期刊文献+
共找到1,979篇文章
< 1 2 99 >
每页显示 20 50 100
Multi-scale Modeling and Finite Element Analyses of Thermal Conductivity of 3D C/SiC Composites Fabricating by Flexible-Oriented Woven Process
1
作者 Zheng Sun Zhongde Shan +5 位作者 Hao Huang Dong Wang Wang Wang Jiale Liu Chenchen Tan Chaozhong Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期275-288,共14页
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr... Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures. 展开更多
关键词 3D C/SiC composites Finite element analyses multi-scale modeling Thermal conductivity
下载PDF
Multi-Scale Design and Optimization of Composite Material Structure for Heavy-Duty Truck Protection Device
2
作者 Yanhui Zhang Lianhua Ma +3 位作者 Hailiang Su Jirong Qin Zhining Chen Kaibiao Deng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1961-1980,共20页
In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,t... In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect. 展开更多
关键词 Structural optimization front underrun protection device carbon fiber reinforced plastic multi-scale model lightweight design
下载PDF
Multi-scale context-aware network for continuous sign language recognition
3
作者 Senhua XUE Liqing GAO +1 位作者 Liang WAN Wei FENG 《虚拟现实与智能硬件(中英文)》 EI 2024年第4期323-337,共15页
The hands and face are the most important parts for expressing sign language morphemes in sign language videos.However,we find that existing Continuous Sign Language Recognition(CSLR)methods lack the mining of hand an... The hands and face are the most important parts for expressing sign language morphemes in sign language videos.However,we find that existing Continuous Sign Language Recognition(CSLR)methods lack the mining of hand and face information in visual backbones or use expensive and time-consuming external extractors to explore this information.In addition,the signs have different lengths,whereas previous CSLR methods typically use a fixed-length window to segment the video to capture sequential features and then perform global temporal modeling,which disturbs the perception of complete signs.In this study,we propose a Multi-Scale Context-Aware network(MSCA-Net)to solve the aforementioned problems.Our MSCA-Net contains two main modules:(1)Multi-Scale Motion Attention(MSMA),which uses the differences among frames to perceive information of the hands and face in multiple spatial scales,replacing the heavy feature extractors;and(2)Multi-Scale Temporal Modeling(MSTM),which explores crucial temporal information in the sign language video from different temporal scales.We conduct extensive experiments using three widely used sign language datasets,i.e.,RWTH-PHOENIX-Weather-2014,RWTH-PHOENIX-Weather-2014T,and CSL-Daily.The proposed MSCA-Net achieve state-of-the-art performance,demonstrating the effectiveness of our approach. 展开更多
关键词 Continuous sign language recognition multi-scale motion attention multi-scale temporal modeling
下载PDF
Finer topographic data improves distribution modeling of Picea crassifolia in the northern Qilian Mountains
4
作者 ZHANG Xiang GAO Linlin +3 位作者 LUO Yu YUAN Yiyun MA Baolong DENG Yang 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3306-3317,共12页
The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), ha... The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), has decreased dramatically in the past decades due to climate change and human activity, which may have influenced its ecological functions. To restore its ecological functions, reasonable reforestation is the key measure. Many previous efforts have predicted the potential distribution of Picea crassifolia, which provides guidance on regional reforestation policy. However, all of them were performed at low spatial resolution, thus ignoring the natural characteristics of the patchy distribution of Picea crassifolia. Here, we modeled the distribution of Picea crassifolia with species distribution models at high spatial resolutions. For many models, the area under the receiver operating characteristic curve (AUC) is larger than 0.9, suggesting their excellent precision. The AUC of models at 30 m is higher than that of models at 90 m, and the current potential distribution of Picea crassifolia is more closely aligned with its actual distribution at 30 m, demonstrating that finer data resolution improves model performance. Besides, for models at 90 m resolution, annual precipitation (Bio12) played the paramount influence on the distribution of Picea crassifolia, while the aspect became the most important one at 30 m, indicating the crucial role of finer topographic data in modeling species with patchy distribution. The current distribution of Picea crassifolia was concentrated in the northern and central parts of the study area, and this pattern will be maintained under future scenarios, although some habitat loss in the central parts and gain in the eastern regions is expected owing to increasing temperatures and precipitation. Our findings can guide protective and restoration strategies for the Qilian Mountains, which would benefit regional ecological balance. 展开更多
