This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NR...This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NREL),to research the effects of the nonlinear flap-wise vibration characteristics.The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam,and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first.Then,the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the centrifugal force.Lastly,it is truncated by the Galerkin method and analyzed semi-analytically using the multi-scale analysis method,and numerical simulations are carried out to compare the simulation results of finite elements with the numerical simulation results using Campbell diagram analysis of blade vibration.The results indicated that the rotational speed of the impeller has a significant impact on blade vibration.When the wheel speed of 12.1 rpm and excitation amplitude of 1.23 the maximum displacement amplitude of the blade has increased from 0.72 to 3.16.From the amplitude-frequency curve,it can be seen that the multi-peak characteristic of blade amplitude frequency is under centrifugal nonlinearity.Closed phase trajectories in blade nonlinear vibration,exhibiting periodic motion characteristics,are found through phase diagrams and Poincare section diagrams.展开更多
Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. ...Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. Based on the simulated annealing genetic algorithm (SAGA) and the simplex algorithm, an efficient and robust 2-D nonlinear method for seismic travel-time inversion is presented in this paper. First we do a global search over a large range by SAGA and then do a rapid local search using the simplex method. A multi-scale tomography method is adopted in order to reduce non-uniqueness. The velocity field is divided into different spatial scales and velocities at the grid nodes are taken as unknown parameters. The model is parameterized by a bi-cubic spline function. The finite-difference method is used to solve the forward problem while the hybrid method combining multi-scale SAGA and simplex algorithms is applied to the inverse problem. The algorithm has been applied to a numerical test and a travel-time perturbation test using an anomalous low-velocity body. For a practical example, it is used in the study of upper crustal velocity structure of the A'nyemaqen suture zone at the north-east edge of the Qinghai-Tibet Plateau. The model test and practical application both prove that the method is effective and robust.展开更多
Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting app...Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets.展开更多
Landslides occurring in sensitive clay often result in widespread destruction,posing a significant risk to human lives and property due to the substantial decrease in undrained shear strength during deformation.Assess...Landslides occurring in sensitive clay often result in widespread destruction,posing a significant risk to human lives and property due to the substantial decrease in undrained shear strength during deformation.Assessing the consequences of these landslides is challenging and necessitates robust numerical methods to comprehensively investigate their failure mechanisms.While studies have extensively explored upward progressive landslides in sensitive clays,understanding downward progressive cases remains limited.In this study,we utilised the nodal integration-based particle finite element method(NPFEM)with a nonlinear strain-softening model to analyse downward progressive landslides in sensitive clay on elongated slopes,induced by surcharge loads near the crest.We focused on elucidating the underlying failure mechanisms and evaluating the effects of different soil parameters and strainsoftening characteristics.The simulation results revealed the typical pattern for downward landslides,which typically start with a localised failure in proximity to the surcharge loads,followed by a combination of different types of failure mechanisms,including single flow slides,translational progressive landslides,progressive flow slides,and spread failures.Additionally,inclined shear bands occur within spread failures,often adopting distinctive ploughing patterns characterised by triangular shapes.The sensitive clay thickness at the base,the clay strength gradient,the sensitivity,and the softening rate significantly influence the failure mechanisms and the extent of diffused displacement.Remarkably,some of these effects mirror those observed in upward progressive landslides,underscoring the interconnectedness of these phenomena.This study contributes valuable insights into the complex dynamics of sensitive clay landslides,shedding light on the intricate interplay of factors governing their behaviour and progression.展开更多
