In order to solve the problem that existing multivariate grey incidence models cannot be applied to time series on different scales, a new model is proposed based on spatial pyramid pooling.Firstly, local features of ...In order to solve the problem that existing multivariate grey incidence models cannot be applied to time series on different scales, a new model is proposed based on spatial pyramid pooling.Firstly, local features of multivariate time series on different scales are pooled and aggregated by spatial pyramid pooling to construct n levels feature pooling matrices on the same scale. Secondly,Deng's multivariate grey incidence model is introduced to measure the degree of incidence between feature pooling matrices at each level. Thirdly, grey incidence degrees at each level are integrated into a global incidence degree. Finally, the performance of the proposed model is verified on two data sets compared with a variety of algorithms. The results illustrate that the proposed model is more effective and efficient than other similarity measure algorithms.展开更多
Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality a...Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality and quantity,and a narrow range of applicable tasks.These limitations significantly restrict the capacity and applicability of CMFD.To overcome the limitations of existing methods,a novel solution called IMTNet is proposed for CMFD by employing a feature decoupling approach.Firstly,this study formulates the objective task and network relationship as an optimization problem using transfer learning.Furthermore,it thoroughly discusses and analyzes the relationship between CMFD and deep network architecture by employing ResNet-50 during the optimization solving phase.Secondly,a quantitative comparison between fine-tuning and feature decoupling is conducted to evaluate the degree of similarity between the image classification and CMFD domains by the enhanced ResNet-50.Finally,suspicious regions are localized using a feature pyramid network with bottom-up path augmentation.Experimental results demonstrate that IMTNet achieves faster convergence,shorter training times,and favorable generalization performance compared to existingmethods.Moreover,it is shown that IMTNet significantly outperforms fine-tuning based approaches in terms of accuracy and F_(1).展开更多
针对无人机视角下的小目标检测精度较差、漏检较为严重的问题,提出一种基于改进YOLOv5的无人机图像检测算法。针对小目标尺度较小问题在骨干网络替换空间金字塔池化(Spatial Pyramid Pooling,SPP)为SPPCSPC-GS,增强密集区域关注能力,提...针对无人机视角下的小目标检测精度较差、漏检较为严重的问题,提出一种基于改进YOLOv5的无人机图像检测算法。针对小目标尺度较小问题在骨干网络替换空间金字塔池化(Spatial Pyramid Pooling,SPP)为SPPCSPC-GS,增强密集区域关注能力,提取更多小目标有效特征;在颈部网络中引入CBAM注意力机制将头部C3模块替换为C3CBAM增强上下文信息,提高空间与通道特征表达能力;针对遮挡问题引入柔性非极大值抑制(Soft Non Maximum Suppression,Soft NMS)提升模型对遮挡和密集目标的检测能力;替换损失函数为EIOU加快收敛提升定位效果。改进后的模型在VisDrone数据集上平均检测精度为42.2%,相较于原始YOLOv5s算法提升10.7%,遮挡严重的小目标行人与人类别精度分别上升12%与13.3%。相较于其他先进算法,所提算法表现优秀,可以满足无人机视角图像检测任务要求。展开更多
基金supported by the National Natural Science Foundation of China(71401052)the Fundamental Research Funds for the Central Universities(2019B19514)。
文摘In order to solve the problem that existing multivariate grey incidence models cannot be applied to time series on different scales, a new model is proposed based on spatial pyramid pooling.Firstly, local features of multivariate time series on different scales are pooled and aggregated by spatial pyramid pooling to construct n levels feature pooling matrices on the same scale. Secondly,Deng's multivariate grey incidence model is introduced to measure the degree of incidence between feature pooling matrices at each level. Thirdly, grey incidence degrees at each level are integrated into a global incidence degree. Finally, the performance of the proposed model is verified on two data sets compared with a variety of algorithms. The results illustrate that the proposed model is more effective and efficient than other similarity measure algorithms.
基金supported and founded by the Guizhou Provincial Science and Technology Project under the Grant No.QKH-Basic-ZK[2021]YB311the Youth Science and Technology Talent Growth Project of Guizhou Provincial Education Department under Grant No.QJH-KY-ZK[2021]132+2 种基金the Guizhou Provincial Science and Technology Project under the Grant No.QKH-Basic-ZK[2021]YB319the National Natural Science Foundation of China(NSFC)under Grant 61902085the Key Laboratory Program of Blockchain and Fintech of Department of Education of Guizhou Province(2023-014).
文摘Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality and quantity,and a narrow range of applicable tasks.These limitations significantly restrict the capacity and applicability of CMFD.To overcome the limitations of existing methods,a novel solution called IMTNet is proposed for CMFD by employing a feature decoupling approach.Firstly,this study formulates the objective task and network relationship as an optimization problem using transfer learning.Furthermore,it thoroughly discusses and analyzes the relationship between CMFD and deep network architecture by employing ResNet-50 during the optimization solving phase.Secondly,a quantitative comparison between fine-tuning and feature decoupling is conducted to evaluate the degree of similarity between the image classification and CMFD domains by the enhanced ResNet-50.Finally,suspicious regions are localized using a feature pyramid network with bottom-up path augmentation.Experimental results demonstrate that IMTNet achieves faster convergence,shorter training times,and favorable generalization performance compared to existingmethods.Moreover,it is shown that IMTNet significantly outperforms fine-tuning based approaches in terms of accuracy and F_(1).
基金supported by the International Research Center of Big Data for Sustainable Development Goals [grant number CBAS2022GSP01]the National Natural Science Foundation of China [grant numbers 42276203 and 42030406]+1 种基金the Natural Science Foundation of Shandong Province [grant number ZR2021MD001]the Laoshan Laboratory [grant number LSKJ202204302].
文摘针对无人机视角下的小目标检测精度较差、漏检较为严重的问题,提出一种基于改进YOLOv5的无人机图像检测算法。针对小目标尺度较小问题在骨干网络替换空间金字塔池化(Spatial Pyramid Pooling,SPP)为SPPCSPC-GS,增强密集区域关注能力,提取更多小目标有效特征;在颈部网络中引入CBAM注意力机制将头部C3模块替换为C3CBAM增强上下文信息,提高空间与通道特征表达能力;针对遮挡问题引入柔性非极大值抑制(Soft Non Maximum Suppression,Soft NMS)提升模型对遮挡和密集目标的检测能力;替换损失函数为EIOU加快收敛提升定位效果。改进后的模型在VisDrone数据集上平均检测精度为42.2%,相较于原始YOLOv5s算法提升10.7%,遮挡严重的小目标行人与人类别精度分别上升12%与13.3%。相较于其他先进算法,所提算法表现优秀,可以满足无人机视角图像检测任务要求。