关键词 Species distribution modeling Picea crassifolia High resolution topographic data Climate change Qilian Mountains Nature Reserve Climate scenarios
下载PDF
Multi-scenario Simulation and Spatial-temporal Analysis of LUCC in China's Coastal Zone Based on Coupled SD-FLUS Model
5
作者 HOU Xiyong SONG Baiyuan +2 位作者 ZHANG Xueying WANG Xiaoli LI Dong 《Chinese Geographical Science》 SCIE CSCD 2024年第4期579-598,共20页
Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover chang... Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover change(LUCC)is crucial for guiding the healthy and sustainable development of coastal zones.System dynamic(SD)-future land use simulation(FLUS)model,a coupled simulation model,was developed to analyze land use dynamics in China's coastal zone.This model encompasses five scenarios,namely,SSP1-RCP2.6(A),SSP2-RCP4.5(B),SSP3-RCP4.5(C),SSP4-RCP4.5(D),and SSP5-RCP8.5(E).The SD model simulates land use demand on an annual basis up to the year 2100.Subsequently,the FLUS model determines the spatial distribution of land use for the near term(2035),medium term(2050),and long term(2100).Results reveal a slowing trend in land use changes in China's coastal zone from 2000–2020.Among these changes,the expansion rate of construction land was the highest and exhibited an annual decrease.By 2100,land use predictions exhibit high accuracy,and notable differences are observed in trends across scenarios.In summary,the expansion of production,living,and ecological spaces toward the sea remains prominent.Scenario A emphasizes reduced land resource dependence,benefiting ecological land protection.Scenario B witnesses an intensified expansion of artificial wetlands.Scenario C sees substantial land needs for living and production,while Scenario D shows coastal forest and grassland shrinkage.Lastly,in Scenario E,the conflict between humans and land intensifies.This study presents pertinent recommendations for the future development,utilization,and management of coastal areas in China.The research contributes valuable scientific support for informed,long-term strategic decision making within coastal regions. 展开更多
关键词 land use and land cover change(LUCC) multi-scenario simulation system dynamic-future land use simulation(SD-FLUS)model SSP-RCP scenarios model coupling China's coastal zone
下载PDF
Application of Patient Simulators Combined with Internet plus Scenario Simulation Teaching Models on Intravenous Infusion Nursing Education in China
6
作者 Ying Wu Yun Chen +5 位作者 Liuyan Zhang Guohua Huang Jinai He Yutong Li Yuzhen Renqing Zhijuan Zhan 《Journal of Biosciences and Medicines》 2024年第1期64-71,共8页
Objective: To explore the effectiveness of applying patient simulators combined with Internet Plus scenario simulation teaching models on intravenous (IV) infusion nursing education, and to provide scientific evidence... Objective: To explore the effectiveness of applying patient simulators combined with Internet Plus scenario simulation teaching models on intravenous (IV) infusion nursing education, and to provide scientific evidence for the implementation of advanced teaching models in future nursing education. Methods: Enrolled 60 nurses who took the IV infusion therapy training program in our hospital from January 2022 to December 2023 for research. 30 nurses who were trained in traditional teaching models from January to December 2022 were selected as the control group, and 30 nurses who were trained with simulation-based teaching models with methods including simulated patients, internet, online meetings which can be replayed and scenario simulation, etc. from January to December 2023 were selected as the experimental group. Evaluated the learning outcomes based on the Competency Inventory for Nursing Students (CINS), Problem-Solving Inventory (PSI), comprehensive learning ability, scientific research ability, and proficiency in the theoretical knowledge and practical skills of IV infusion therapy. Nursing quality, the incidence of IV infusion therapy complications and nurse satisfaction with different teaching models were also measured. Results: The scientific research ability, PSI scores, CINS scores, and comprehensive learning ability of the