A simple,yet accurate modi?ed multi-scale method(MMSM)for an approximately analytical solution in nonlinear oscillators with two time scales under forced harmonic excitation is proposed.This method depends on the clas...A simple,yet accurate modi?ed multi-scale method(MMSM)for an approximately analytical solution in nonlinear oscillators with two time scales under forced harmonic excitation is proposed.This method depends on the classical multi-scale method(MSM)and the method of variation of parameters.Assuming that the forced excitation is a constant,one could easily obtain the approximate analytical solution of the simpli?ed system based on the traditional MSM.Then,this solution for the oscillator under forced harmonic excitation could be established after replacing the harmonic excitation by the constant excitation.To certify the correctness and precision of the proposed analytical method,the van der Pol system with two scales subject to slowly periodic excitation is investigated;this system presents rich dynamical phenomena such as spiking(SP),spiking-quiescence(SP-QS),and quiescence(QS)responses.The approximate analytical expressions of the three types of responses are given by the MMSM,and it can be found that the precision of the new analytical method is higher than that of the classical MSM and better than that of the harmonic balance method(HBM).The results obtained by the present method are considerably better than those obtained by traditional methods,quantitatively and qualitatively,particularly when the excitation frequency is far less than the natural frequency of the system.展开更多
Gradiently denitrated gun propellant(GDGP)prepared by a“gradient denitration”strategy is obviously superior in progressive burning performance to the traditional deterred gun propellant.Currently,the preparation of ...Gradiently denitrated gun propellant(GDGP)prepared by a“gradient denitration”strategy is obviously superior in progressive burning performance to the traditional deterred gun propellant.Currently,the preparation of GDGP employed a tedious two-step method involving organic solvents,which hinders the large-scale preparation of GDGP.In this paper,GDGP was successfully prepared via a novelty and environmentally friendly one-step method.The obtained samples were characterized by FT-IR,Raman,SEM and XPS.The results showed that the content of nitrate groups gradiently increased from the surface to the core in the surface layer of GDGP and the surface layer of GDGP exhibited a higher compaction than that of raw gun propellant,with a well-preserved nitrocellulose structure.The denitration process enabled the propellant surface with regressive energy density and good progressive burning performance,as confirmed by oxygen bomb and closed bomb test.At the same time,the effects of different solvents on the component loss of propellant were compared.The result showed that water caused the least component loss.Finally,the stability of GDGP was confirmed by methyl-violet test.This work not only provided environmentally friendly,simple and economic preparation of GDGP,but also confirmed the stability of GDGP prepared by this method.展开更多
Microplastics are plastic particles or fibers with a diameter of less than 5 mm,and they widely exist in the environment and pose potential risks to the ecosystem and human health.Microplastics detection can provide b...Microplastics are plastic particles or fibers with a diameter of less than 5 mm,and they widely exist in the environment and pose potential risks to the ecosystem and human health.Microplastics detection can provide basic data for formulating effective environmental protection strategies.In this paper,the physical,chemical and biological detection methods of microplastics are reviewed,and the advantages and disadvantages of different methods are analyzed.The problems and challenges encountered in microplastics detection are analyzed,and the future research is discussed.展开更多
Due to the conflict between huge amount of map data and limited network bandwidth, rapid trans- mission of vector map data over the Internet has become a bottleneck of spatial data delivery in web-based environment. T...Due to the conflict between huge amount of map data and limited network bandwidth, rapid trans- mission of vector map data over the Internet has become a bottleneck of spatial data delivery in web-based environment. This paper proposed an approach to organizing and transmitting multi-scale vector river network data via the Internet progressively. This approach takes account of two levels of importance, i.e. the importance of river branches and the importance of the points belonging to each river branch, and forms data packages ac- cording to these. Our experiments have shown that the proposed approach can reduce 90% of original data while preserving the river structure well.展开更多
Objective:To explore the clinical effect of the layered progressive teaching method in the process of nursing teaching in the health management centre.Methods:100 nursing students in the health management centre of ou...Objective:To explore the clinical effect of the layered progressive teaching method in the process of nursing teaching in the health management centre.Methods:100 nursing students in the health management centre of our hospital were randomly divided into two groups from April 2018 to April 2019,in which students of the control group were treated with routine teaching,while those of the experimental group were treated with layered progressive teaching.Then,the teaching effect of the two groups was compared and analysed.Results:The assessment results of nursing students in the two groups were compared,in which the theoretical knowledge scores and practical operation scores of nursing students in the experimental group were(94.34±2.33)and(90.45±2.20)respectively.By contrast,the score of students in the control group was lower and the difference between the two groups was not significant(P<0.50).The teaching effect of students in the experimental group is more significant.Conclusion:During the process of nursing teaching in the Health Management Centre,the progressive teaching method showed a significant clinical effect and could effectively enhance students’scores.Therefore,it is positively significant for clinical development.展开更多
