期刊文献+
共找到131,467篇文章
< 1 2 250 >
每页显示 20 50 100
Attention-Based Multi-Scale Prediction Network for Time-Series Data
1
作者 Junjie Li Lin Zhu +2 位作者 Yong Zhang Da Guo Xingwen Xia 《China Communications》 SCIE CSCD 2022年第5期286-301,共16页
Time series data is a kind of data accumulated over time,which can describe the change of phenomenon.This kind of data reflects the degree of change of a certain thing or phenomenon.The existing technologies such as L... Time series data is a kind of data accumulated over time,which can describe the change of phenomenon.This kind of data reflects the degree of change of a certain thing or phenomenon.The existing technologies such as LSTM and ARIMA are better than convolutional neural network in time series prediction,but they are not enough to mine the periodicity of data.In this article,we perform periodic analysis on two types of time series data,select time metrics with high periodic characteristics,and propose a multi-scale prediction model based on the attention mechanism for the periodic trend of the data.A loss calculation method for traffic time series characteristics is proposed as well.Multiple experiments have been conducted on actual data sets.The experiments show that the method proposed in this paper has better performance than commonly used traffic prediction methods(ARIMA,LSTM,etc.)and 3%-5%increase on MAPE. 展开更多
关键词 network traffic prediction attention mechanism neural network machine learning single point forecast
下载PDF
Multi-scale persistent spatiotemporal transformer for long-term urban traffic flow prediction
2
作者 Jia-Jun Zhong Yong Ma +3 位作者 Xin-Zheng Niu Philippe Fournier-Viger Bing Wang Zu-kuan Wei 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第1期53-69,共17页
Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial... Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial issue is how to model spatiotemporal dependency in urban traffic data.In recent years,many studies have adopted spatiotemporal neural networks to extract key information from traffic data.However,most models ignore the semantic spatial similarity between long-distance areas when mining spatial dependency.They also ignore the impact of predicted time steps on the next unpredicted time step for making long-term predictions.Moreover,these models lack a comprehensive data embedding process to represent complex spatiotemporal dependency.This paper proposes a multi-scale persistent spatiotemporal transformer(MSPSTT)model to perform accurate long-term traffic flow prediction in cities.MSPSTT adopts an encoder-decoder structure and incorporates temporal,periodic,and spatial features to fully embed urban traffic data to address these issues.The model consists of a spatiotemporal encoder and a spatiotemporal decoder,which rely on temporal,geospatial,and semantic space multi-head attention modules to dynamically extract temporal,geospatial,and semantic characteristics.The spatiotemporal decoder combines the context information provided by the encoder,integrates the predicted time step information,and is iteratively updated to learn the correlation between different time steps in the broader time range to improve the model’s accuracy for long-term prediction.Experiments on four public transportation datasets demonstrate that MSPSTT outperforms the existing models by up to 9.5%on three common metrics. 展开更多
关键词 Graph neural network Multi-head attention mechanism Spatio-temporal dependency Traffic flow prediction
下载PDF
Dynamic evolution and trend prediction of multi-scale green innovation in China
3
作者 Xiaohua Xin Lachang Lyu Yanan Zhao 《Geography and Sustainability》 CSCD 2023年第3期222-231,共10页
Numerous studies deal with spatial analysis of green innovation(GI).However,researchers have paid limited attention to analyzing the multi-scale evolution patterns and predicting trends of GI in China.This paper seeks... Numerous studies deal with spatial analysis of green innovation(GI).However,researchers have paid limited attention to analyzing the multi-scale evolution patterns and predicting trends of GI in China.This paper seeks to address this research gap by examining the multi-scale distribution and evolutionary characteristics of GI activities based on the data from 337 cities in China during 2000-2019.We used scale variance and the two-stage nested Theil decomposition method to examine the spatial distribution and inequalities of GI in China at multiple scales,including regional,provincial,and prefectural.Additionally,we utilized the Markov chain and spatial Markov chain to explore the dynamic