Adsorption and desorption mechanisms of methylene blue (MB) removal with iron-oxide coated porous ce-ramics filter (IOCPCF) were investigated in batch and column mode. The results revealed that MB removal mechanisms i...Adsorption and desorption mechanisms of methylene blue (MB) removal with iron-oxide coated porous ce-ramics filter (IOCPCF) were investigated in batch and column mode. The results revealed that MB removal mechanisms included physical adsorption and chemical adsorption, of which chemical adsorption by surface ligand complex reaction played a dominant role after infrared spectrum analysis. Recycling agents were se-lected from dilute nitric acid (pH=3), sodium hydroxide solution (pH=12) and distilled water. Among three agents, dilute metric acid (pH=3) was the best recycling agent. Regeneration rate of IOCPCF arrived at 82.56% at batch adsorption and regeneration was finished in 75min at column adsorption. Adsorp-tion-desorption cycles of IOCPCF after batch and column adsorption were four and three times, respectively. Further, compared with fresh IOCPCF, MB removal rate with these desorbed IOCPCF adsorption only slightly decreased, which suggested that IOCPCF should be used repeatedly.展开更多
This work reports the coating of porous silicon (PS) with LaF3 and its influence on the photoluminescence (PL) property of PS. PS samples, prepared by electrochemical etching in a solution of HF and ethanol, were coat...This work reports the coating of porous silicon (PS) with LaF3 and its influence on the photoluminescence (PL) property of PS. PS samples, prepared by electrochemical etching in a solution of HF and ethanol, were coated with e-beam evaporated-LaF3 of different thicknesses. It was observed that the thin LaF3 layer on PS led to a good enhancement of PL yield of PS. But with the increasing thickness of LaF3 layer PL intensity of PS was decreasing along with a small blue-shift. It was also observed that all the coated samples showed degradation in PL intensity with time, but annealing could recover and stabilize the degraded PL.展开更多
Icing on the surface of aircraft will not only aggravate its quality and affect flight control,but even cause safety accidents,which is one of the important factors restricting all-weather flight.Bio-inspired anti-ici...Icing on the surface of aircraft will not only aggravate its quality and affect flight control,but even cause safety accidents,which is one of the important factors restricting all-weather flight.Bio-inspired anti-icing surfaces have gained great attention recently due to their low-hysteresis,non-stick properties,slow nucleation rate and low ice adhesion strength.These bio-inspired anti-icing surfaces,such as superhydrophobic surfaces,slippery liquid-infused porous surfaces and quasi-liquid film surfaces,have realized excellent anti-icing performance at various stages of icing.However,for harsh environment,there are still many problems and challenges.From the perspective of bioinspiration,the mechanism of icing nucleation,liquid bounce and ice adhesion has been reviewed together with the application progress and bottleneck issues about anti-icing in view of the process of icing.Subsequently,the reliability and development prospect of active,passive and active-passive integrated anti-icing technology are discussed,respectively.展开更多
Porous SiO2 antireflective (AR) coatings are prepared from the colloidal silica solution modified with methyltriethoxysilane (MTES) based on the sol-gel route. The viscosity of modified silica suspensions changes but ...Porous SiO2 antireflective (AR) coatings are prepared from the colloidal silica solution modified with methyltriethoxysilane (MTES) based on the sol-gel route. The viscosity of modified silica suspensions changes but their stability keeps when MTES is introduced. The refractive indices of modified coatings vary little after bake treatment from 100 to 150℃. The modified silica coatings on Ti:sapphire crystal, owning good homogeneity, display prominent antireflective effect within the laser output waveband (750-850 nm) of Ti:sapphire lasers, with average transmission above 98.6%, and own laser induced damage thresholds (LIDTs) of more than 2.2 J/cm2 at 800 nm with the pulse duration of 300 ps.展开更多