A straightforward multi-scale boundary element method is proposed for global and local mechanical analysis of heterogeneous material.The method is more accurate and convenient than finite element based multi-scale met...A straightforward multi-scale boundary element method is proposed for global and local mechanical analysis of heterogeneous material.The method is more accurate and convenient than finite element based multi-scale method.The formulations of this method are derived by combining the homogenization approach and the fundamental equations of boundary element method.The solution gives the convenient formulations to compute global elastic constants and the local stress field.Finally,two numerical examples of porous material are presented to prove the accuracy and the efficiency of the proposed method.The results show that the method does not require the iteration to obtain the solution of the displacement in micro level.展开更多
A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D F...A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D FEM of 7 nodes and 10 nodes are constructed based on the basic formula. Using these proposed elements, the multiscale numerical model for foundation subjected to harmonic periodic load, the foundation model excited by external and internal dynamic load are studied. The results show the pro- posed finite elements have higher precision than the tradi- tional elements with 4 nodes. The proposed finite elements can describe the propagation of stress waves well whenever the foundation model excited by extemal or intemal dynamic load. The proposed finite elements can be also used to con- nect the multi-scale elements. And the proposed finite elements also have high precision to make multi-scale analysis for structure.展开更多
In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these fu...In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these functions are reshaped to satisfy on boundary conditions exactly. The Adams fractional method is used to reduce the problem to a system of equations. By multiscale method this system is divided into some smaller systems which have less computations. We get an approximated solution which is more accurate on some subdomains by combining the solutions of these systems. Illustrative examples are included to demonstrate the validity and applicability of our proposed technique, also the stability of the method is discussed.展开更多
In order to study the dynamic responses in the microstructures of the pavement structure, the multi-scale modeling subjected to moving load is analyzed using the discrete element method (DEM). The macro-scale discre...In order to study the dynamic responses in the microstructures of the pavement structure, the multi-scale modeling subjected to moving load is analyzed using the discrete element method (DEM). The macro-scale discrete element model of the flexible pavement structure is established. The stress and strain at the bottom of the asphalt concrete layer under moving load are calculated. The DEM model is validated through comparison between DEM predictions and the results from the classical program. Based on the validated macro-scale DEM model, the distribution and the volumetric fraction of coarse aggregate, mastics and air voids at the bottom of the asphalt layer are modeled, and then the multi-scale model is constructed. The dynamic response in the microstructures of the multi-scale model are calculated and compared with the results from the macro model. The influence of mastic stiffness on the distribution of dynamic response in the microstructures is also analyzed. Results show that the average values and the variation coefficient of the tensile stress at the aggregate-mastic interface are far more than those within the mastics. The dynamic response including stress and strain distributes non-uniformly in both mastics and the interface. An increase in mastic stiffness tends to a uniform distribution of tensile stress in asphalt concrete.展开更多
In the research, changes of apple chemistry, and molecule, under stresses, are n terms of morphology, physiology, bio- illustrated and research and identifica- tion methods of apple resistance are explored involving ...In the research, changes of apple chemistry, and molecule, under stresses, are n terms of morphology, physiology, bio- illustrated and research and identifica- tion methods of apple resistance are explored involving drought-resistance, flood-re- sistance, salt-stress resistance, cold-hardiness and heat-resistance. In addition prospects of apple resistance research are proposed, as well.展开更多
Based on catastrophe theory,we used the catastrophe progression method to predict the risk of coal and gas outbursts in coal mines.According to the major factors affecting coal and gas outbursts,we built a comprehensi...Based on catastrophe theory,we used the catastrophe progression method to predict the risk of coal and gas outbursts in coal mines.According to the major factors affecting coal and gas outbursts,we built a comprehensive evaluation index system and a coal and gas outburst prediction model.In addition,we performed a standard transformation for each index system;based on the degree the various indices affect the risk of an outburst,to make the data dimensionless.Based on the outburst data from eight mines,we determined catastrophe progression values and verified these values.The results show that:1) converting multi-dimensional problems into one-dimensional problems using this catastrophe progression method can simplify the steps of predicting coal and gas outbursts;2) when pre-determined catastrophe progression values are used to predict coal and gas outbursts,the predicting accuracy rate can be as high as 87.5%;3) the various coal mines have different factors inducing outbursts with varying importance of these factors and 4) the catastrophe progression values,calculated based on these factors,can be used effectively to predict the risk of outbursts in coal mines.展开更多