experimental group were better than those of the control group (P 0.05), and their assessment results of practical skills, nursing quality of IV infusion therapy during training, and satisfaction with teaching models were all better than those of the control group with statistical significance (P < 0.05). The incidence of IV infusion therapy complications in the experimental group was lower than that in the control group, indicating statistical significance (P < 0.05). Conclusions: Teaching models based on patient simulators combined with Internet Plus scenario simulation enable nursing students to learn more directly and practice at any time and in any place, and can improve their proficiency in IV infusion theoretical knowledge and skills (e.g. PICC catheterization), core competencies, problem-solving ability, comprehensive learning ability, scientific research ability and the ability to deal with complicated cases. Also, it helps provide high-quality nursing education, improve the nursing quality of IV therapy, reduce the incidence of related complications, and ensure the safety of patients with IV therapy. 展开更多
关键词 Specialty of Intravenous Infusion Therapy Nursing Education Patient Simulators Internet Plus scenario Simulation Teaching model
下载PDF
Potential global distribution of the guava root-knot nematode Meloidogyne enterolobii under different climate change scenarios using MaxEnt ecological niche modeling 被引量:1
7
作者 PAN Song PENG De-liang +4 位作者 LI Ying-mei CHEN Zhi-jie ZHAI Ying-yan LIU Chen HONG Bo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第7期2138-2150,共13页
In recent years,Meloidogyne enterolobii has emerged as a major parasitic nematode infesting many plants in tropical or subtropical areas.However,the regions of potential distribution and the main contributing environm... In recent years,Meloidogyne enterolobii has emerged as a major parasitic nematode infesting many plants in tropical or subtropical areas.However,the regions of potential distribution and the main contributing environmental variables for this nematode are unclear.Under the current climate scenario,we predicted the potential geographic distributions of M.enterolobii worldwide and in China using a Maximum Entropy(MaxEnt)model with the occurrence data of this species.Furthermore,the potential distributions of M.enterolobii were projected under three future climate scenarios(BCC-CSM2-MR,CanESM5 and CNRM-CM6-1)for the periods 2050s and 2090s.Changes in the potential distribution were also predicted under different climate conditions.The results showed that highly suitable regions for M.enterolobii were concentrated in Africa,South America,Asia,and North America between latitudes 30°S to 30°N.Bio16(precipitation of the wettest quarter),bio10(mean temperature of the warmest quarter),and bio11(mean temperature of the coldest quarter)were the variables contributing most in predicting potential distributions of M.enterolobii.In addition,the potential suitable areas for M.enterolobii will shift toward higher latitudes under future climate scenarios.This study provides a theoretical basis for controlling and managing this nematode. 展开更多
关键词 Meloidogyne enterolobii species distribution model MAXENT climate change future climate scenarios centroid change
下载PDF
The Multi-Scale Numerical Modeling System for Research on the Relationship between Urban Planning and Meteorological Environment 被引量:37
8
作者 房小怡 蒋维楣 +7 位作者 苗世光 张宁 徐敏 季崇萍 陈鲜艳 魏建民 王志华 王晓云 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第1期103-112,共10页
Considering the urban characteristics, a customized multi-scale numerical modeling system is established to simulate the urban meteorological environment. The system mainly involves three spatial scales: the urban sca... Considering the urban characteristics, a customized multi-scale numerical modeling system is established to simulate the urban meteorological environment. The system mainly involves three spatial scales: the urban scale, urban sub-domain scale, and single to few buildings scale. In it, different underlying surface types are employed, the building drag factor is used to replace its roughness in the influence on the urban wind field, the effects of building distribution, azimuth and screening of shortwave radiation are added, and the influence of anthropogenic heating is also taken into account. All the numerical tests indicate that the simulated results are reasonably in agreement with the observational data, so the system can be used to simulate the urban meteorological environment. Making use of it, the characteristics of the meteorological environment from the urban to urban sub-domain scales, even the among-buildings scale, can be recognized. As long as the urban planning scheme is given, the corresponding simulated results can be obtained so as to meet the need of optimizing urban planning. 展开更多