Titanium dioxide(TiO2) films were prepared by cone - jet mode electrospraying a titanium ethoxideprecursor solution onto a silicon substrate.The effects of spraying time,substrate temperature and aging on thesurface m...Titanium dioxide(TiO2) films were prepared by cone - jet mode electrospraying a titanium ethoxideprecursor solution onto a silicon substrate.The effects of spraying time,substrate temperature and aging on thesurface morphology of the films prepared were studied.Thin films obtained after spraying for 600 s were aged atroom temperature to form a porous TiO2 network with pores in the size range of 100 - 500 nm.Thicker filmswere prepared by spraying for 3 000 s,but these cracked on drying although it can be concluded that films pre-pared using a higher substrate temperature were denser.By this method,SiC coating was also prepared on anAl2O3 substrate using polysilane as a precursor.The result implies the potential of an industrial production ofdye sensitized solar cells by electrospraying technique.展开更多
The advent of the laser has placed stringent requirements on the fabrication, performance and quality of optical elements employed within systems for most practical applications. Their high power performance is genera...The advent of the laser has placed stringent requirements on the fabrication, performance and quality of optical elements employed within systems for most practical applications. Their high power performance is generally governed by three distinct steps, firstly the absorption of incident optical radiation (governed primarily by various absorption mechanisms);secondly, followed by a temperature increase and response governed primarily by thermal properties and finally the elements thermo-optical and thermomechanical response, e.g., distortion, stress birefringenous fracture, etc. All of which needs to be understood in the design as efficient, compact, reliable and useful for many applications high power systems, under a variety of operating conditions, pulsed and continuous wave, rep-rated or burst mode of varying duty cycles.展开更多
The insufficient osteogenesis and osseointegration of porous titanium based scaffold limit its further application.Early angiogenesis is important for scaffold survival.It is necessary to develop a multifunctional sur...The insufficient osteogenesis and osseointegration of porous titanium based scaffold limit its further application.Early angiogenesis is important for scaffold survival.It is necessary to develop a multifunctional surface on titanium scaffold with both osteogenic and angiogenic properties.In this study,a biofunctional magnesium coating is deposited on porous Ti6Al4V scaffold.For osseointegration and osteogenesis analysis,in vitro studies reveal that magnesium-coated Ti6Al4V co-culture with MC3T3-E1 cells can improve cell proliferation,adhesion,extracellular matrix(ECM)mineralization and ALP activity compared with bare Ti6Al4V cocultivation.Additionally,MC3T3-E1 cells cultured with magnesium-coated Ti6Al4V show significantly higher osteogenesisrelated genes expression.In vivo studies including fluorochrome labeling,micro-computerized tomography and histological examination of magnesium-coated Ti6Al4V scaffold reveal that new bone regeneration is significantly increased in rabbits after implantation.For angiogenesis studies,magnesium-coated Ti6Al4V improve HUVECs proliferation,adhesion,tube formation,wound-healing and Transwell abilities.HUVECs cultured with magnesium-coated Ti6Al4V display significantly higher angiogenesis-related genes(HIF-1αand VEGF)expression.Microangiography analysis reveal that magnesium-coated Ti6Al4V scaffold can significantly enhance the blood vessel formation.This study enlarges the application scope of magnesium and provides an optional choice to the conventional porous Ti6Al4V scaffold with enhanced osteogenesis and angiogenesis for further orthopedic applications.展开更多
As an ultrathin film preparation method,atomic layer deposition(ALD)has recently found versatile applications in fields beyond semiconductors,such as energy,environment,catalysis and so on.The design,preparation and c...As an ultrathin film preparation method,atomic layer deposition(ALD)has recently found versatile applications in fields beyond semiconductors,such as energy,environment,catalysis and so on.The design,preparation and characterization of thin film applied in the emerging fields have attracted great interests.The development of ALD technique on particles opens up a broad horizon in the advanced nanofabrication.Pioneering applications are exploring conformal coating,porous coating and