Traditional occupational disease control and prevention has remained prevalent in China over recent decades. There are appropriately 30,000 new case reports of occupational diseases annually. Although China has alread...Traditional occupational disease control and prevention has remained prevalent in China over recent decades. There are appropriately 30,000 new case reports of occupational diseases annually. Although China has already established a series of occupational disease prevention programs, occupational health risk assessment (OHRA) strategies continue to be a limitation.展开更多
In this study,a multi-physics and multi-scale coupling program,Fluent/KMC-sub/NDK,was developed based on the user-defined functions(UDF)of Fluent,in which the KMC-sub-code is a sub-channel thermal-hydraulic code and t...In this study,a multi-physics and multi-scale coupling program,Fluent/KMC-sub/NDK,was developed based on the user-defined functions(UDF)of Fluent,in which the KMC-sub-code is a sub-channel thermal-hydraulic code and the NDK code is a neutron diffusion code.The coupling program framework adopts the"master-slave"mode,in which Fluent is the master program while NDK and KMC-sub are coupled internally and compiled into the dynamic link library(DLL)as slave codes.The domain decomposition method was adopted,in which the reactor core was simulated by NDK and KMC-sub,while the rest of the primary loop was simulated using Fluent.A simulation of the reactor shutdown process of M2LFR-1000 was carried out using the coupling program,and the code-to-code verification was performed with ATHLET,demonstrating a good agreement,with absolute deviation was smaller than 0.2%.The results show an obvious thermal stratification phenomenon during the shutdown process,which occurs 10 s after shutdown,and the change in thermal stratification phenomena is also captured by the coupling program.At the same time,the change in the neutron flux density distribution of the reactor was also obtained.展开更多
The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity d...The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity degree/relation in multi-scale map spaces and then proposes a model for calculating the degree of spatial similarity between a point cloud at one scale and its gener- alized counterpart at another scale. After validation, the new model features 16 points with map scale change as the x coordinate and the degree of spatial similarity as the y coordinate. Finally, using an application for curve fitting, the model achieves an empirical formula that can calculate the degree of spatial similarity using map scale change as the sole independent variable, and vice versa. This formula can be used to automate algorithms for point feature generalization and to determine when to terminate them during the generalization.展开更多
The achievement progresses of investigation and studies on marine hazardous geology are summarized and presentsd in the late 20 century in China. The importance, research value and present-day studies of marine hazard...The achievement progresses of investigation and studies on marine hazardous geology are summarized and presentsd in the late 20 century in China. The importance, research value and present-day studies of marine hazardous geology, a newly developing branch of geoscience, are well expatiated. Several often confused concepts and theories are explained and redefined here. The comment on the means of investigations, assessment of marine hazardous geology, as well as its evolution, innovation, existing questions and future tasks are also introduced and presented. The concepts of 'hazard geology', geohazard', 'map of marine hazard geology', 'integrated evaluaton on seafloor stablity' are respectively discussed, including their definition, research objects, methods and contents. The types and classification of marine hazardous geology, principles and methods of marine hazardous geology map compilation, the assessment methods and models of marine hazardous geology environment and seafloor stability and so on are also discussed.展开更多
This paper considers the parameters and reliability characteristics estimation problem of the generalized Rayleigh distribution under progressively Type-Ⅱ censoring with random removals,that is,the number of units re...This paper considers the parameters and reliability characteristics estimation problem of the generalized Rayleigh distribution under progressively Type-Ⅱ censoring with random removals,that is,the number of units removed at each failure time follows the binomial distribution.The maximum likelihood estimation and the Bayesian estimation are derived.In the meanwhile,through a great quantity of Monte Carlo simulation experiments we have studied different hyperparameters as well as symmetric and asymmetric loss functions in the Bayesian estimation procedure.A real industrial case is presented to justify and illustrate the proposed methods.We also investigate the expected experimentation time and discuss the influence of the parameters on the termination point to complete the censoring test.展开更多
基金supported by the National Natural Science Foundation of China(No.51965034).
