features in different directions.To verify the effectiveness of the MSD-Net,comparative experiments and ablation experiments are carried out.In the COVID-19 RADIOGRAPHY DATABASE,the Accuracy,Recall,Precision,F1 Score,and Specificity of MSD-Net are 97.76%,95.57%,95.52%,95.52%,and 98.51%,respectively.In the chest X-ray dataset,the Accuracy,Recall,Precision,F1 Score and Specificity of MSD-Net are 97.78%,95.22%,96.49%,95.58%,and 98.11%,respectively.This model improves the accuracy of lung image recognition effectively and provides an important clinical reference to pneumonia Computer-Aided Diagnosis. 展开更多
关键词 PNEUMONIA X-ray image ResNet multi-scale feature direction feature TRANSFORMER
下载PDF
Image Inpainting Technique Incorporating Edge Prior and Attention Mechanism
6
作者 Jinxian Bai Yao Fan +1 位作者 Zhiwei Zhao Lizhi Zheng 《Computers, Materials & Continua》 SCIE EI 2024年第1期999-1025,共27页
Recently,deep learning-based image inpainting methods have made great strides in reconstructing damaged regions.However,these methods often struggle to produce satisfactory results when dealing with missing images wit... Recently,deep learning-based image inpainting methods have made great strides in reconstructing damaged regions.However,these methods often struggle to produce satisfactory results when dealing with missing images with large holes,leading to distortions in the structure and blurring of textures.To address these problems,we combine the advantages of transformers and convolutions to propose an image inpainting method that incorporates edge priors and attention mechanisms.The proposed method aims to improve the results of inpainting large holes in images by enhancing the accuracy of structure restoration and the ability to recover texture details.This method divides the inpainting task into two phases:edge prediction and image inpainting.Specifically,in the edge prediction phase,a transformer architecture is designed to combine axial attention with standard self-attention.This design enhances the extraction capability of global structural features and location awareness.It also balances the complexity of self-attention operations,resulting in accurate prediction of the edge structure in the defective region.In the image inpainting phase,a multi-scale fusion attention module is introduced.This module makes full use of multi-level distant features and enhances local pixel continuity,thereby significantly improving the quality of image inpainting.To evaluate the performance of our method.comparative experiments are conducted on several datasets,including CelebA,Places2,and Facade.Quantitative experiments show that our method outperforms the other mainstream methods.Specifically,it improves Peak Signal-to-Noise Ratio(PSNR)and Structure Similarity Index Measure(SSIM)by 1.141~3.234 db and 0.083~0.235,respectively.Moreover,it reduces Learning Perceptual Image Patch Similarity(LPIPS)and Mean Absolute Error(MAE)by 0.0347~0.1753 and 0.0104~0.0402,respectively.Qualitative experiments reveal that our method excels at reconstructing images with complete structural information and clear texture details.Furthermore,our model exhibits impressive performance in terms of the number of parameters,memory cost,and testing time. 展开更多
关键词 image inpainting TRANSFORMER edge prior axial attention multi-scale fusion attention
下载PDF
Multiscale Fusion Transformer Network for Hyperspectral Image Classification
7
作者 Yuquan Gan Hao Zhang Chen Yi 《Journal of Beijing Institute of Technology》 EI CAS 2024年第3期255-270,共16页
Convolutional neural network(CNN)has excellent ability to model locally contextual information.However,CNNs face challenges for descripting long-range semantic features,which will lead to relatively low classification... Convolutional neural network(CNN)has excellent ability to model locally contextual information.However,CNNs face challenges for descripting long-range semantic features,which will lead to relatively low classification accuracy of hyperspectral images.To address this problem,this article proposes an algorithm based on multiscale fusion and transformer network for hyperspectral image classification.Firstly,the low-level spatial-spectral features are extracted by multi-scale residual structure.Secondly,an attention module is introduced to focus on the more important spatialspectral information.Finally,high-level semantic features are represented and learned by a token learner and an improved transformer encoder.The proposed algorithm is compared with six classical hyperspectral classification algorithms on real hyperspectral images.The experimental results show that the proposed algorithm effectively improves the land cover classification accuracy of hyperspectral images. 展开更多
