期刊文献+
共找到36,174篇文章
< 1 2 250 >
每页显示 20 50 100
Lightweight Image Super-Resolution via Weighted Multi-Scale Residual Network 被引量:7
1
作者 Long Sun Zhenbing Liu +3 位作者 Xiyan Sun Licheng Liu Rushi Lan Xiaonan Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第7期1271-1280,共10页
The tradeoff between efficiency and model size of the convolutional neural network(CNN)is an essential issue for applications of CNN-based algorithms to diverse real-world tasks.Although deep learning-based methods ha... The tradeoff between efficiency and model size of the convolutional neural network(CNN)is an essential issue for applications of CNN-based algorithms to diverse real-world tasks.Although deep learning-based methods have achieved significant improvements in image super-resolution(SR),current CNNbased techniques mainly contain massive parameters and a high computational complexity,limiting their practical applications.In this paper,we present a fast and lightweight framework,named weighted multi-scale residual network(WMRN),for a better tradeoff between SR performance and computational efficiency.With the modified residual structure,depthwise separable convolutions(DS Convs)are employed to improve convolutional operations’efficiency.Furthermore,several weighted multi-scale residual blocks(WMRBs)are stacked to enhance the multi-scale representation capability.In the reconstruction subnetwork,a group of Conv layers are introduced to filter feature maps to reconstruct the final high-quality image.Extensive experiments were conducted to evaluate the proposed model,and the comparative results with several state-of-the-art algorithms demonstrate the effectiveness of WMRN. 展开更多
关键词 Convolutional neural network(CNN) lightweight framework multi-scale SUPER-resolution
下载PDF
Guided filter-based multi-scale super-resolution reconstruction 被引量:1
2
作者 Xiaomei Feng Jinjiang Li Zhen Hua 《CAAI Transactions on Intelligence Technology》 2020年第2期128-140,共13页
The learning-based super-resolution reconstruction method inputs a low-resolution image into a network,and learns a non-linear mapping relationship between low-resolution and high-resolution through the network.In thi... The learning-based super-resolution reconstruction method inputs a low-resolution image into a network,and learns a non-linear mapping relationship between low-resolution and high-resolution through the network.In this study,the multi-scale super-resolution reconstruction network is used to fuse the effective features of different scale images,and the non-linear mapping between low resolution and high resolution is studied from coarse to fine to realise the end-to-end super-resolution reconstruction task.The loss of some features of the low-resolution image will negatively affect the quality of the reconstructed image.To solve the problem of incomplete image features in low-resolution,this study adopts the multi-scale super-resolution reconstruction method based on guided image filtering.The high-resolution image reconstructed by the multi-scale super-resolution network and the real high-resolution image are merged by the guide image filter to generate a new image,and the newly generated image is used for secondary training of the multi-scale super-resolution reconstruction network.The newly generated image effectively compensates for the details and texture information lost in the low-resolution image,thereby improving the effect of the super-resolution reconstructed image.Compared with the existing super-resolution reconstruction scheme,the accuracy and speed of super-resolution reconstruction are improved. 展开更多
关键词 resolution IMAGE NETWORK
下载PDF
Meta-Learning Multi-Scale Radiology Medical Image Super-Resolution
3
作者 Liwei Deng Yuanzhi Zhang +2 位作者 Xin Yang Sijuan Huang Jing Wang 《Computers, Materials & Continua》 SCIE EI 2023年第5期2671-2684,共14页
High-resolution medical images have important medical value,but are difficult to obtain directly.Limited by hardware equipment and patient’s physical condition,the resolution of directly acquired medical images is of... High-resolution medical images have important medical value,but are difficult to obtain directly.Limited by hardware equipment and patient’s physical condition,the resolution of directly acquired medical images is often not high.Therefore,many researchers have thought of using super-resolution algorithms for secondary processing to obtain high-resolution medical images.However,current super-resolution algorithms only work on a single scale,and multiple networks need to be trained when super-resolution images of different scales are needed.This definitely raises the cost of acquiring high-resolution medical images.Thus,we propose a multi-scale superresolution algorithm using meta-learning.The algorithm combines a metalearning approach with an enhanced depth of residual super-resolution network to design a meta-upscale module.The meta-upscale module utilizes the weight