文摘This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NREL),to research the effects of the nonlinear flap-wise vibration characteristics.The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam,and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first.Then,the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the centrifugal force.Lastly,it is truncated by the Galerkin method and analyzed semi-analytically using the multi-scale analysis method,and numerical simulations are carried out to compare the simulation results of finite elements with the numerical simulation results using Campbell diagram analysis of blade vibration.The results indicated that the rotational speed of the impeller has a significant impact on blade vibration.When the wheel speed of 12.1 rpm and excitation amplitude of 1.23 the maximum displacement amplitude of the blade has increased from 0.72 to 3.16.From the amplitude-frequency curve,it can be seen that the multi-peak characteristic of blade amplitude frequency is under centrifugal nonlinearity.Closed phase trajectories in blade nonlinear vibration,exhibiting periodic motion characteristics,are found through phase diagrams and Poincare section diagrams.
基金supported by the National Natural Science Foundation of China (Grant Nos.40334040 and 40974033)the Promoting Foundation for Advanced Persons of Talent of NCWU
文摘Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. Based on the simulated annealing genetic algorithm (SAGA) and the simplex algorithm, an efficient and robust 2-D nonlinear method for seismic travel-time inversion is presented in this paper. First we do a global search over a large range by SAGA and then do a rapid local search using the simplex method. A multi-scale tomography method is adopted in order to reduce non-uniqueness. The velocity field is divided into different spatial scales and velocities at the grid nodes are taken as unknown parameters. The model is parameterized by a bi-cubic spline function. The finite-difference method is used to solve the forward problem while the hybrid method combining multi-scale SAGA and simplex algorithms is applied to the inverse problem. The algorithm has been applied to a numerical test and a travel-time perturbation test using an anomalous low-velocity body. For a practical example, it is used in the study of upper crustal velocity structure of the A'nyemaqen suture zone at the north-east edge of the Qinghai-Tibet Plateau. The model test and practical application both prove that the method is effective and robust.
基金Project supported by the National Natural Science Foundation of China(Nos.11932008 and 12272156)the Fundamental Research Funds for the Central Universities(No.lzujbky-2022-kb06)+1 种基金the Gansu Science and Technology ProgramLanzhou City’s Scientific Research Funding Subsidy to Lanzhou University of China。
文摘Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets.
基金support provided by the UK Engineering and Physical Sciences Research Council(EP/V012169/1).
文摘Landslides occurring in sensitive clay often result in widespread destruction,posing a significant risk to human lives and property due to the substantial decrease in undrained shear strength during deformation.Assessing the consequences of these landslides is challenging and necessitates robust numerical methods to comprehensively investigate their failure mechanisms.While studies have extensively explored upward progressive landslides in sensitive clays,understanding downward progressive cases remains limited.In this study,we utilised the nodal integration-based particle finite element method(NPFEM)with a nonlinear strain-softening model to analyse downward progressive landslides in sensitive clay on elongated slopes,induced by surcharge loads near the crest.We focused on elucidating the underlying failure mechanisms and evaluating the effects of different soil parameters and strainsoftening characteristics.The simulation results revealed the typical pattern for downward landslides,which typically start with a localised failure in proximity to the surcharge loads,followed by a combination of different types of failure mechanisms,including single flow slides,translational progressive landslides,progressive flow slides,and spread failures.Additionally,inclined shear bands occur within spread failures,often adopting distinctive ploughing patterns characterised by triangular shapes.The sensitive clay thickness at the base,the clay strength gradient,the sensitivity,and the softening rate significantly influence the failure mechanisms and the extent of diffused displacement.Remarkably,some of these effects mirror those observed in upward progressive landslides,underscoring the interconnectedness of these phenomena.This study contributes valuable insights into the complex dynamics of sensitive clay landslides,shedding light on the intricate interplay of factors governing their behaviour and progression.