关键词 hyperspectral image land cover classification multi-scale TRANSFORMER
下载PDF
A multi-scale second-order autoregressive recursive filter approach for the sea ice concentration analysis
8
作者 Lu Yang Xuefeng Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第3期115-126,共12页
To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregress... To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future. 展开更多
关键词 second-order auto-regressive filter multi-scale recursive filter sea ice concentration three-dimensional variational data assimilation
下载PDF
Multimodality Medical Image Fusion Based on Pixel Significance with Edge-Preserving Processing for Clinical Applications
9
作者 Bhawna Goyal Ayush Dogra +4 位作者 Dawa Chyophel Lepcha Rajesh Singh Hemant Sharma Ahmed Alkhayyat Manob Jyoti Saikia 《Computers, Materials & Continua》 SCIE EI 2024年第3期4317-4342,共26页
Multimodal medical image fusion has attained immense popularity in recent years due to its robust technology for clinical diagnosis.It fuses multiple images into a single image to improve the quality of images by reta... Multimodal medical image fusion has attained immense popularity in recent years due to its robust technology for clinical diagnosis.It fuses multiple images into a single image to improve the quality of images by retaining significant information and aiding diagnostic practitioners in diagnosing and treating many diseases.However,recent image fusion techniques have encountered several challenges,including fusion artifacts,algorithm complexity,and high computing costs.To solve these problems,this study presents a novel medical image fusion strategy by combining the benefits of pixel significance with edge-preserving processing to achieve the best fusion performance.First,the method employs a cross-bilateral filter(CBF)that utilizes one image to determine the kernel and the other for filtering,and vice versa,by considering both geometric closeness and the gray-level similarities of neighboring pixels of the images without smoothing edges.The outputs of CBF are then subtracted from the original images to obtain detailed images.It further proposes to use edge-preserving processing that combines linear lowpass filtering with a non-linear technique that enables the selection of relevant regions in detailed images while maintaining structural properties.These regions are selected using morphologically processed linear filter residuals to identify the significant regions with high-amplitude edges and adequate size.The outputs of low-pass filtering are fused with meaningfully restored regions to reconstruct the original shape of the edges.In addition,weight computations are performed using these reconstructed images,and these weights are then fused with the original input images to produce a final fusion result by estimating the strength of horizontal and vertical details.Numerous standard quality evaluation metrics with complementary properties are used for comparison with existing,well-known algorithms objectively to validate the fusion results.Experimental results from the proposed research article exhibit superior performance compared to other competing techniques in the case of both qualitative and quantitative evaluation.In addition,the proposed method advocates less computational complexity and execution time while improving diagnostic computing accuracy.Nevertheless,due to the lower complexity of the fusion algorithm,the efficiency of fusion methods is high in practical applications.The results reveal that the proposed method exceeds the latest state-of-the-art methods in terms of providing detailed information,edge contour,and overall contrast. 展开更多
关键词 image fusion fractal data analysis BIOMEDICAL diseases research multiresolution analysis numerical analysis
下载PDF
A Review on the Recent Trends of Image Steganography for VANET Applications
10
作者 Arshiya S.Ansari 《Computers, Materials & Continua》 SCIE EI 2024年第3期2865-2892,共28页
Image steganography is a technique of concealing confidential information within an image without dramatically changing its outside look.Whereas vehicular ad hoc networks(VANETs),which enable vehicles to communicate w... Image steganography is a technique of concealing confidential information within an image without dramatically changing its outside look.Whereas vehicular ad hoc networks(VANETs),which enable vehicles to communicate with one another and with roadside infrastructure to enhance safety and traffic flow provide a range of value-added services,as they are an essential component of modern smart transportation systems.VANETs steganography has been suggested by many authors for secure,reliable message transfer between terminal/hope to terminal/hope and also to secure it from attack for privacy protection.This paper