evolution of GI in China and predict its long-term development.The findings indicate that GI in China has a multi-scale effect and is highly sensitive to changes in spatial scale,with significant spatial differences of GI decreasing in each scale.Furthermore,the spatiotemporal evolution of GI is influenced by both geospatial patterns and spatial scales,exhibiting the“club convergence”effect and a tendency to transfer to higher levels of proximity.This effect is more pronounced on a larger scale,but it is increasingly challenging to transfer to higher levels.The study also indicates a steady and sustained growth of GI in China,which concentrates on higher levels over time.These results contribute to a more precise understanding of the scale at which GI develops and provide a scientific basis and policy suggestions for optimizing the spatial structure of GI and promoting its development in China. 展开更多
关键词 Green innovation Spatial pattern Trend prediction multi-scale China
下载PDF
Rockburst Intensity Grade Prediction Model Based on Batch Gradient Descent and Multi-Scale Residual Deep Neural Network
4
作者 Yu Zhang Mingkui Zhang +1 位作者 Jitao Li Guangshu Chen 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1987-2006,共20页
Rockburst is a phenomenon in which free surfaces are formed during excavation,which subsequently causes the sudden release of energy in the construction of mines and tunnels.Light rockburst only peels off rock slices ... Rockburst is a phenomenon in which free surfaces are formed during excavation,which subsequently causes the sudden release of energy in the construction of mines and tunnels.Light rockburst only peels off rock slices without ejection,while severe rockburst causes casualties and property loss.The frequency and degree of rockburst damage increases with the excavation depth.Moreover,rockburst is the leading engineering geological hazard in the excavation process,and thus the prediction of its intensity grade is of great significance to the development of geotechnical engineering.Therefore,the prediction of rockburst intensity grade is one problem that needs to be solved urgently.By comprehensively considering the occurrence mechanism of rockburst,this paper selects the stress index(σθ/σc),brittleness index(σ_(c)/σ_(t)),and rock elastic energy index(Wet)as the rockburst evaluation indexes through the Spearman coefficient method.This overcomes the low accuracy problem of a single evaluation index prediction method.Following this,the BGD-MSR-DNN rockburst intensity grade prediction model based on batch gradient descent and a multi-scale residual deep neural network is proposed.The batch gradient descent(BGD)module is used to replace the gradient descent algorithm,which effectively improves the efficiency of the network and reduces the model training time.Moreover,the multi-scale residual(MSR)module solves the problem of network degradation when there are too many hidden layers of the deep neural network(DNN),thus improving the model prediction accuracy.The experimental results reveal the BGDMSR-DNN model accuracy to reach 97.1%,outperforming other comparable models.Finally,actual projects such as Qinling Tunnel and Daxiangling Tunnel,reached an accuracy of 100%.The model can be applied in mines and tunnel engineering to realize the accurate and rapid prediction of rockburst intensity grade. 展开更多
关键词 Rockburst prediction rockburst intensity grade deep neural network batch gradient descent multi-scale residual
下载PDF
Multi-scale Incremental Analysis Update Scheme and Its Application to Typhoon Mangkhut(2018)Prediction
5
作者 Yan GAO Jiali FENG +4 位作者 Xin XIA Jian SUN Yulong MA Dongmei CHEN Qilin WAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第1期95-109,共15页
In the traditional incremental analysis update(IAU)process,all analysis increments are treated as constant forcing in a model’s prognostic equations over a certain time window.This approach effectively reduces high-f... In the traditional incremental analysis update(IAU)process,all analysis increments are treated as constant forcing in a model’s prognostic equations over a certain time window.This approach effectively reduces high-frequency oscillations introduced by data assimilation.However,as different scales of increments have unique evolutionary speeds and life histories in a numerical model,the traditional IAU scheme cannot fully meet the requirements of short-term forecasting for the damping of high-frequency noise and may even cause systematic drifts.Therefore,a multi-scale IAU scheme is proposed in this paper.Analysis