selective surface modification of nanoparticles.Conformal encapsulation of particles is a major application to protect materials with ultrathin films from being eroded by the external environment while keeping the original properties of the primary particles.Porous coating has been developed to simultaneously expose the particles’surface and provide nanopores,which is another important method that demonstrates its advantages in modification of electrode materials,catalysis and energy applications,etc.Selective ALD takes the method forward in order to precisely control the directionality of decoration sites on the particles and selectively passivate undesired facets,sites,or defects.Such methods provide practical strategies for atomic scale and precise surface functionalization on particles and greatly expand its potential applications.展开更多
文摘Adsorption and desorption mechanisms of methylene blue (MB) removal with iron-oxide coated porous ce-ramics filter (IOCPCF) were investigated in batch and column mode. The results revealed that MB removal mechanisms included physical adsorption and chemical adsorption, of which chemical adsorption by surface ligand complex reaction played a dominant role after infrared spectrum analysis. Recycling agents were se-lected from dilute nitric acid (pH=3), sodium hydroxide solution (pH=12) and distilled water. Among three agents, dilute metric acid (pH=3) was the best recycling agent. Regeneration rate of IOCPCF arrived at 82.56% at batch adsorption and regeneration was finished in 75min at column adsorption. Adsorp-tion-desorption cycles of IOCPCF after batch and column adsorption were four and three times, respectively. Further, compared with fresh IOCPCF, MB removal rate with these desorbed IOCPCF adsorption only slightly decreased, which suggested that IOCPCF should be used repeatedly.
文摘This work reports the coating of porous silicon (PS) with LaF3 and its influence on the photoluminescence (PL) property of PS. PS samples, prepared by electrochemical etching in a solution of HF and ethanol, were coated with e-beam evaporated-LaF3 of different thicknesses. It was observed that the thin LaF3 layer on PS led to a good enhancement of PL yield of PS. But with the increasing thickness of LaF3 layer PL intensity of PS was decreasing along with a small blue-shift. It was also observed that all the coated samples showed degradation in PL intensity with time, but annealing could recover and stabilize the degraded PL.
基金financially supported by the National Natural Science Foundation of China(Nos.T2121003,51725501,51935001,52205297).
文摘Icing on the surface of aircraft will not only aggravate its quality and affect flight control,but even cause safety accidents,which is one of the important factors restricting all-weather flight.Bio-inspired anti-icing surfaces have gained great attention recently due to their low-hysteresis,non-stick properties,slow nucleation rate and low ice adhesion strength.These bio-inspired anti-icing surfaces,such as superhydrophobic surfaces,slippery liquid-infused porous surfaces and quasi-liquid film surfaces,have realized excellent anti-icing performance at various stages of icing.However,for harsh environment,there are still many problems and challenges.From the perspective of bioinspiration,the mechanism of icing nucleation,liquid bounce and ice adhesion has been reviewed together with the application progress and bottleneck issues about anti-icing in view of the process of icing.Subsequently,the reliability and development prospect of active,passive and active-passive integrated anti-icing technology are discussed,respectively.
基金This work was supported by the High-Tech Research and Development Program of China under Grant No.8638042.
文摘Porous SiO2 antireflective (AR) coatings are prepared from the colloidal silica solution modified with methyltriethoxysilane (MTES) based on the sol-gel route. The viscosity of modified silica suspensions changes but their stability keeps when MTES is introduced. The refractive indices of modified coatings vary little after bake treatment from 100 to 150℃. The modified silica coatings on Ti:sapphire crystal, owning good homogeneity, display prominent antireflective effect within the laser output waveband (750-850 nm) of Ti:sapphire lasers, with average transmission above 98.6%, and own laser induced damage thresholds (LIDTs) of more than 2.2 J/cm2 at 800 nm with the pulse duration of 300 ps.