关键词 developing planning in an urban area meteorological environment multi-scale modeling urban planning urban environment
下载PDF
Multi-scale modeling of hemodynamics in the cardiovascular system 被引量:4
9
作者 Hao Liu Fuyou Liang +4 位作者 Jasmin Wong Takashi Fujiwara Wenjing Ye Ken-iti Tsubota Michiko Sugawara 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第4期446-464,共19页
The human cardiovascular system is a closed- loop and complex vascular network with multi-scaled het- erogeneous hemodynamic phenomena. Here, we give a selective review of recent progress in macro-hemodynamic modeling... The human cardiovascular system is a closed- loop and complex vascular network with multi-scaled het- erogeneous hemodynamic phenomena. Here, we give a selective review of recent progress in macro-hemodynamic modeling, with a focus on geometrical multi-scale model- ing of the vascular network, micro-hemodynamic modeling of microcirculation, as well as blood cellular, subcellular, endothelial biomechanics, and their interaction with arter- ial vessel mechanics. We describe in detail the methodology of hemodynamic modeling and its potential applications in cardiovascular research and clinical practice. In addition, we present major topics for future study: recent progress of patient-specific hemodynamic modeling in clinical applica- tions, micro-hemodynamic modeling in capillaries and blood cells, and the importance and potential of the multi-scale hemodynarnic modeling. 展开更多
关键词 multi-scale modeling. Macro-hemodynamics.Micro-hemodynamics Cardiovascular system ENDOTHELIALCELL
下载PDF
Surrogate-based modeling and dimension reduction techniques for multi-scale mechanics problems 被引量:4
10
作者 Wei Shyy Young-Chang Cho +3 位作者 Wenbo Du Amit Gupta Chien-Chou Tseng Ann Marie Sastry 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期845-865,共21页
Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which... Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which we assess the outcome of optimization.Since accurate,high fidelity models are typically time consuming and computationally expensive,comprehensive evaluations can be conducted only if an efficient framework is available.Furthermore,informed decisions of the model/hardware's overall performance rely on an adequate understanding of the global,not local,sensitivity of the individual design variables on the objectives.The surrogate-based approach,which involves approximating the objectives as continuous functions of design variables from limited data,offers a rational framework to reduce the number of important input variables,i.e.,the dimension of a design or modeling space.In this paper,we review the fundamental issues that arise in surrogate-based analysis and optimization,highlighting concepts,methods,techniques,as well as modeling implications for mechanics problems.To aid the discussions of the issues involved,we summarize recent efforts in investigating cryogenic cavitating flows,active flow control based on dielectric barrier discharge concepts,and lithium(Li)-ion batteries.It is also stressed that many multi-scale mechanics problems can naturally benefit from the surrogate approach for "scale bridging." 展开更多
关键词 multi-scale mechanics ~ Cryogenic cavitating flow Surrogate-based modeling Active flow control Engineering system
下载PDF
Research on Multi-Scale Modeling of Grid-Connected Distributed Photovoltaic Power Generation
11
作者 Chen Lv Wanxing Sheng +1 位作者 Keyan Liu Xinzhou Dong 《Energy and Power Engineering》 2017年第4期127-140,共14页
The complexity of distribution network model mainly depends on the model scale of grid-connected distributed photovoltaic (PV) power generation. Therefore, the simulation performance of multi-scale PV model is the key... The complexity of distribution network model mainly depends on the model scale of grid-connected distributed photovoltaic (PV) power generation. Therefore, the simulation performance of multi-scale PV model is the key factor of the simulation accuracy in the specific operating scenarios of distribution network. In this paper, a multi-scale model of grid connected PV distributed generation system is proposed based on the mathematical model of grid-connected distributed PV power generation. It is analyzed that differences of simulation performance, such as adaptability of simulation step size, accuracy of output and the effect on voltage profile of distribution network, between PV models with different scales in IEEE 33 node example. Simulation results indicate that the multi-scale model is effective in improving the accuracy and efficiency of simulation under different operating conditions of distribution network. 展开更多