increments were divided into different scale parts using a spatial filtering technique.For each scale increment,the optimal relaxation time in the IAU scheme was determined by the skill of the forecasting results.Finally,different scales of analysis increments were added to the model integration during their optimal relaxation time.The multi-scale IAU scheme can effectively reduce the noise and further improve the balance between large-scale and small-scale increments in the model initialization stage.To evaluate its performance,several numerical experiments were conducted to simulate the path and intensity of Typhoon Mangkhut(2018)and showed that:(1)the multi-scale IAU scheme had an obvious effect on noise control at the initial stage of data assimilation;(2)the optimal relaxation time for large-scale and small-scale increments was estimated as 6 h and 3 h,respectively;(3)the forecast performance of the multi-scale IAU scheme in the prediction of Typhoon Mangkhut(2018)was better than that of the traditional IAU scheme.The results demonstrate the superiority of the multi-scale IAU scheme. 展开更多
关键词 multi-scale incremental analysis updates optimal relaxation time 2-D discrete cosine transform GRAPES_MESO Typhoon Mangkhut(2018)
下载PDF
YOLO-MFD:Remote Sensing Image Object Detection with Multi-Scale Fusion Dynamic Head
6
作者 Zhongyuan Zhang Wenqiu Zhu 《Computers, Materials & Continua》 SCIE EI 2024年第5期2547-2563,共17页
Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false... Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false detection rates when applying object recognition algorithms tailored for remote sensing imagery.Additionally,these complexities contribute to inaccuracies in target localization and hinder precise target categorization.This paper addresses these challenges by proposing a solution:The YOLO-MFD model(YOLO-MFD:Remote Sensing Image Object Detection withMulti-scale Fusion Dynamic Head).Before presenting our method,we delve into the prevalent issues faced in remote sensing imagery analysis.Specifically,we emphasize the struggles of existing object recognition algorithms in comprehensively capturing critical image features amidst varying scales and complex backgrounds.To resolve these issues,we introduce a novel approach.First,we propose the implementation of a lightweight multi-scale module called CEF.This module significantly improves the model’s ability to comprehensively capture important image features by merging multi-scale feature information.It effectively addresses the issues of missed detection and mistaken alarms that are common in remote sensing imagery.Second,an additional layer of small target detection heads is added,and a residual link is established with the higher-level feature extraction module in the backbone section.This allows the model to incorporate shallower information,significantly improving the accuracy of target localization in remotely sensed images.Finally,a dynamic head attentionmechanism is introduced.This allows themodel to exhibit greater flexibility and accuracy in recognizing shapes and targets of different sizes.Consequently,the precision of object detection is significantly improved.The trial results show that the YOLO-MFD model shows improvements of 6.3%,3.5%,and 2.5%over the original YOLOv8 model in Precision,map@0.5 and map@0.5:0.95,separately.These results illustrate the clear advantages of the method. 展开更多
关键词 Object detection YOLOv8 multi-scale attention mechanism dynamic detection head
下载PDF
Transfer learning framework for multi-scale crack type classification with sparse microseismic networks
7
作者 Arnold Yuxuan Xie Bing QLi 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期167-178,共12页
Rock fracture mechanisms can be inferred from moment tensors(MT)inverted from microseismic events.However,MT can only be inverted for events whose waveforms are acquired across a network of sensors.This is limiting fo... Rock fracture mechanisms can be inferred from moment tensors(MT)inverted from microseismic events.However,MT can only be inverted for events whose waveforms are acquired across a network of sensors.This is limiting for underground mines where the microseismic stations often lack azimuthal coverage.Thus,there is a need for a method to invert fracture mechanisms using waveforms acquired by a sparse microseismic network.Here,we present a novel,multi-scale framework to classify whether a rock crack contracts or dilates based on a single waveform.The framework consists of a deep learning model that is initially trained on 2400000+manually labelled field-scale seismic and microseismic waveforms acquired across 692 stations.Transfer learning is then applied to fine-tune the model on 300000+MT-labelled labscale acoustic emission waveforms from 39 individual experiments instrumented with different sensor layouts,loading,and rock types in training.The optimal model achieves over 86%F-score on unseen waveforms at both the lab-and field-scale.This model outperforms existing empirical methods in classification of rock fracture mechanisms monitored by a sparse microseismic network.This facilitates rapid assessment of,and early warning against,various rock engineering hazard such as induced earthquakes and rock bursts. 展开更多