基金supported by the Science Foun-dation of Educational Commission and Provincial Key Laboratory Program of Liaoning Province of China(Grant No.2008593 and CL-200902)~~
文摘Titanium dioxide(TiO2) films were prepared by cone - jet mode electrospraying a titanium ethoxideprecursor solution onto a silicon substrate.The effects of spraying time,substrate temperature and aging on thesurface morphology of the films prepared were studied.Thin films obtained after spraying for 600 s were aged atroom temperature to form a porous TiO2 network with pores in the size range of 100 - 500 nm.Thicker filmswere prepared by spraying for 3 000 s,but these cracked on drying although it can be concluded that films pre-pared using a higher substrate temperature were denser.By this method,SiC coating was also prepared on anAl2O3 substrate using polysilane as a precursor.The result implies the potential of an industrial production ofdye sensitized solar cells by electrospraying technique.
文摘The advent of the laser has placed stringent requirements on the fabrication, performance and quality of optical elements employed within systems for most practical applications. Their high power performance is generally governed by three distinct steps, firstly the absorption of incident optical radiation (governed primarily by various absorption mechanisms);secondly, followed by a temperature increase and response governed primarily by thermal properties and finally the elements thermo-optical and thermomechanical response, e.g., distortion, stress birefringenous fracture, etc. All of which needs to be understood in the design as efficient, compact, reliable and useful for many applications high power systems, under a variety of operating conditions, pulsed and continuous wave, rep-rated or burst mode of varying duty cycles.
基金financially supported by The National Key Research and Development Program of China(grant number 2017YFC1104901)The National Natural Science Foundation of China(grant number 51871239,51771227)National Natural Science Foundation of Youth Fund(grant number 51501223).
文摘The insufficient osteogenesis and osseointegration of porous titanium based scaffold limit its further application.Early angiogenesis is important for scaffold survival.It is necessary to develop a multifunctional surface on titanium scaffold with both osteogenic and angiogenic properties.In this study,a biofunctional magnesium coating is deposited on porous Ti6Al4V scaffold.For osseointegration and osteogenesis analysis,in vitro studies reveal that magnesium-coated Ti6Al4V co-culture with MC3T3-E1 cells can improve cell proliferation,adhesion,extracellular matrix(ECM)mineralization and ALP activity compared with bare Ti6Al4V cocultivation.Additionally,MC3T3-E1 cells cultured with magnesium-coated Ti6Al4V show significantly higher osteogenesisrelated genes expression.In vivo studies including fluorochrome labeling,micro-computerized tomography and histological examination of magnesium-coated Ti6Al4V scaffold reveal that new bone regeneration is significantly increased in rabbits after implantation.For angiogenesis studies,magnesium-coated Ti6Al4V improve HUVECs proliferation,adhesion,tube formation,wound-healing and Transwell abilities.HUVECs cultured with magnesium-coated Ti6Al4V display significantly higher angiogenesis-related genes(HIF-1αand VEGF)expression.Microangiography analysis reveal that magnesium-coated Ti6Al4V scaffold can significantly enhance the blood vessel formation.This study enlarges the application scope of magnesium and provides an optional choice to the conventional porous Ti6Al4V scaffold with enhanced osteogenesis and angiogenesis for further orthopedic applications.
基金supported by the National Natural Science Foundation of China(51835005,51702106,51871103,51575217)Wuhan Science and Technology Plan(2018010401011286)。
文摘As an ultrathin film preparation method,atomic layer deposition(ALD)has recently found versatile applications in fields beyond semiconductors,such as energy,environment,catalysis and so on.The design,preparation and characterization of thin film applied in the emerging fields have attracted great interests.The development of ALD technique on particles opens up a broad horizon in the advanced nanofabrication.Pioneering applications are exploring conformal coating,porous coating and selective surface modification of nanoparticles.Conformal encapsulation of particles is a major application to protect materials with ultrathin films from being eroded by the external environment while keeping the original properties of the primary particles.Porous coating has been developed to simultaneously expose the particles’surface and provide nanopores,which is another important method that demonstrates its advantages in modification of electrode materials,catalysis and energy applications,etc.Selective ALD takes the method forward in order to precisely control the directionality of decoration sites on the particles and selectively passivate undesired facets,sites,or defects.Such methods provide practical strategies for atomic scale and precise surface functionalization on particles and greatly expand its potential applications.