基金the National Natural Science Foundation of China(Nos.11672191,11772206,and U1934201)the Hundred Excellent Innovative Talents Support Program in Hebei University(No.SLRC2017053)。
文摘A simple,yet accurate modi?ed multi-scale method(MMSM)for an approximately analytical solution in nonlinear oscillators with two time scales under forced harmonic excitation is proposed.This method depends on the classical multi-scale method(MSM)and the method of variation of parameters.Assuming that the forced excitation is a constant,one could easily obtain the approximate analytical solution of the simpli?ed system based on the traditional MSM.Then,this solution for the oscillator under forced harmonic excitation could be established after replacing the harmonic excitation by the constant excitation.To certify the correctness and precision of the proposed analytical method,the van der Pol system with two scales subject to slowly periodic excitation is investigated;this system presents rich dynamical phenomena such as spiking(SP),spiking-quiescence(SP-QS),and quiescence(QS)responses.The approximate analytical expressions of the three types of responses are given by the MMSM,and it can be found that the precision of the new analytical method is higher than that of the classical MSM and better than that of the harmonic balance method(HBM).The results obtained by the present method are considerably better than those obtained by traditional methods,quantitatively and qualitatively,particularly when the excitation frequency is far less than the natural frequency of the system.
文摘Gradiently denitrated gun propellant(GDGP)prepared by a“gradient denitration”strategy is obviously superior in progressive burning performance to the traditional deterred gun propellant.Currently,the preparation of GDGP employed a tedious two-step method involving organic solvents,which hinders the large-scale preparation of GDGP.In this paper,GDGP was successfully prepared via a novelty and environmentally friendly one-step method.The obtained samples were characterized by FT-IR,Raman,SEM and XPS.The results showed that the content of nitrate groups gradiently increased from the surface to the core in the surface layer of GDGP and the surface layer of GDGP exhibited a higher compaction than that of raw gun propellant,with a well-preserved nitrocellulose structure.The denitration process enabled the propellant surface with regressive energy density and good progressive burning performance,as confirmed by oxygen bomb and closed bomb test.At the same time,the effects of different solvents on the component loss of propellant were compared.The result showed that water caused the least component loss.Finally,the stability of GDGP was confirmed by methyl-violet test.This work not only provided environmentally friendly,simple and economic preparation of GDGP,but also confirmed the stability of GDGP prepared by this method.
文摘Microplastics are plastic particles or fibers with a diameter of less than 5 mm,and they widely exist in the environment and pose potential risks to the ecosystem and human health.Microplastics detection can provide basic data for formulating effective environmental protection strategies.In this paper,the physical,chemical and biological detection methods of microplastics are reviewed,and the advantages and disadvantages of different methods are analyzed.The problems and challenges encountered in microplastics detection are analyzed,and the future research is discussed.
文摘Due to the conflict between huge amount of map data and limited network bandwidth, rapid trans- mission of vector map data over the Internet has become a bottleneck of spatial data delivery in web-based environment. This paper proposed an approach to organizing and transmitting multi-scale vector river network data via the Internet progressively. This approach takes account of two levels of importance, i.e. the importance of river branches and the importance of the points belonging to each river branch, and forms data packages ac- cording to these. Our experiments have shown that the proposed approach can reduce 90% of original data while preserving the river structure well.
文摘Objective:To explore the clinical effect of the layered progressive teaching method in the process of nursing teaching in the health management centre.Methods:100 nursing students in the health management centre of our hospital were randomly divided into two groups from April 2018 to April 2019,in which students of the control group were treated with routine teaching,while those of the experimental group were treated with layered progressive teaching.Then,the teaching effect of the two groups was compared and analysed.Results:The assessment results of nursing students in the two groups were compared,in which the theoretical knowledge scores and practical operation scores of nursing students in the experimental group were(94.34±2.33)and(90.45±2.20)respectively.By contrast,the score of students in the control group was lower and the difference between the two groups was not significant(P<0.50).The teaching effect of students in the experimental group is more significant.Conclusion:During the process of nursing teaching in the Health Management Centre,the progressive teaching method showed a significant clinical effect and could effectively enhance students’scores.Therefore,it is positively significant for clinical development.