关键词 PV DISTRIBUTED Generation multi-scale modeling Simulation STEP Size OUTPUT Power VOLTAGE Profile
下载PDF
Particle Modeling Based on Interatomic Potential and Crystal Structure: A Multi-Scale Simulation of Elastic-Plastic Deformation of Metallic Material
12
作者 Ken-Ichi Saitoh Naoya Hanashiro 《World Journal of Nano Science and Engineering》 2021年第3期45-68,共24页
We formulate a macroscopic particle modeling analysis of metallic materials (aluminum and copper, etc.) based on theoretical energy and atomic geome<span>tries derivable from their interatomic potential. In fact... We formulate a macroscopic particle modeling analysis of metallic materials (aluminum and copper, etc.) based on theoretical energy and atomic geome<span>tries derivable from their interatomic potential. In fact, particles in thi</span>s framework are presenting a large mass composed of huge collection of atoms and are interacting with each other. We can start from cohesive energy of metallic atoms and basic crystalline unit (e.g. face-centered cubic). Then, we can reach to interparticle (macroscopic) potential function which is presented by the analytical equation with terms of exponent of inter-particle distance, like a Lennard-Jones potential usually used in molecular dynamics simulation. Equation of motion for these macroscopic particles has dissipative term and fluctuation term, as well as the conservative term above, in order to express finite temperature condition. First, we determine the parameters needed in macroscopic potential function and check the reproduction of mechanical behavior in elastic regime. By using the present framework, we are able to carry out uniaxial loading simulation of aluminum rod. The method can also reproduce Young’s modulus and Poisson’s ratio as elastic behavior, though the result shows the dependency on division number of particles. Then, we proceed to try to include plasticity in this multi-scale framework. As a result, a realistic curve of stress-strain relation can be obtained for tensile and compressive loading and this new and simple framework of materials modeling has been confirmed to have certain effectiveness to be used in materials simulations. We also assess the effect of the order of loadings in opposite directions including yield and plastic states and find that an irreversible behavior depends on different response of the particle system between tensile and compressive loadings. 展开更多
关键词 Molecular Dynamics Particle Method ELASTICITY PLASTICITY NANOSTRUCTURE multi-scale modeling
下载PDF
Multi-scale simulation of diffusion behavior of deterrent in propellant 被引量:1
13
作者 Pan Huang Zekai Zhang +5 位作者 Yuxin Chen Changwei Liu Yong Zhang Cheng Lian Yajun Ding Honglai Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期29-35,共7页
Concentration distribution of the deterrent in single-base propellant during the process of firing plays an important role in the ballistic properties of gun propellant in weapons. However, the diffusion coefficient c... Concentration distribution of the deterrent in single-base propellant during the process of firing plays an important role in the ballistic properties of gun propellant in weapons. However, the diffusion coefficient calculated by molecular dynamics(MD) simulation is 6 orders of magnitude larger than the experimental values. Meanwhile, few simple and comprehensive theoretical models can explain the phenomenon and accurately predict the concentration distribution of the propellant. Herein, an onion model combining with MD simulation and finite element method of diffusion in propellants is introduced to bridge the gap between the experiments and simulations, and correctly predict the concentration distribution of deterrent. Furthermore, a new time scale is found to characterize the diffusion process. Finally, the time-and position-depended concentration distributions of dibutyl phthalate in nitrocellulose are measured by Raman spectroscopy to verify the correctness of the onion model. This work not only provides guidance for the design of the deterrent, but could be also extended to the diffusion of small molecules in polymer with different crystallinity. 展开更多
关键词 multi-scale simulation DIFFUSION DETERRENT PROPELLANT Onion model Molecular dynamics simulation
下载PDF
A Multi-Scale Urban Atmospheric Dispersion Model for Emergency Management 被引量:5
14