关键词 multi-scale Fracture processes Microseismic Acoustic emission Source mechanism Deep learning
下载PDF
Note on:“Ballistic model for the prediction of penetration depth and residual velocity in adobe:A new interpretation of the ballistic resistance of earthen masonry”
8
作者 Andreas Heine Matthias Wickert 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期607-609,共3页
A recently published modeling approach for the penetration into adobe and previous approaches implicitly criticized are reviewed and discussed.This article contains a note on the paper titled“Ballistic model for the ... A recently published modeling approach for the penetration into adobe and previous approaches implicitly criticized are reviewed and discussed.This article contains a note on the paper titled“Ballistic model for the prediction of penetration depth and residual velocity in adobe:A new interpretation of the ballistic resistance of earthen masonry”(DOI:https://doi.org/10.1016/j.dt.2018.07.017).Reply to the Note from Li Piani et al is linked to this article. 展开更多
关键词 ADOBE prediction earth
下载PDF
Development and validation of a model integrating clinical and coronary lesion-based functional assessment for longterm risk prediction in PCI patients
9
作者 Shao-Yu WU Rui ZHANG +5 位作者 Sheng YUAN Zhong-Xing CAI Chang-Dong GUAN Tong-Qiang ZOU Li-Hua XIE Ke-Fei DOU 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2024年第1期44-63,共20页
OBJECTIVES To establish a scoring system combining the ACEF score and the quantitative blood flow ratio(QFR) to improve the long-term risk prediction of patients undergoing percutaneous coronary intervention(PCI).METH... OBJECTIVES To establish a scoring system combining the ACEF score and the quantitative blood flow ratio(QFR) to improve the long-term risk prediction of patients undergoing percutaneous coronary intervention(PCI).METHODS In this population-based cohort study, a total of 46 features, including patient clinical and coronary lesion characteristics, were assessed for analysis through machine learning models. The ACEF-QFR scoring system was developed using 1263consecutive cases of CAD patients after PCI in PANDA Ⅲ trial database. The newly developed score was then validated on the other remaining 542 patients in the cohort.RESULTS In both the Random Forest Model and the Deep Surv Model, age, renal function(creatinine), cardiac function(LVEF)and post-PCI coronary physiological index(QFR) were identified and confirmed to be significant predictive factors for 2-year adverse cardiac events. The ACEF-QFR score was constructed based on the developmental dataset and computed as age(years)/EF(%) + 1(if creatinine ≥ 2.0 mg/d L) + 1(if post-PCI QFR ≤ 0.92). The performance of the ACEF-QFR scoring system was preliminarily evaluated in the developmental dataset, and then further explored in the validation dataset. The ACEF-QFR score showed superior discrimination(C-statistic = 0.651;95% CI: 0.611-0.691, P < 0.05 versus post-PCI physiological index and other commonly used risk scores) and excellent calibration(Hosmer–Lemeshow χ^(2)= 7.070;P = 0.529) for predicting 2-year patient-oriented composite endpoint(POCE). The good prognostic value of the ACEF-QFR score was further validated by multivariable Cox regression and Kaplan–Meier analysis(adjusted HR = 1.89;95% CI: 1.18–3.04;log-rank P < 0.01) after stratified the patients into high-risk group and low-risk group.CONCLUSIONS An improved scoring system combining clinical and coronary lesion-based functional variables(ACEF-QFR)was developed, and its ability for prognostic prediction in patients with PCI was further validated to be significantly better than the post-PCI physiological index and other commonly used risk scores. 展开更多
关键词 PATIENTS CORONARY prediction
下载PDF
MSC-YOLO:Improved YOLOv7 Based onMulti-Scale Spatial Context for Small Object Detection in UAV-View
10