prediction property of meta-learning and is able to perform the super-resolution task of medical images at any scale.Meanwhile,we design a non-integer mapping relation for super-resolution,which allows the network to be trained under non-integer magnification requirements.Compared to the state-of-the-art single-image super-resolution algorithm on computed tomography images of the pelvic region.The meta-learning multiscale superresolution algorithm obtained a surpassing of about 2%at a smaller model volume.Testing on different parts proves the high generalizability of our algorithm.Multi-scale super-resolution algorithms using meta-learning can compensate for hardware device defects and reduce secondary harm to patients while obtaining high-resolution medical images.It can be of great use in imaging related fields. 展开更多
关键词 Super resolution deep learning meta learning computed tomography
下载PDF
A semi-analytical model for coupled flow in stress-sensitive multi-scale shale reservoirs with fractal characteristics 被引量:2
4
作者 Qian Zhang Wen-Dong Wang +4 位作者 Yu-Liang Su Wei Chen Zheng-Dong Lei Lei Li Yong-Mao Hao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期327-342,共16页
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes... A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation. 展开更多
关键词 multi-scale coupled flow Stress sensitivity Shale oil Micro-scale effect Fractal theory
下载PDF
A novel multi-resolution network for the open-circuit faults diagnosis of automatic ramming drive system 被引量:1
5
作者 Liuxuan Wei Linfang Qian +3 位作者 Manyi Wang Minghao Tong Yilin Jiang Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期225-237,共13页
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ... The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise). 展开更多
关键词 Fault diagnosis Deep learning multi-scale convolution Open-circuit Convolutional neural network
下载PDF
Multi-scale physics-informed neural networks for solving high Reynolds number boundary layer flows based on matched asymptotic expansions 被引量:1
6
作者 Jianlin Huang Rundi Qiu +1 位作者 Jingzhu Wang Yiwei Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期76-81,共6页
Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at hig... Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at high Reynolds numbers without any data.The flow is divided into several regions with different scales based on Prandtl's boundary theory.Different regions are solved with governing equations in different scales.The method of matched asymptotic expansions is used to make the flow field continuously.A flow on a semi infinite flat plate at a high Reynolds number is considered a multi-scale problem because the boundary layer scale is much smaller than the outer flow scale.The results are compared with the reference numerical solutions,which show that the msPINNs can solve the multi-scale problem of the boundary layer in high Reynolds number flows.This scheme can be developed for more multi-scale problems in the future. 展开更多
关键词 Physics-informed neural networks(PINNs) multi-scale Fluid dynamics Boundary layer
下载PDF
Image super‐resolution via dynamic network 被引量:1
7
作者 Chunwei Tian Xuanyu Zhang +2 位作者 Qi Zhang Mingming Yang Zhaojie Ju 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期837-849,共13页
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp... Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet. 展开更多
关键词 CNN dynamic network image super‐resolution lightweight network
下载PDF
Flexible,high-density,laminated ECoG electrode array for high spatiotemporal resolution foci diagnostic localization of refractory epilepsy 被引量:1
8
作者 Yafeng Liu Zhouheng Wang +4 位作者 Yang Jiao Ying Chen Guangyuan Xu Yinji Ma Xue Feng 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期388-398,共11页
High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillim... High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillimeter or micrometer level.This entails connecting hundreds or thousands of electrode wires on a limited surface.This study reported a class of flexible,ultrathin,highdensity electrocorticogram(ECoG)electrode arrays.The challenge of a large number of wiring arrangements was overcome by a laminated structure design and processing technology improvement.The flexible,ultrathin,high-density ECoG electrode array was conformably attached to the cortex for reliable,high spatial resolution electrophysiologic recordings.The minimum spacing between electrodes was 15μm,comparable to the diameter of a single neuron.Eight hundred electrodes were prepared with an electrode density of 4444 mm^(-2).In focal epilepsy surgery,the flexible,high-density,laminated ECoG electrode array with 36 electrodes was applied to collect epileptic spike waves inrabbits,improving the positioning accuracy of epilepsy lesions from the centimeter to the submillimeter level.The flexible,high-density,laminated ECoG electrode array has potential clinical applications in intractable epilepsy and other neurologic diseases requiring high-precision electroencephalogram acquisition. 展开更多