作者 MIAO Yucong LIU Shuhua +3 位作者 ZHENG Hui ZHENG Yijia CHEN Bicheng WANG Shu 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第6期1353-1365,共13页
To assist emergency management planning and prevention in case of hazardous chemical release into the atmosphere,especially in densely built-up regions with large populations,a multi-scale urban atmospheric dispersion... To assist emergency management planning and prevention in case of hazardous chemical release into the atmosphere,especially in densely built-up regions with large populations,a multi-scale urban atmospheric dispersion model was established.Three numerical dispersion experiments,at horizontal resolutions of 10 m,50 m and 3000 m,were performed to estimate the adverse effects of toxic chemical release in densely built-up areas.The multi-scale atmospheric dispersion model is composed of the Weather Forecasting and Research (WRF) model,the Open Source Field Operation and Manipulation software package,and a Lagrangian dispersion model.Quantification of the adverse health effects of these chemical release events are given by referring to the U.S.Environmental Protection Agency's Acute Exposure Guideline Levels.The wind fields of the urban-scale case,with 3 km horizontal resolution,were simulated by the Beijing Rapid Update Cycle system,which were utilized by the WRF model.The sub-domain-scale cases took advantage of the computational fluid dynamics method to explicitly consider the effects of buildings.It was found that the multi-scale atmospheric dispersion model is capable of simulating the flow pattern and concentration distribution on different scales,ranging from several meters to kilometers,and can therefore be used to improve the planning of prevention and response programs. 展开更多
关键词 WRF model OPENFOAM AEGLs multi-scale simulation
下载PDF
Numerical failure analysis of a continuous reinforced concrete bridge under strong earthquakes using multi-scale models 被引量:3
15
作者 Li Zhongxian Chen Yu Shi Yundong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第2期397-413,共17页
Previous failure analyses of bridges typically focus on substructure failure or superstructure failure separately. However, in an actual bridge, the seismic induced substructure failure and superstructure failure may ... Previous failure analyses of bridges typically focus on substructure failure or superstructure failure separately. However, in an actual bridge, the seismic induced substructure failure and superstructure failure may influence each other. Moreover, previous studies typically use simplified models to analyze the bridge failure; however, there are inherent defects in the calculation accuracy compared with using a detailed three-dimensional (3D) finite element (FE) model. Conversely, a detailed 3D FE model requires more computational costs, and a proper erosion criterion of the 3D elements is necessary. In this paper, a multi-scale FE model, including a corresponding erosion criterion, is proposed and validated that can significantly reduce computational costs with high precision by modelling a pseudo-dynamic test of an reinforced concrete (RC) pier. Numerical simulations of the seismic failures of a continuous RC bridge based on the multi-scale FE modeling method using LS-DYNA are performed. The nonlinear properties of the bridge, various connection strengths and bidirectional excitations are considered. The numerical results demonstrate that the failure of the connections will induce large pounding responses of the girders. The nonlinear deformation of the piers will aggravate the pounding damages. Furthermore, bidirectional earthquakes will induce eccentric poundingsto the girders and different failure modes to the adjacent piers. 展开更多
关键词 numerical simulation erosion criterion multi-scale finite element (FE) model failure mechanism failuremode
下载PDF
Multi-scale fatigue damage model for steel structures working under high temperature 被引量:1
16
作者 Huajing Guo Bin Sun Zhaoxia Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第3期615-623,共9页
In order to better understand the fatigue mechanisms of steel structures working under high temperature, a multi-scale fatigue damage model at high temperature is developed. In the developed model, the macroscopic fat... In order to better understand the fatigue mechanisms of steel structures working under high temperature, a multi-scale fatigue damage model at high temperature is developed. In the developed model, the macroscopic fatigue damage of metallic materials due to the collective behavior of micro-cracks is quantified by using the generalized self-consistent method. The influence of temperature on fatigue damage of steel structures is quantified by using the previous creep damage model. In addition, the fatigue damage at room temperature and creep damage is coupled in the multi-scale fatigue damage model. The validity of the developed multi-scale damage model is verified by comparing the predicted damage evolution curve with the experimental data. It shows that the developed model is effectiveness. Finally, the fatigue analysis on steel crane runway girders (CRGs) of industrial steel melt shop is performed based on the developed model. 展开更多