作者 Xiangyan Tang Chengchun Ruan +2 位作者 Xiulai Li Binbin Li Cebin Fu 《Computers, Materials & Continua》 SCIE EI 2024年第4期983-1003,共21页
Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variati... Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variations inUAV flight altitude,differences in object scales,as well as factors like flight speed and motion blur.To enhancethe detection efficacy of small targets in drone aerial imagery,we propose an enhanced You Only Look Onceversion 7(YOLOv7)algorithm based on multi-scale spatial context.We build the MSC-YOLO model,whichincorporates an additional prediction head,denoted as P2,to improve adaptability for small objects.We replaceconventional downsampling with a Spatial-to-Depth Convolutional Combination(CSPDC)module to mitigatethe loss of intricate feature details related to small objects.Furthermore,we propose a Spatial Context Pyramidwith Multi-Scale Attention(SCPMA)module,which captures spatial and channel-dependent features of smalltargets acrossmultiple scales.This module enhances the perception of spatial contextual features and the utilizationof multiscale feature information.On the Visdrone2023 and UAVDT datasets,MSC-YOLO achieves remarkableresults,outperforming the baseline method YOLOv7 by 3.0%in terms ofmean average precision(mAP).The MSCYOLOalgorithm proposed in this paper has demonstrated satisfactory performance in detecting small targets inUAV aerial photography,providing strong support for practical applications. 展开更多
关键词 Small object detection YOLOv7 multi-scale attention spatial context
下载PDF
AHEVCVideo Steganalysis Method Using the Optimality of Motion Vector Prediction
11
作者 Jun Li Minqing Zhang +2 位作者 Ke Niu Yingnan Zhang Xiaoyuan Yang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2085-2103,共19页
Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detectio... Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detection performance,this paper proposes a steganalysis method that can perfectly detectMV-based steganography in HEVC.Firstly,we define the local optimality of MVP(Motion Vector Prediction)based on the technology of AMVP(Advanced Motion Vector Prediction).Secondly,we analyze that in HEVC video,message embedding either usingMVP index orMVD(Motion Vector Difference)may destroy the above optimality of MVP.And then,we define the optimal rate of MVP as a steganalysis feature.Finally,we conduct steganalysis detection experiments on two general datasets for three popular steganographymethods and compare the performance with four state-ofthe-art steganalysis methods.The experimental results demonstrate the effectiveness of the proposed feature set.Furthermore,our method stands out for its practical applicability,requiring no model training and exhibiting low computational complexity,making it a viable solution for real-world scenarios. 展开更多
关键词 Video steganography video steganalysis motion vector prediction motion vector difference advanced motion vector prediction local optimality
下载PDF
Advancing Malaria Prediction in Uganda through AI and Geospatial Analysis Models
12
作者 Maria Assumpta Komugabe Richard Caballero +1 位作者 Itamar Shabtai Simon Peter Musinguzi 《Journal of Geographic Information System》 2024年第2期115-135,共21页
The resurgence of locally acquired malaria cases in the USA and the persistent global challenge of malaria transmission highlight the urgent need for research to prevent this disease. Despite significant eradication e... The resurgence of locally acquired malaria cases in the USA and the persistent global challenge of malaria transmission highlight the urgent need for research to prevent this disease. Despite significant eradication efforts, malaria remains a serious threat, particularly in regions like Africa. This study explores how integrating Gregor’s Type IV theory with Geographic Information Systems (GIS) improves our understanding of disease dynamics, especially Malaria transmission patterns in Uganda. By combining data-driven algorithms, artificial intelligence, and geospatial analysis, the research aims to determine the most reliable predictors of Malaria incident rates and assess the impact of different factors on transmission. Using diverse predictive modeling techniques including Linear Regression, K-Nearest Neighbor, Neural Network, and Random Forest, the study found that;Random Forest model outperformed the others, demonstrating superior predictive accuracy with an R<sup>2</sup> of approximately 0.88 and a Mean Squared Error (MSE) of 0.0534, Antimalarial treatment was identified as the most influential factor, with mosquito net access