关键词 Electrocorticogram(ECoG)electrode EPILEPSY High density High resolution Laminated structure
下载PDF
High-resolution neutronics model for ^(238)Pu production in high-flux reactors 被引量:1
9
作者 Qing-Quan Pan Qing-Fei Zhao +4 位作者 Lian-Jie Wang Bang-Yang Xia Yun Cai Jin-Biao Xiong Xiao-Jing Liu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期226-236,共11页
We proposed and compared three methods(filter burnup,single energy burnup,and burnup extremum analysis)to build a high-resolution neutronics model for 238Pu production in high-flux reactors.The filter burnup and singl... We proposed and compared three methods(filter burnup,single energy burnup,and burnup extremum analysis)to build a high-resolution neutronics model for 238Pu production in high-flux reactors.The filter burnup and single energy burnup methods have no theoretical approximation and can achieve a spectrum resolution of up to~1 eV,thereby constructing the importance curve and yield curve of the full energy range.The burnup extreme analysis method combines the importance and yield curves to consider the influence of irradiation time on production efficiency,thereby constructing extreme curves.The three curves,which quantify the transmutation rate of the nuclei in each energy region,are of physical significance because they have similar distributions.A high-resolution neutronics model for ^(238)Pu production was established based on these three curves,and its universality and feasibility were proven.The neutronics model can guide the neutron spectrum optimization and improve the yield of ^(238)Pu by up to 18.81%.The neutronics model revealed the law of nuclei transmutation in all energy regions with high spectrum resolution,thus providing theoretical support for high-flux reactor design and irradiation production of ^(238)Pu. 展开更多
关键词 ^(238)Pu Neutronics model High-flux reactor Spectrum resolution Spectrum optimization
下载PDF
SeisResoDiff: Seismic resolution enhancement based on a diffusion model
10
作者 Hao-Ran Zhang Yang Liu +1 位作者 Yu-Hang Sun Gui Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3166-3188,共23页
High resolution of post-stack seismic data assists in better interpretation of subsurface structures as well as high accuracy of impedance inversion. Therefore, geophysicists consistently strive to acquire higher reso... High resolution of post-stack seismic data assists in better interpretation of subsurface structures as well as high accuracy of impedance inversion. Therefore, geophysicists consistently strive to acquire higher resolution seismic images in petroleum exploration. Although there have been successful applications of conventional signal processing and machine learning for post-stack seismic resolution enhancement,there is limited reference to the seismic applications of the recent emergence and rapid development of generative artificial intelligence. Hence, we propose to apply diffusion models, among the most popular generative models, to enhance seismic resolution. Specifically, we apply the classic diffusion model—denoising diffusion probabilistic model(DDPM), conditioned on the seismic data in low resolution, to reconstruct corresponding high-resolution images. Herein the entire scheme is referred to as SeisResoDiff. To provide a comprehensive and clear understanding of SeisResoDiff, we introduce the basic theories of diffusion models and detail the optimization objective's derivation with the aid of diagrams and algorithms. For implementation, we first propose a practical workflow to acquire abundant training data based on the generated pseudo-wells. Subsequently, we apply the trained model to both synthetic and field datasets, evaluating the results in three aspects: the appearance of seismic sections and slices in the time domain, frequency spectra, and comparisons with the synthetic data using real well-logging data at the well locations. The results demonstrate not only effective seismic resolution enhancement,but also additional denoising by the diffusion model. Experimental comparisons indicate that training the model on noisy data, which are more realistic, outperforms training on clean data. The proposed scheme demonstrates superiority over some conventional methods in high-resolution reconstruction and denoising ability, yielding more competitive results compared to our previous research. 展开更多
关键词 Seismic resolution enhancement Diffusion model High resolution Reservoir characterization Deep learning Seismic data processing
下载PDF
Ultrahigh-resolution,high-fidelity quantum dot pixels patterned by dielectric electrophoretic deposition
11
作者 Chengzhao Luo Yanhui Ding +6 位作者 Zhenwei Ren Chenglong Wu Yonghuan Huo Xin Zhou Zhiyong Zheng Xinwen Wang Yu Chen 《Light(Science & Applications)》 SCIE EI CSCD 2024年第11期2745-2755,共11页