aims to determine whether using steganography is possible to improve data security and secrecy in VANET applications and to analyze effective steganography techniques for incorporating data into images while minimizing visual quality loss.According to simulations in literature and real-world studies,Image steganography proved to be an effectivemethod for secure communication on VANETs,even in difficult network conditions.In this research,we also explore a variety of steganography approaches for vehicular ad-hoc network transportation systems like vector embedding,statistics,spatial domain(SD),transform domain(TD),distortion,masking,and filtering.This study possibly shall help researchers to improve vehicle networks’ability to communicate securely and lay the door for innovative steganography methods. 展开更多
关键词 STEGANOGRAPHY image steganography image steganography techniques information exchange data embedding and extracting vehicular ad hoc network(VANET) transportation system
下载PDF
A Cover-Independent Deep Image Hiding Method Based on Domain Attention Mechanism
11
作者 Nannan Wu Xianyi Chen +1 位作者 James Msughter Adeke Junjie Zhao 《Computers, Materials & Continua》 SCIE EI 2024年第3期3001-3019,共19页
Recently,deep image-hiding techniques have attracted considerable attention in covert communication and high-capacity information hiding.However,these approaches have some limitations.For example,a cover image lacks s... Recently,deep image-hiding techniques have attracted considerable attention in covert communication and high-capacity information hiding.However,these approaches have some limitations.For example,a cover image lacks self-adaptability,information leakage,or weak concealment.To address these issues,this study proposes a universal and adaptable image-hiding method.First,a domain attention mechanism is designed by combining the Atrous convolution,which makes better use of the relationship between the secret image domain and the cover image domain.Second,to improve perceived human similarity,perceptual loss is incorporated into the training process.The experimental results are promising,with the proposed method achieving an average pixel discrepancy(APD)of 1.83 and a peak signal-to-noise ratio(PSNR)value of 40.72 dB between the cover and stego images,indicative of its high-quality output.Furthermore,the structural similarity index measure(SSIM)reaches 0.985 while the learned perceptual image patch similarity(LPIPS)remarkably registers at 0.0001.Moreover,self-testing and cross-experiments demonstrate the model’s adaptability and generalization in unknown hidden spaces,making it suitable for diverse computer vision tasks. 展开更多
关键词 Deep image hiding attention mechanism privacy protection data security visual quality
下载PDF
Lossless Compression Method for the Magnetic and Helioseismic Imager(MHI)Payload
12
作者 Li-Yue Tong Jia-Ben Lin +4 位作者 Yuan-Yong Deng Kai-Fan Ji Jun-Feng Hou Quan Wang Xiao Yang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第4期214-221,共8页
The Solar Polar-orbit Observatory(SPO),proposed by Chinese scientists,is designed to observe the solar polar regions in an unprecedented way with a spacecraft traveling in a large solar inclination angle and a small e... The Solar Polar-orbit Observatory(SPO),proposed by Chinese scientists,is designed to observe the solar polar regions in an unprecedented way with a spacecraft traveling in a large solar inclination angle and a small ellipticity.However,one of the most significant challenges lies in ultra-long-distance data transmission,particularly for the Magnetic and Helioseismic Imager(MHI),which is the most important payload and generates the largest volume of data in SPO.In this paper,we propose a tailored lossless data compression method based on the measurement mode and characteristics of MHI data.The background out of the solar disk is removed to decrease the pixel number of an image under compression.Multiple predictive coding methods are combined to eliminate the redundancy utilizing the correlation(space,spectrum,and polarization)in data set,improving the compression ratio.Experimental results demonstrate that our method achieves an average compression ratio of 3.67.The compression time is also less than the general observation period.The method exhibits strong feasibility and can be easily adapted to MHI. 展开更多
关键词 methods:data analysis techniques:image processing Sun:magnetic fields Sun:photosphere
下载PDF
Two Stages Segmentation Algorithm of Breast Tumor in DCE-MRI Based on Multi-Scale Feature and Boundary Attention Mechanism
13
作者 Bing Li Liangyu Wang +3 位作者 Xia Liu Hongbin Fan Bo Wang Shoudi Tong 《Computers, Materials & Continua》 SCIE EI 2024年第7期1543-1561,共19页
Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low a... Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation.Thus,we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms.Initially,the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs.Subsequently,we devise a fusion network incorporatingmulti-scale features and boundary attentionmechanisms for breast tumor segmentation.We incorporate multi-scale parallel dilated convolution modules into the network,enhancing its capability to segment tumors of various sizes through multi-scale convolution and novel fusion techniques.Additionally,attention and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing nonlocal dependencies in both spatial and channel domains.Furthermore,a hybrid loss function with boundary weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance capability through additional loss.Themethod was evaluated using breast data from 207 patients at RuijinHospital,resulting in a 6.64%increase in Dice similarity coefficient compared to the benchmarkU-Net.Experimental results demonstrate the superiority of the method over other segmentation techniques,with fewer model parameters. 展开更多
关键词 Dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) breast tumor segmentation multi-scale dilated convolution boundary attention the hybrid loss function with boundary weight
下载PDF
Road Traffic Monitoring from Aerial Images Using Template Matching and Invariant Features
14
作者 Asifa Mehmood Qureshi Naif Al Mudawi +2 位作者 Mohammed Alonazi Samia Allaoua Chelloug Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2024年第3期3683-3701,共19页
Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibilit... Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area.To this end,different models have shown the ability to recognize and track vehicles.However,these methods are not mature enough to produce accurate results in complex road scenes.Therefore,this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with image bursts.The extracted frames were converted to grayscale,followed by the application of a georeferencing algorithm to embed coordinate information into the images.The masking technique eliminated irrelevant data and reduced the computational cost of the overall monitoring system.Next,Sobel edge detection combined with Canny edge detection and Hough line transform has been applied for noise reduction.After preprocessing,the blob detection algorithm helped detect the vehicles.Vehicles of varying sizes have been detected by implementing a dynamic thresholding scheme.Detection was done on the first image of every burst.Then,to track vehicles,the model of each vehicle was made to find its matches in the succeeding images using the template matching algorithm.To further improve the tracking accuracy by incorporating motion information,Scale Invariant Feature Transform(SIFT)features have been used to find the best possible match among multiple matches.An accuracy rate of 87%for detection and 80%accuracy for tracking in the A1 Motorway Netherland dataset has been achieved.For the Vehicle Aerial Imaging from Drone(VAID)dataset,an accuracy rate of 86%for detection and 78%accuracy for tracking has been achieved. 展开更多
关键词 Unmanned Aerial Vehicles(UAV) aerial images dataSET object detection object tracking data elimination template matching blob detection SIFT VAID
下载PDF
Applying Source Parameter Imaging (SPI) to Aeromagnetic Data to Estimate Depth to Magnetic Sources in the Mamfe Sedimentary Basin
15
作者 Eric N. Ndikum Charles T. Tabod 《International Journal of Geosciences》 CAS 2024年第1期1-11,共11页
Aeromagnetic data over the Mamfe Basin have been processed. A regional magnetic gridded dataset was obtained from the Total Magnetic Intensity (TMI) data grid using a 3 × 3 convolution (Hanning) filter to remove ... Aeromagnetic data over the Mamfe Basin have been processed. A regional magnetic gridded dataset was obtained from the Total Magnetic Intensity (TMI) data grid using a 3 × 3 convolution (Hanning) filter to remove regional trends. Major similarities in magnetic field orientation and intensities were observed at identical locations on both the regional and TMI data grids. From the regional and TMI gridded datasets, the residual dataset was generated which represents the very shallow geological features of the basin. Processing this residual data grid using the Source Parameter Imaging (SPI) for magnetic depth suggests that the estimated depths to magnetic sources in the basin range from about 271 m to 3552 m. The highest depths are located in two main locations somewhere around the central portion of the study area which correspond to the area with positive magnetic susceptibilities, as well as the areas extending outwards across the eastern boundary of the study area. Shallow magnetic depths are prominent towards the NW portion of the basin and also correspond to areas of negative magnetic susceptibilities. The basin generally exhibits a variation in depth of magnetic sources with high, average and shallow depths. The presence of intrusive igneous rocks was also observed in this basin. This characteristic is a pointer to the existence of geologic resources of interest for exploration in the basin. 展开更多