associated with a significant reduction in incident rates, while higher temperatures correlated with increased rates. Our study concluded that the Random Forest model was effective in predicting malaria incident rates in Uganda and highlighted the significance of climate factors and preventive measures such as mosquito nets and antimalarial drugs. We recommended that districts with malaria hotspots lacking Indoor Residual Spraying (IRS) coverage prioritize its implementation to mitigate incident rates, while those with high malaria rates in 2020 require immediate attention. By advocating for the use of appropriate predictive models, our research emphasized the importance of evidence-based decision-making in malaria control strategies, aiming to reduce transmission rates and save lives. 展开更多
关键词 MALARIA predictive Modeling Geospatial Analysis Climate Factors Preventive Measures
下载PDF
Privacy-Preserving Federated Mobility Prediction with Compound Data and Model Perturbation Mechanism
13
作者 Long Qingyue Wang Huandong +4 位作者 Chen Huiming Jin Depeng Zhu Lin Yu Li Li Yong 《China Communications》 SCIE CSCD 2024年第3期160-173,共14页
Human mobility prediction is important for many applications.However,training an accurate mobility prediction model requires a large scale of human trajectories,where privacy issues become an important problem.The ris... Human mobility prediction is important for many applications.However,training an accurate mobility prediction model requires a large scale of human trajectories,where privacy issues become an important problem.The rising federated learning provides us with a promising solution to this problem,which enables mobile devices to collaboratively learn a shared prediction model while keeping all the training data on the device,decoupling the ability to do machine learning from the need to store the data in the cloud.However,existing federated learningbased methods either do not provide privacy guarantees or have vulnerability in terms of privacy leakage.In this paper,we combine the techniques of data perturbation and model perturbation mechanisms and propose a privacy-preserving mobility prediction algorithm,where we add noise to the transmitted model and the raw data collaboratively to protect user privacy and keep the mobility prediction performance.Extensive experimental results show that our proposed method significantly outperforms the existing stateof-the-art mobility prediction method in terms of defensive performance against practical attacks while having comparable mobility prediction performance,demonstrating its effectiveness. 展开更多
关键词 federated learning mobility prediction PRIVACY
下载PDF
Multi-Scale Mixed Attention Tea Shoot Instance Segmentation Model
14
作者 Dongmei Chen Peipei Cao +5 位作者 Lijie Yan Huidong Chen Jia Lin Xin Li Lin Yuan Kaihua Wu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期261-275,共15页
Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often... Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales. 展开更多
关键词 Tea shoots attention mechanism multi-scale feature extraction instance segmentation deep learning
下载PDF
Improved multi-scale inverse bottleneck residual network based on triplet parallel attention for apple leaf disease identification
15
作者 Lei Tang Jizheng Yi Xiaoyao Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期901-922,共22页
Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from ima... Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from image texture and structural information. The difficulties in disease feature extraction in complex backgrounds slow the related research progress. To address the problems, this paper proposes an improved multi-scale inverse bottleneck residual network model based on a triplet parallel attention mechanism, which is built upon ResNet-50, while improving and combining the inception module and ResNext inverse bottleneck blocks, to recognize seven types of apple leaf(including six diseases of alternaria leaf spot, brown spot, grey spot, mosaic, rust, scab, and one healthy). First, the 3×3 convolutions in some of the residual modules are replaced by multi-scale residual convolutions, the convolution kernels of different sizes contained in each branch of the multi-scale convolution are applied to extract feature maps of different sizes, and the outputs of these branches are multi-scale fused by summing to enrich the output features of the images. Second, the global layer-wise dynamic coordinated inverse bottleneck structure is used to reduce the network feature loss. The inverse bottleneck