The high pixel resolution is emerging as one of the key parameters for the next-generation displays.Despite the development of various quantum dot(QD)patterning techniques,achieving ultrahigh-resolution(>10,000 pix... The high pixel resolution is emerging as one of the key parameters for the next-generation displays.Despite the development of various quantum dot(QD)patterning techniques,achieving ultrahigh-resolution(>10,000 pixels per inch(PPI))and high-fidelity QD patterns is still a tough challenge that needs to be addressed urgently.Here,we propose a novel and effective approach of orthogonal electric field-induced template-assisted dielectric electrophoretic deposition to successfully achieve one of the highest pixel resolutions of 23090(PPI)with a high fidelity of up to 99%.Meanwhile,the proposed strategy is compatible with the preparation of QD pixels based on perovskite CsPbBr3 and conventional CdSe QDs,exhibiting a wide applicability for QD pixel fabrication.Notably,we further demonstrate the great value of our approach to achieve efficiently electroluminescent QD pixels with a peak external quantum efficiency of 16.5%.Consequently,this work provides a general approach for realizing ultrahighresolution and high-fidelity patterns based on various QDs and a novel method for fabricating QD-patterned devices with high performance. 展开更多
关键词 resolution QUANTUM DIELECTRIC
原文传递
Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications
12
作者 Simone Lamon Haoyi Yu +1 位作者 Qiming Zhang Min Gu 《Light(Science & Applications)》 SCIE EI CSCD 2024年第11期2454-2488,共35页
Energy-intensive technologies and high-precision research require energy-efficient techniques and materials.Lensbased optical microscopy technology is useful for low-energy applications in the life sciences and other ... Energy-intensive technologies and high-precision research require energy-efficient techniques and materials.Lensbased optical microscopy technology is useful for low-energy applications in the life sciences and other fields of technology,but standard techniques cannot achieve applications at the nanoscale because of light diffraction.Farfield super-resolution techniques have broken beyond the light diffraction limit,enabling 3D applications down to the molecular scale and striving to reduce energy use.Typically targeted super-resolution techniques have achieved high resolution,but the high light intensity needed to outperform competing optical transitions in nanomaterials may result in photo-damage and high energy consumption.Great efforts have been made in the development of nanomaterials to improve the resolution and efficiency of these techniques toward low-energy super-resolution applications.Lanthanide ion-doped upconversion nanoparticles that exhibit multiple long-lived excited energy states and emit upconversion luminescence have enabled the development of targeted super-resolution techniques that need low-intensity light.The use of lanthanide ion-doped upconversion nanoparticles in these techniques for emerging low-energy super-resolution applications will have a significant impact on life sciences and other areas of technology.In this review,we describe the dynamics of lanthanide ion-doped upconversion nanoparticles for superresolution under low-intensity light and their use in targeted super-resolution techniques.We highlight low-energy super-resolution applications of lanthanide ion-doped upconversion nanoparticles,as well as the related research directions and challenges.Our aim is to analyze targeted super-resolution techniques using lanthanide ion-doped upconversion nanoparticles,emphasizing fundamental mechanisms governing transitions in lanthanide ions to surpass the diffraction limit with low-intensity light,and exploring their implications for low-energy nanoscale applications. 展开更多
关键词 materials. LANTHANIDE resolution
原文传递
Rydberg-Atom Terahertz Heterodyne Receiver with Ultrahigh Spectral Resolution
13
作者 Zhenyue She Xiaojie Zhu +10 位作者 Yayi Lin Xianzhe Li Xiaolin Yang Yanfei Shang Yuqin Teng Haitao Tu Kaiyu Liao Caixia Zhang Xiaohong Liu Jiehua Chen Wei Huang 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第8期17-21,共5页
Terahertz heterodyne receivers with high sensitivity and spectral resolution are crucial for various applications.Here,we present a room-temperature atomic terahertz heterodyne receiver that achieves ultrahigh sensiti... Terahertz heterodyne receivers with high sensitivity and spectral resolution are crucial for various applications.Here,we present a room-temperature atomic terahertz heterodyne receiver that achieves ultrahigh sensitivity and frequency resolution.At a signal frequency of 338.7 GHz,we obtain a sensitivity of 2.88±0.09V·cm^(−1)·Hz^(−1/2) for electric field measurements.The calibrated linear dynamical range spans approximately 89 dB,ranging from−110 dBV/cm to−21 dBV/cm.We demodulate a 400 symbol stream encoded in 4-state phase-shift keying,demonstrating excellent phase detection capability.By scanning the frequency of the local oscillator,we realize a terahertz spectrometer with Hz level frequency resolution.This resolution is more than two orders of magnitude higher than that of existing terahertz spectrometers.The demonstrated terahertz heterodyne receiver holds promising potential for working across the entire terahertz spectrum,significantly advancing its practical applications. 展开更多