关键词 Mamfe Basin Aeromagnetic data Source Parameter imaging (SPI) Depth to Magnetic Sources
下载PDF
Data Augmentation Using Contour Image for Convolutional Neural Network
16
作者 Seung-Yeon Hwang Jeong-Joon Kim 《Computers, Materials & Continua》 SCIE EI 2023年第6期4669-4680,共12页
With the development of artificial intelligence-related technologies such as deep learning,various organizations,including the government,are making various efforts to generate and manage big data for use in artificia... With the development of artificial intelligence-related technologies such as deep learning,various organizations,including the government,are making various efforts to generate and manage big data for use in artificial intelligence.However,it is difficult to acquire big data due to various social problems and restrictions such as personal information leakage.There are many problems in introducing technology in fields that do not have enough training data necessary to apply deep learning technology.Therefore,this study proposes a mixed contour data augmentation technique,which is a data augmentation technique using contour images,to solve a problem caused by a lack of data.ResNet,a famous convolutional neural network(CNN)architecture,and CIFAR-10,a benchmark data set,are used for experimental performance evaluation to prove the superiority of the proposed method.And to prove that high performance improvement can be achieved even with a small training dataset,the ratio of the training dataset was divided into 70%,50%,and 30%for comparative analysis.As a result of applying the mixed contour data augmentation technique,it was possible to achieve a classification accuracy improvement of up to 4.64%and high accuracy even with a small amount of data set.In addition,it is expected that the mixed contour data augmentation technique can be applied in various fields by proving the excellence of the proposed data augmentation technique using benchmark datasets. 展开更多
关键词 data augmentation image classification deep learning convolutional neural network mixed contour image benchmark dataset
下载PDF
Big Data Analytics with Optimal Deep Learning Model for Medical Image Classification
17
作者 Tariq Mohammed Alqahtani 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1433-1449,共17页
In recent years,huge volumes of healthcare data are getting generated in various forms.The advancements made in medical imaging are tremendous owing to which biomedical image acquisition has become easier and quicker.... In recent years,huge volumes of healthcare data are getting generated in various forms.The advancements made in medical imaging are tremendous owing to which biomedical image acquisition has become easier and quicker.Due to such massive generation of big data,the utilization of new methods based on Big Data Analytics(BDA),Machine Learning(ML),and Artificial Intelligence(AI)have become essential.In this aspect,the current research work develops a new Big Data Analytics with Cat Swarm Optimization based deep Learning(BDA-CSODL)technique for medical image classification on Apache Spark environment.The aim of the proposed BDA-CSODL technique is to classify the medical images and diagnose the disease accurately.BDA-CSODL technique involves different stages of operations such as preprocessing,segmentation,fea-ture extraction,and classification.In addition,BDA-CSODL technique also fol-lows multi-level thresholding-based image segmentation approach for the detection of infected regions in medical image.Moreover,a deep convolutional neural network-based Inception v3 method is utilized in this study as feature extractor.Stochastic Gradient Descent(SGD)model is used for parameter tuning process.Furthermore,CSO with Long Short-Term Memory(CSO-LSTM)model is employed as a classification model to determine the appropriate class labels to it.Both SGD and CSO design approaches help in improving the overall image classification performance of the proposed BDA-CSODL technique.A wide range of simulations was conducted on benchmark medical image datasets and the com-prehensive comparative results demonstrate the supremacy of the proposed BDA-CSODL technique under different measures. 展开更多
关键词 Big data analytics healthcare deep learning image classification biomedical imaging machine learning
下载PDF