structure makes the image information less lossy when transforming from different dimensional feature spaces. The fusion of multi-scale and layer-wise dynamic coordinated inverse bottlenecks makes the model effectively balances computational efficiency and feature representation capability, and more robust with a combination of horizontal and vertical features in the fine identification of apple leaf diseases. Finally, after each improved module, a triplet parallel attention module is integrated with cross-dimensional interactions among channels through rotations and residual transformations, which improves the parallel search efficiency of important features and the recognition rate of the network with relatively small computational costs while the dimensional dependencies are improved. To verify the validity of the model in this paper, we uniformly enhance apple leaf disease images screened from the public data sets of Plant Village, Baidu Flying Paddle, and the Internet. The final processed image count is 14,000. The ablation study, pre-processing comparison, and method comparison are conducted on the processed datasets. The experimental results demonstrate that the proposed method reaches 98.73% accuracy on the adopted datasets, which is 1.82% higher than the classical ResNet-50 model, and 0.29% better than the apple leaf disease datasets before preprocessing. It also achieves competitive results in apple leaf disease identification compared to some state-ofthe-art methods. 展开更多
关键词 multi-scale module inverse bottleneck structure triplet parallel attention apple leaf disease
下载PDF
Classifying rockburst with confidence:A novel conformal prediction approach
16
作者 Bemah Ibrahim Isaac Ahenkorah 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期51-64,共14页
The scientific community recognizes the seriousness of rockbursts and the need for effective mitigation measures.The literature reports various successful applications of machine learning(ML)models for rockburst asses... The scientific community recognizes the seriousness of rockbursts and the need for effective mitigation measures.The literature reports various successful applications of machine learning(ML)models for rockburst assessment;however,a significant question remains unanswered:How reliable are these models,and at what confidence level are classifications made?Typically,ML models output single rockburst grade even in the face of intricate and out-of-distribution samples,without any associated confidence value.Given the susceptibility of ML models to errors,it becomes imperative to quantify their uncertainty to prevent consequential failures.To address this issue,we propose a conformal prediction(CP)framework built on traditional ML models(extreme gradient boosting and random forest)to generate valid classifications of rockburst while producing a measure of confidence for its output.The proposed framework guarantees marginal coverage and,in most cases,conditional coverage on the test dataset.The CP was evaluated on a rockburst case in the Sanshandao Gold Mine in China,where it achieved high coverage and efficiency at applicable confidence levels.Significantly,the CP identified several“confident”classifications from the traditional ML model as unreliable,necessitating expert verification for informed decision-making.The proposed framework improves the reliability and accuracy of rockburst assessments,with the potential to bolster user confidence. 展开更多
关键词 ROCKBURST Machine learning Uncertainty quantification Conformal prediction
下载PDF
Two-Way Neural Network Performance PredictionModel Based onKnowledge Evolution and Individual Similarity
17
作者 Xinzheng Wang Bing Guo Yan Shen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1183-1206,共24页
Predicting students’academic achievements is an essential issue in education,which can benefit many stakeholders,for instance,students,teachers,managers,etc.Compared with online courses such asMOOCs,students’academi... Predicting students’academic achievements is an essential issue in education,which can benefit many stakeholders,for instance,students,teachers,managers,etc.Compared with online courses such asMOOCs,students’academicrelateddata in the face-to-face physical teaching environment is usually sparsity,and the sample size is relativelysmall.It makes building models to predict students’performance accurately in such an environment even morechallenging.This paper proposes a Two-WayNeuralNetwork(TWNN)model based on the bidirectional recurrentneural network and graph neural network to predict students’next semester’s course performance using only theirprevious course achievements.Extensive experiments on a real dataset show that our model performs better thanthe baselines in many indicators. 展开更多