关键词 Steel structures High temperature multi-scale damage model MICROCRACKS GENERALIZED self-consistentmethod
下载PDF
Multi-scale Simulation Method with Coupled Finite/Discrete Element Model and Its Application 被引量:1
17
作者 FANG Xiwu LIU Zhenyu +2 位作者 TAN Jianrong QIU Chan CHEN Fengbei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期659-667,共9页
The existing research on continuous structure is usually analyzed with finite element method (FEM) and granular medium with discrete element method (DEM), but there are few researches on the coupling interaction betwe... The existing research on continuous structure is usually analyzed with finite element method (FEM) and granular medium with discrete element method (DEM), but there are few researches on the coupling interaction between continuous structure and discrete medium. To the issue of this coupling interaction, a multi-scale simulation method with coupled finite/discrete element model is put forward, in their respective domains of discrete and finite elements, the nodes follow force law and motion law of their own method, and on the their interaction interface, the touch type between discrete and finite elements is distinguished as two types: full touch and partial touch, the interaction force between them is calculated with linear elastic model. For full touch, the contact force is proportional to the overlap distance between discrete element and finite element patch. For partial touch, first the finite element patch is extended on all sides indefinitely to be a complete plane, the full contact force can be obtained with the touch type between discrete element and plane being viewed as full touch, then the full overlap area between them and the actual overlap area between discrete element and finite element patch are computed, the actual contact force is obtained by scaling the full contact force with a factor which is determined by the ratio of the actual overlap area to the full overlap area. The contact force is equivalent to the finite element nodes and the force and displacement on the nodes can be computed, so the ideal simulation results can be got. This method has been used to simulate the cutter disk of the earth pressure balance shield machine (EPBSM) made in North Heavy Industry (NHI) with its excavation diameter of 6.28 m cutting and digging the sandy clay layer. The simulation results show that as the gradual increase of excavating depth of the cutter head, the maximum stress occurs at the roots of cutters on the cutter head, while for the soil, the largest stress is distributed at the region which directly contacted with the cutters. The proposed research can provide good solutions for correct design and installation of cutters, and it is necessary to design mounting bracket to fix cutters on cutter head. 展开更多
关键词 multi-scale finite element discrete element linear elastic model
下载PDF
A multi-scale 3-D crust velocity model in the Hefei-Chao Lake area around the southern segment of Tanlu Fault Zone 被引量:1
18
作者 Lingli Li Huajian Yao +4 位作者 Song Luo Junhui Li Xiaoli Wang Hongyu Ni Ziwen Bao 《Earthquake Science》 2021年第4期344-357,共14页
Regional high-precision velocity models of the crust are an important foundation for examining seismic activity,seismogenic environments,and disaster distribution characteristics.The Hefei-Chao Lake area contains the ... Regional high-precision velocity models of the crust are an important foundation for examining seismic activity,seismogenic environments,and disaster distribution characteristics.The Hefei-Chao Lake area contains the main geological units of Hefei Basin,with thick sediments and the Chao Lake depression.Several major concealed faults of the southern NNE-trending Tanlu Fault Zone cross this area.To further explore the underground distribution characteristics of the faults and their tectonic evolutionary relationship with adjacent tectonic units,this study used ambient noise data recorded by a seismic array deployed in Hefei City and Chao Lake,constructing a 3-D velocity model at the depth of 1–8 km.Then a multi-scale