关键词 MAGNITUDE holds resolution
下载PDF
Virtual source approach for maximizing resolution in high-penetration gamma-ray imaging
14
作者 Yuchi Wu Shaoyi Wang +14 位作者 Bin Zhu Yonghong Yan Minghai Yu Gang Li Xiaohui Zhang Yue Yang Fang Tan Feng Lu Bi Bi Xiaoqin Mao Zhonghai Wang Zongqing Zhao Jingqin Su Weimin Zhou Yuqiu Gu 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第3期19-30,共12页
High-energy gamma-ray radiography has exceptional penetration ability and has become an indispensable nondestructive testing(NDT)tool in various fields.For high-energy photons,point projection radiography is almost th... High-energy gamma-ray radiography has exceptional penetration ability and has become an indispensable nondestructive testing(NDT)tool in various fields.For high-energy photons,point projection radiography is almost the only feasible imaging method,and its spatial resolution is primarily constrained by the size of the gamma-ray source.In conventional industrial applications,gamma-ray sources are commonly based on electron beams driven by accelerators,utilizing the process of bremsstrahlung radiation.The size of the gamma-ray source is dependent on the dimensional characteristics of the electron beam.Extensive research has been conducted on various advanced accelerator technologies that have the potential to greatly improve spatial resolution in NDT.In our investigation of laser-driven gamma-ray sources,a spatial resolution of about 90μm is achieved when the areal density of the penetrated object is 120 g/cm^(2).A virtual source approach is proposed to optimize the size of the gamma-ray source used for imaging,with the aim of maximizing spatial resolution.In this virtual source approach,the gamma ray can be considered as being emitted from a virtual source within the convertor,where the equivalent gamma-ray source size in imaging is much smaller than the actual emission area.On the basis of Monte Carlo simulations,we derive a set of evaluation formulas for virtual source scale and gamma-ray emission angle.Under optimal conditions,the virtual source size can be as small as 15μm,which can significantly improve the spatial resolution of high-penetration imaging to less than 50μm. 展开更多
关键词 resolution APPROACH utilizing
下载PDF
A High Resolution Convolutional Neural Network with Squeeze and Excitation Module for Automatic Modulation Classification
15
作者 Duan Ruifeng Zhao Yuanlin +3 位作者 Zhang Haiyan Li Xinze Cheng Peng Li Yonghui 《China Communications》 SCIE CSCD 2024年第10期132-147,共16页
Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior perfo... Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior performances in classification accuracy and robustness. In this paper, we propose a novel, high resolution and multi-scale feature fusion convolutional neural network model with a squeeze-excitation block, referred to as HRSENet,to classify different kinds of modulation signals.The proposed model establishes a parallel computing mechanism of multi-resolution feature maps through the multi-layer convolution operation, which effectively reduces the information loss caused by downsampling convolution. Moreover, through dense skipconnecting at the same resolution and up-sampling or down-sampling connection at different resolutions, the low resolution representation of the deep feature maps and the high resolution representation of the shallow feature maps are simultaneously extracted and fully integrated, which is benificial to mine signal multilevel features. Finally, the feature squeeze and excitation module embedded in the decoder is used to adjust the response weights between channels, further improving classification accuracy of proposed model.The proposed HRSENet significantly outperforms existing methods in terms of classification accuracy on the public dataset “Over the Air” in signal-to-noise(SNR) ranging from-2dB to 20dB. The classification accuracy in the proposed model achieves 85.36% and97.30% at 4dB and 10dB, respectively, with the improvement by 9.71% and 5.82% compared to LWNet.Furthermore, the model also has a moderate computation complexity compared with several state-of-the-art methods. 展开更多
关键词 automatic modulation classification deep learning feature squeeze-and-excitation HIGH-resolution multi-scale
下载PDF
Multi-scale context-aware network for continuous sign language recognition
16
作者 Senhua XUE Liqing GAO +1 位作者 Liang WAN Wei FENG 《虚拟现实与智能硬件(中英文)》 EI 2024年第4期323-337,共15页