基金Supported by the National Natural Science Foundation of China(51105195,51075204)the Aeronautical Science Foundation of China(2011ZB52024)
文摘A straightforward multi-scale boundary element method is proposed for global and local mechanical analysis of heterogeneous material.The method is more accurate and convenient than finite element based multi-scale method.The formulations of this method are derived by combining the homogenization approach and the fundamental equations of boundary element method.The solution gives the convenient formulations to compute global elastic constants and the local stress field.Finally,two numerical examples of porous material are presented to prove the accuracy and the efficiency of the proposed method.The results show that the method does not require the iteration to obtain the solution of the displacement in micro level.
基金supported by the National Natural Science Foundation of China (51109029,51178081,51138001,and 51009020)the State Key Development Program for Basic Research of China (2013CB035905)
文摘A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D FEM of 7 nodes and 10 nodes are constructed based on the basic formula. Using these proposed elements, the multiscale numerical model for foundation subjected to harmonic periodic load, the foundation model excited by external and internal dynamic load are studied. The results show the pro- posed finite elements have higher precision than the tradi- tional elements with 4 nodes. The proposed finite elements can describe the propagation of stress waves well whenever the foundation model excited by extemal or intemal dynamic load. The proposed finite elements can be also used to con- nect the multi-scale elements. And the proposed finite elements also have high precision to make multi-scale analysis for structure.
文摘In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these functions are reshaped to satisfy on boundary conditions exactly. The Adams fractional method is used to reduce the problem to a system of equations. By multiscale method this system is divided into some smaller systems which have less computations. We get an approximated solution which is more accurate on some subdomains by combining the solutions of these systems. Illustrative examples are included to demonstrate the validity and applicability of our proposed technique, also the stability of the method is discussed.
基金The National Natural Science Foundation of China (No.51208178,51108157)China Postdoctoral Science Foundation (No.2012M520991)
文摘In order to study the dynamic responses in the microstructures of the pavement structure, the multi-scale modeling subjected to moving load is analyzed using the discrete element method (DEM). The macro-scale discrete element model of the flexible pavement structure is established. The stress and strain at the bottom of the asphalt concrete layer under moving load are calculated. The DEM model is validated through comparison between DEM predictions and the results from the classical program. Based on the validated macro-scale DEM model, the distribution and the volumetric fraction of coarse aggregate, mastics and air voids at the bottom of the asphalt layer are modeled, and then the multi-scale model is constructed. The dynamic response in the microstructures of the multi-scale model are calculated and compared with the results from the macro model. The influence of mastic stiffness on the distribution of dynamic response in the microstructures is also analyzed. Results show that the average values and the variation coefficient of the tensile stress at the aggregate-mastic interface are far more than those within the mastics. The dynamic response including stress and strain distributes non-uniformly in both mastics and the interface. An increase in mastic stiffness tends to a uniform distribution of tensile stress in asphalt concrete.
基金Supported by Shandong Provincial Natural Science Foundation in China(ZR2011CM034)~~
文摘In the research, changes of apple chemistry, and molecule, under stresses, are n terms of morphology, physiology, bio- illustrated and research and identifica- tion methods of apple resistance are explored involving drought-resistance, flood-re- sistance, salt-stress resistance, cold-hardiness and heat-resistance. In addition prospects of apple resistance research are proposed, as well.
基金Projects 50574072, 50874089 and 50534049 supported by the National Natural Science Foundation of China08JK366 by the Special Scientific Foundation of Educational Committee of Shaanxi Province
文摘Based on catastrophe theory,we used the catastrophe progression method to predict the risk of coal and gas outbursts in coal mines.According to the major factors affecting coal and gas outbursts,we built a comprehensive evaluation index system and a coal and gas outburst prediction model.In addition,we performed a standard transformation for each index system;based on the degree the various indices affect the risk of an outburst,to make the data dimensionless.Based on the outburst data from eight mines,we determined catastrophe progression values and verified these values.The results show that:1) converting multi-dimensional problems into one-dimensional problems using this catastrophe progression method can simplify the steps of predicting coal and gas outbursts;2) when pre-determined catastrophe progression values are used to predict coal and gas outbursts,the predicting accuracy rate can be as high as 87.5%;3) the various coal mines have different factors inducing outbursts with varying importance of these factors and 4) the catastrophe progression values,calculated based on these factors,can be used effectively to predict the risk of outbursts in coal mines.