high-resolution 3-D velocity model of this area was constructed by this new upper crustal velocity model with the previous middle and lower crustal model.The new model reveals that a high-velocity belt is highly consistent with the strike of the Tanlu Fault Zone,and a low-velocity sedimentary characteristic is consistent with the Hefei Basin and Chao Lake depression.The distribution morphology of high and low velocity bodies shows that the sedimentary pattern of Hefei-Chao Lake area is closely related to the tectonic evolution of the Tanlu Fault Zone since the Mesozoic.This study also identifies multiple low-velocity anomalies in the southeastern Hefei City.We speculate that strong ground motion during the 2009 Feidong earthquake(magnitude of 3.5)was related to amplification by the thick sediments in the Hefei Basin.We also discuss further applications of multi-scale high-resolution models of the shallow layer to strong ground motion simulations in cities and for earthquake disaster assessments. 展开更多
关键词 Tanlu Fault Zone Hefei-Chao Lake area CRUST multi-scale velocity model
下载PDF
Multi-scale elastoplastic mechanical model and microstructure damage analysis of solid expandable tubular 被引量:1
19
作者 Hui-Juan Guo Ying-Hua Liu +2 位作者 Yi-Nao Su Quan-Li Zhang Guo-Dong Zhan 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期336-348,共13页
We present an in-depth study of the failure phenomenon of solid expandable tubular (SET) due to large expansion ratio in open holes of deep and ultra-deep wells. By examining the post-expansion SET, lots of microcrack... We present an in-depth study of the failure phenomenon of solid expandable tubular (SET) due to large expansion ratio in open holes of deep and ultra-deep wells. By examining the post-expansion SET, lots of microcracks are found on the inner surface of SET. Their morphology and parameters such as length and depth are investigated by use of metallographic microscope and scanning electron microscope (SEM). In addition, the Voronoi cell technique is adopted to characterize the multi-phase material microstructure of the SET. By using the anisotropic elastoplastic material constitutive model and macro/microscopic multi-dimensional cross-scale coupled boundary conditions, a sophisticated and multi-scale finite element model (FEM) of the SET is built successfully to simulate the material microstructure damage for different expansion ratios. The microcrack initiation and growth is simulated, and the structural integrity of the SET is discussed. It is concluded that this multi-scale finite element modeling method could effectively predict the elastoplastic deformation and the microscopic damage initiation and evolution of the SET. It is of great significance as a theoretical analysis tool to optimize the selection of appropriate tubular materials and it could be also used to substantially reduce costly failures of expandable tubulars in the field. This numerical analysis is not only beneficial for understanding the damage process of tubular materials but also effectively guides the engineering application of the SET technology. 展开更多
关键词 solid expandable tubular(SET) material microstructure damage multi-scale elastoplastic model virtual failure
下载PDF
Integrated analysis of plasma rotation effect on HL-3 hybrid scenario
20
作者 薛淼 郑国尧 +5 位作者 薛雷 李佳鲜 王硕 杜海龙 朱毅仁 周月 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期329-336,共8页
The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on t... The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on the HL-3 hybrid scenario is analyzed with the integrated modeling framework OMFIT.The results show that toroidal rotation has no obvious effect on confinement with a high line averaged density of n_(bar)~(7)×10^(19)m^(-3).In this case,the ion temperature only changes from 4.7 keV to 4.4 keV with the rotation decreasing from 10^(5) rad/s to 10^(3) rad/s,which means that the turbulent heat transport is not dominant.While in the scenarios characterized by lower densities,such as n_(bar)~4×10^(19)m^(-3),turbulent transport becomes dominant in determining heat transport.The ion temperature rises from 3.8 keV to 6.1 keV in the core as the rotation velocity increases from 10^(3) rad/s to 10^(5) rad/s.Despite the ion temperature rising,the rotation velocity does not obviously affect electron temperature or density.Additionally,it is noteworthy that the variation in rotation velocity does not significantly affect the global confinement of plasma in scenarios with low density or with high density. 展开更多
关键词 HL-3 hybrid scenario toroidal rotation integrated modeling
下载PDF
上一页 1 2 99 下一页 到第
使用帮助 返回顶部