关键词 COMPUTER EDUCATION performance prediction deep learning
下载PDF
ASLP-DL—A Novel Approach Employing Lightweight Deep Learning Framework for Optimizing Accident Severity Level Prediction
18
作者 Saba Awan Zahid Mehmood 《Computers, Materials & Continua》 SCIE EI 2024年第2期2535-2555,共21页
Highway safety researchers focus on crash injury severity,utilizing deep learning—specifically,deep neural networks(DNN),deep convolutional neural networks(D-CNN),and deep recurrent neural networks(D-RNN)—as the pre... Highway safety researchers focus on crash injury severity,utilizing deep learning—specifically,deep neural networks(DNN),deep convolutional neural networks(D-CNN),and deep recurrent neural networks(D-RNN)—as the preferred method for modeling accident severity.Deep learning’s strength lies in handling intricate relation-ships within extensive datasets,making it popular for accident severity level(ASL)prediction and classification.Despite prior success,there is a need for an efficient system recognizing ASL in diverse road conditions.To address this,we present an innovative Accident Severity Level Prediction Deep Learning(ASLP-DL)framework,incorporating DNN,D-CNN,and D-RNN models fine-tuned through iterative hyperparameter selection with Stochastic Gradient Descent.The framework optimizes hidden layers and integrates data augmentation,Gaussian noise,and dropout regularization for improved generalization.Sensitivity and factor contribution analyses identify influential predictors.Evaluated on three diverse crash record databases—NCDB 2018–2019,UK 2015–2020,and US 2016–2021—the D-RNN model excels with an ACC score of 89.0281%,a Roc Area of 0.751,an F-estimate of 0.941,and a Kappa score of 0.0629 over the NCDB dataset.The proposed framework consistently outperforms traditional methods,existing machine learning,and deep learning techniques. 展开更多
关键词 Injury SEVERITY prediction deep learning feature
下载PDF
A multi-scale second-order autoregressive recursive filter approach for the sea ice concentration analysis
19
作者 Lu Yang Xuefeng Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第3期115-126,共12页
To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregress... To effectively extract multi-scale information from observation data and improve computational efficiency,a multi-scale second-order autoregressive recursive filter(MSRF)method is designed.The second-order autoregressive filter used in this study has been attempted to replace the traditional first-order recursive filter used in spatial multi-scale recursive filter(SMRF)method.The experimental results indicate that the MSRF scheme successfully extracts various scale information resolved by observations.Moreover,compared with the SMRF scheme,the MSRF scheme improves computational accuracy and efficiency to some extent.The MSRF scheme can not only propagate to a longer distance without the attenuation of innovation,but also reduce the mean absolute deviation between the reconstructed sea ice concentration results and observations reduced by about 3.2%compared to the SMRF scheme.On the other hand,compared with traditional first-order recursive filters using in the SMRF scheme that multiple filters are executed,the MSRF scheme only needs to perform two filter processes in one iteration,greatly improving filtering efficiency.In the two-dimensional experiment of sea ice concentration,the calculation time of the MSRF scheme is only 1/7 of that of SMRF scheme.This means that the MSRF scheme can achieve better performance with less computational cost,which is of great significance for further application in real-time ocean or sea ice data assimilation systems in the future. 展开更多
关键词 second-order auto-regressive filter multi-scale recursive filter sea ice concentration three-dimensional variational data assimilation
下载PDF
Multi-Scale Design and Optimization of Composite Material Structure for Heavy-Duty Truck Protection Device
20
作者 Yanhui Zhang Lianhua Ma +3 位作者 Hailiang Su Jirong Qin Zhining Chen Kaibiao Deng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1961-1980,共20页
In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,t... In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect. 展开更多
关键词 Structural optimization front underrun protection device carbon fiber reinforced plastic multi-scale model lightweight design
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部