Multi-Scale Feature Extraction for Joint Classification of Hyperspectral and LiDAR Data
18
作者 Yongqiang Xi Zhen Ye 《Journal of Beijing Institute of Technology》 EI CAS 2023年第1期13-22,共10页
With the development of sensors,the application of multi-source remote sensing data has been widely concerned.Since hyperspectral image(HSI)contains rich spectral information while light detection and ranging(LiDAR)da... With the development of sensors,the application of multi-source remote sensing data has been widely concerned.Since hyperspectral image(HSI)contains rich spectral information while light detection and ranging(LiDAR)data contains elevation information,joint use of them for ground object classification can yield positive results,especially by building deep networks.Fortu-nately,multi-scale deep networks allow to expand the receptive fields of convolution without causing the computational and training problems associated with simply adding more network layers.In this work,a multi-scale feature fusion network is proposed for the joint classification of HSI and LiDAR data.First,we design a multi-scale spatial feature extraction module with cross-channel connections,by which spatial information of HSI data and elevation information of LiDAR data are extracted and fused.In addition,a multi-scale spectral feature extraction module is employed to extract the multi-scale spectral features of HSI data.Finally,joint multi-scale features are obtained by weighting and concatenation operations and then fed into the classifier.To verify the effective-ness of the proposed network,experiments are carried out on the MUUFL Gulfport and Trento datasets.The experimental results demonstrate that the classification performance of the proposed method is superior to that of other state-of-the-art methods. 展开更多
关键词 hyperspectral image(HSI) light detection and ranging(LiDAR) multi-scale feature classification
下载PDF
High-Imperceptibility Data Hiding Scheme for JPEG Images Based on Direction Modification
19
作者 Li Liu Jing Li +2 位作者 Yingchun Wu Chin-Chen Chang Anhong Wang 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1415-1431,共17页
Data hiding(DH)is an important technology for securely transmitting secret data in networks,and has increasing become a research hotspot throughout the world.However,for Joint photographic experts group(JPEG)images,it... Data hiding(DH)is an important technology for securely transmitting secret data in networks,and has increasing become a research hotspot throughout the world.However,for Joint photographic experts group(JPEG)images,it is difficult to balance the contradiction among embedded capacity,visual quality and the file size increment in existing data hiding schemes.Thus,to deal with this problem,a high-imperceptibility data hiding for JPEG images is proposed based on direction modification.First,this proposed scheme sorts all of the quantized discrete cosine transform(DCT)block in ascending order according to the number of non-consecutive-zero alternating current(AC)coefficients.Then it selects non-consecutive-zero AC coefficients with absolute values less than or equal to 1 at the same frequency position in two adjacent blocks for pairing.Finally,the 2-bit secret data can be embedded into a coefficient-pair by using the filled reference matrix and the designed direction modification rules.The experiment was conducted on 5 standard test images and 1000 images of BOSSbase dataset,respectively.The experimental results showed that the visual quality of the proposed scheme was improved by 1∼4 dB compared with the comparison schemes,and the file size increment was reduced at most to 15%of the comparison schemes. 展开更多
关键词 data hiding JPEG images coefficient-pair direction modification file size increment
下载PDF
Sub-Regional Infrared-Visible Image Fusion Using Multi-Scale Transformation 被引量:1
20
作者 Yexin Liu Ben Xu +2 位作者 Mengmeng Zhang Wei Li Ran Tao 《Journal of Beijing Institute of Technology》 EI CAS 2022年第6期535-550,共16页
Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhanc... Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhancement and visual improvement.To deal with these problems,a sub-regional infrared-visible image fusion method(SRF)is proposed.First,morphology and threshold segmentation is applied to extract targets interested in infrared images.Second,the infrared back-ground is reconstructed based on extracted targets and the visible image.Finally,target and back-ground regions are fused using a multi-scale transform.Experimental results are obtained using public data for comparison and evaluation,which demonstrate that the proposed SRF has poten-tial benefits over other methods. 展开更多
关键词 image fusion infrared image visible image multi-scale transform
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部