基金supported by the Natural Science Foundation of China(81472961)the Joint Projects of the National Health and Family Planning Commission of China and the Health Bureau of Zhejiang Province(No.WSK 2014-2-004)the Zhejiang Provincial Program for the Cultivation of High-Level Innovative Health Talents
文摘Traditional occupational disease control and prevention has remained prevalent in China over recent decades. There are appropriately 30,000 new case reports of occupational diseases annually. Although China has already established a series of occupational disease prevention programs, occupational health risk assessment (OHRA) strategies continue to be a limitation.
基金supported by Science and Technology on Reactor System Design Technology Laboratory,Chengdu,China(LRSDT2020106)
文摘In this study,a multi-physics and multi-scale coupling program,Fluent/KMC-sub/NDK,was developed based on the user-defined functions(UDF)of Fluent,in which the KMC-sub-code is a sub-channel thermal-hydraulic code and the NDK code is a neutron diffusion code.The coupling program framework adopts the"master-slave"mode,in which Fluent is the master program while NDK and KMC-sub are coupled internally and compiled into the dynamic link library(DLL)as slave codes.The domain decomposition method was adopted,in which the reactor core was simulated by NDK and KMC-sub,while the rest of the primary loop was simulated using Fluent.A simulation of the reactor shutdown process of M2LFR-1000 was carried out using the coupling program,and the code-to-code verification was performed with ATHLET,demonstrating a good agreement,with absolute deviation was smaller than 0.2%.The results show an obvious thermal stratification phenomenon during the shutdown process,which occurs 10 s after shutdown,and the change in thermal stratification phenomena is also captured by the coupling program.At the same time,the change in the neutron flux density distribution of the reactor was also obtained.
基金funded by the Natural Science Foundation Committee,China(41364001,41371435)
文摘The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity degree/relation in multi-scale map spaces and then proposes a model for calculating the degree of spatial similarity between a point cloud at one scale and its gener- alized counterpart at another scale. After validation, the new model features 16 points with map scale change as the x coordinate and the degree of spatial similarity as the y coordinate. Finally, using an application for curve fitting, the model achieves an empirical formula that can calculate the degree of spatial similarity using map scale change as the sole independent variable, and vice versa. This formula can be used to automate algorithms for point feature generalization and to determine when to terminate them during the generalization.
文摘The achievement progresses of investigation and studies on marine hazardous geology are summarized and presentsd in the late 20 century in China. The importance, research value and present-day studies of marine hazardous geology, a newly developing branch of geoscience, are well expatiated. Several often confused concepts and theories are explained and redefined here. The comment on the means of investigations, assessment of marine hazardous geology, as well as its evolution, innovation, existing questions and future tasks are also introduced and presented. The concepts of 'hazard geology', geohazard', 'map of marine hazard geology', 'integrated evaluaton on seafloor stablity' are respectively discussed, including their definition, research objects, methods and contents. The types and classification of marine hazardous geology, principles and methods of marine hazardous geology map compilation, the assessment methods and models of marine hazardous geology environment and seafloor stability and so on are also discussed.
基金supported by the National Statistical Science Research Project of China(2019LZ32)
文摘This paper considers the parameters and reliability characteristics estimation problem of the generalized Rayleigh distribution under progressively Type-Ⅱ censoring with random removals,that is,the number of units removed at each failure time follows the binomial distribution.The maximum likelihood estimation and the Bayesian estimation are derived.In the meanwhile,through a great quantity of Monte Carlo simulation experiments we have studied different hyperparameters as well as symmetric and asymmetric loss functions in the Bayesian estimation procedure.A real industrial case is presented to justify and illustrate the proposed methods.We also investigate the expected experimentation time and discuss the influence of the parameters on the termination point to complete the censoring test.