The hands and face are the most important parts for expressing sign language morphemes in sign language videos.However,we find that existing Continuous Sign Language Recognition(CSLR)methods lack the mining of hand an... The hands and face are the most important parts for expressing sign language morphemes in sign language videos.However,we find that existing Continuous Sign Language Recognition(CSLR)methods lack the mining of hand and face information in visual backbones or use expensive and time-consuming external extractors to explore this information.In addition,the signs have different lengths,whereas previous CSLR methods typically use a fixed-length window to segment the video to capture sequential features and then perform global temporal modeling,which disturbs the perception of complete signs.In this study,we propose a Multi-Scale Context-Aware network(MSCA-Net)to solve the aforementioned problems.Our MSCA-Net contains two main modules:(1)Multi-Scale Motion Attention(MSMA),which uses the differences among frames to perceive information of the hands and face in multiple spatial scales,replacing the heavy feature extractors;and(2)Multi-Scale Temporal Modeling(MSTM),which explores crucial temporal information in the sign language video from different temporal scales.We conduct extensive experiments using three widely used sign language datasets,i.e.,RWTH-PHOENIX-Weather-2014,RWTH-PHOENIX-Weather-2014T,and CSL-Daily.The proposed MSCA-Net achieve state-of-the-art performance,demonstrating the effectiveness of our approach. 展开更多
关键词 Continuous sign language recognition multi-scale motion attention multi-scale temporal modeling
下载PDF
YOLO-MFD:Remote Sensing Image Object Detection with Multi-Scale Fusion Dynamic Head
17
作者 Zhongyuan Zhang Wenqiu Zhu 《Computers, Materials & Continua》 SCIE EI 2024年第5期2547-2563,共17页
Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false... Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false detection rates when applying object recognition algorithms tailored for remote sensing imagery.Additionally,these complexities contribute to inaccuracies in target localization and hinder precise target categorization.This paper addresses these challenges by proposing a solution:The YOLO-MFD model(YOLO-MFD:Remote Sensing Image Object Detection withMulti-scale Fusion Dynamic Head).Before presenting our method,we delve into the prevalent issues faced in remote sensing imagery analysis.Specifically,we emphasize the struggles of existing object recognition algorithms in comprehensively capturing critical image features amidst varying scales and complex backgrounds.To resolve these issues,we introduce a novel approach.First,we propose the implementation of a lightweight multi-scale module called CEF.This module significantly improves the model’s ability to comprehensively capture important image features by merging multi-scale feature information.It effectively addresses the issues of missed detection and mistaken alarms that are common in remote sensing imagery.Second,an additional layer of small target detection heads is added,and a residual link is established with the higher-level feature extraction module in the backbone section.This allows the model to incorporate shallower information,significantly improving the accuracy of target localization in remotely sensed images.Finally,a dynamic head attentionmechanism is introduced.This allows themodel to exhibit greater flexibility and accuracy in recognizing shapes and targets of different sizes.Consequently,the precision of object detection is significantly improved.The trial results show that the YOLO-MFD model shows improvements of 6.3%,3.5%,and 2.5%over the original YOLOv8 model in Precision,map@0.5 and map@0.5:0.95,separately.These results illustrate the clear advantages of the method. 展开更多
关键词 Object detection YOLOv8 multi-scale attention mechanism dynamic detection head
下载PDF
Advancing ophthalmic delivery of flurbiprofen via synergistic chiral resolution and ion-pairing strategies
18
作者 Zhining Ma Yuequan Wang +3 位作者 Huiyang He Tong Liu Qikun Jiang Xiaohong Hou 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第3期177-189,共13页
Flurbiprofen(FB),a nonsteroidal anti-inflammatory drug,is widely employed in treating ocular inflammation owing to its remarkable anti-inflammatory effects.However,the racemic nature of its commercially available form... Flurbiprofen(FB),a nonsteroidal anti-inflammatory drug,is widely employed in treating ocular inflammation owing to its remarkable anti-inflammatory effects.However,the racemic nature of its commercially available formulation(Ocufen^(R))limits the full potential of its therapeutic activity,as the(S)-enantiomer is responsible for the desired antiinflammatory effects.Additionally,the limited corneal permeability of FB significantly restricts its bioavailability.In this study,we successfully separated the chiral isomers of FB to obtain the highly active(S)-FB.Subsequently,utilizing ion-pairing technology,we coupled(S)-FB with various counter-ions,such as sodium,diethylamine,trimethamine(TMA),and l-arginine,to enhance its ocular bioavailability.A comprehensive evaluation encompassed balanced solubility,octanol-water partition coefficient,corneal permeability,ocular pharmacokinetics,tissue distribution,and in vivo ocular anti-inflammatory activity of each chiral isomer salt.Among the various formulations,S-FBTMA exhibited superior water solubility(about 1–12 mg/ml),lipid solubility(1<lgP_(ow)<3)and corneal permeability.In comparison to Ocufen^(R),S-FBTMA demonstrated significantly higher in vivo antiinflammatory activity and lower ocular irritability(such as conjunctival congestion and tingling).The findings from this research highlight the potential of chiral separation and ion-pair enhanced permeation techniques in providing pharmaceutical enterprises focused on drug development with a valuable avenue for improving therapeutic outcomes. 展开更多
关键词 FLURBIPROFEN ANTI-INFLAMMATORY Ophthalmic delivery Chiral resolution ION-PAIRING
下载PDF
MSD-Net: Pneumonia Classification Model Based on Multi-Scale Directional Feature Enhancement
19
作者 Tao Zhou Yujie Guo +3 位作者 Caiyue Peng Yuxia Niu Yunfeng Pan Huiling Lu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4863-4882,共20页
Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot.However,there are some problems that the features of different sizes and different directions are not sufficient when extracting the f... Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot.However,there are some problems that the features of different sizes and different directions are not sufficient when extracting the features in lung X-ray images.A pneumonia classification model based on multi-scale directional feature enhancement MSD-Net is proposed in this paper.The main innovations are as follows:Firstly,the Multi-scale Residual Feature Extraction Module(MRFEM)is designed to effectively extract multi-scale features.The MRFEM uses dilated convolutions with different expansion rates to increase the receptive field and extract multi-scale features effectively.Secondly,the Multi-scale Directional Feature Perception Module(MDFPM)is designed,which uses a three-branch structure of different sizes convolution to transmit direction feature layer by layer,and focuses on the target region to enhance the feature information.Thirdly,the Axial Compression Former Module(ACFM)is designed to perform global calculations to enhance the perception ability of global features in different directions.To verify the effectiveness of the MSD-Net,comparative experiments and ablation experiments are carried out.In the COVID-19 RADIOGRAPHY DATABASE,the Accuracy,Recall,Precision,F1 Score,and Specificity of MSD-Net are 97.76%,95.57%,95.52%,95.52%,and 98.51%,respectively.In the chest X-ray dataset,the Accuracy,Recall,Precision,F1 Score and Specificity of MSD-Net are 97.78%,95.22%,96.49%,95.58%,and 98.11%,respectively.This model improves the accuracy of lung image recognition effectively and provides an important clinical reference to pneumonia Computer-Aided Diagnosis. 展开更多
关键词 PNEUMONIA X-ray image ResNet multi-scale feature direction feature TRANSFORMER
下载PDF
DTAIS:Distributed trusted active identity resolution systems for the Industrial Internet
20
作者 Tao Huang Renchao Xie +7 位作者 Yuzheng Ren F.Richard Yu Zhuang Zou Lu Han Yunjie Liu Demin Cheng Yinan Li Tian Liu 《Digital Communications and Networks》 SCIE CSCD 2024年第4期853-862,共10页
In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are... In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are also proposed.These applications apply architectures such as distributed learning,resource sharing,and arithmetic trading,which make high demands on identity authentication,asset authentication,resource addressing,and service location.Therefore,an efficient,secure,and trustworthy Industrial Internet identity resolution system is needed.However,most of the traditional identity resolution systems follow DNS architecture or tree structure,which has the risk of a single point of failure and DDoS attack.And they cannot guarantee the security and privacy of digital identity,personal assets,and device information.So we consider a decentralized approach for identity management,identity authentication,and asset verification.In this paper,we propose a distributed trusted active identity resolution system based on the inter-planetary file system(IPFS)and non-fungible token(NFT),which can provide distributed identity resolution services.And we have designed the system architecture,identity service process,load balancing strategy and smart contract service.In addition,we use Jmeter to verify the performance of the system,and the results show that the system has good high concurrent performance and robustness. 展开更多
关键词 Industrial Internet NFT IPFS TRUST Identity resolution system
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部