期刊文献+
共找到4,288篇文章
< 1 2 215 >
每页显示 20 50 100
Two Stages Segmentation Algorithm of Breast Tumor in DCE-MRI Based on Multi-Scale Feature and Boundary Attention Mechanism
1
作者 Bing Li Liangyu Wang +3 位作者 Xia Liu Hongbin Fan Bo Wang Shoudi Tong 《Computers, Materials & Continua》 SCIE EI 2024年第7期1543-1561,共19页
Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low a... Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation.Thus,we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms.Initially,the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs.Subsequently,we devise a fusion network incorporatingmulti-scale features and boundary attentionmechanisms for breast tumor segmentation.We incorporate multi-scale parallel dilated convolution modules into the network,enhancing its capability to segment tumors of various sizes through multi-scale convolution and novel fusion techniques.Additionally,attention and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing nonlocal dependencies in both spatial and channel domains.Furthermore,a hybrid loss function with boundary weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance capability through additional loss.Themethod was evaluated using breast data from 207 patients at RuijinHospital,resulting in a 6.64%increase in Dice similarity coefficient compared to the benchmarkU-Net.Experimental results demonstrate the superiority of the method over other segmentation techniques,with fewer model parameters. 展开更多
关键词 Dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) breast tumor segmentation multi-scale dilated convolution boundary attention the hybrid loss function with boundary weight
下载PDF
Multi-Scale Mixed Attention Tea Shoot Instance Segmentation Model
2
作者 Dongmei Chen Peipei Cao +5 位作者 Lijie Yan Huidong Chen Jia Lin Xin Li Lin Yuan Kaihua Wu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期261-275,共15页
Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often... Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales. 展开更多
关键词 Tea shoots attention mechanism multi-scale feature extraction instance segmentation deep learning
下载PDF
Colorectal Cancer Segmentation Algorithm Based on Deep Features from Enhanced CT Images
3
作者 Shi Qiu Hongbing Lu +2 位作者 Jun Shu Ting Liang Tao Zhou 《Computers, Materials & Continua》 SCIE EI 2024年第8期2495-2510,共16页
Colorectal cancer,a malignant lesion of the intestines,significantly affects human health and life,emphasizing the necessity of early detection and treatment.Accurate segmentation of colorectal cancer regions directly... Colorectal cancer,a malignant lesion of the intestines,significantly affects human health and life,emphasizing the necessity of early detection and treatment.Accurate segmentation of colorectal cancer regions directly impacts subsequent staging,treatment methods,and prognostic outcomes.While colonoscopy is an effective method for detecting colorectal cancer,its data collection approach can cause patient discomfort.To address this,current research utilizes Computed Tomography(CT)imaging;however,conventional CT images only capture transient states,lacking sufficient representational capability to precisely locate colorectal cancer.This study utilizes enhanced CT images,constructing a deep feature network from the arterial,portal venous,and delay phases to simulate the physician’s diagnostic process and achieve accurate cancer segmentation.The innovations include:1)Utilizing portal venous phase CT images to introduce a context-aware multi-scale aggregation module for preliminary shape extraction of colorectal cancer.2)Building an image sequence based on arterial and delay phases,transforming the cancer segmentation issue into an anomaly detection problem,establishing a pixel-pairing strategy,and proposing a colorectal cancer segmentation algorithm using a Siamese network.Experiments with 84 clinical cases of colorectal cancer enhanced CT data demonstrated an Area Overlap Measure of 0.90,significantly better than Fully Convolutional Networks(FCNs)at 0.20.Future research will explore the relationship between conventional and enhanced CT to further reduce segmentation time and improve accuracy. 展开更多
关键词 Colorectal cancer enhanced CT multi-scale siamese network segmentation
下载PDF
Multi-Level Image Segmentation Combining Chaotic Initialized Chimp Optimization Algorithm and Cauchy Mutation
4
作者 Shujing Li Zhangfei Li +2 位作者 Wenhui Cheng Chenyang Qi Linguo Li 《Computers, Materials & Continua》 SCIE EI 2024年第8期2049-2063,共15页
To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cau... To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation. 展开更多
关键词 Image segmentation image thresholding chimp optimization algorithm chaos initialization Cauchy mutation
下载PDF
Enhanced Wolf Pack Algorithm (EWPA) and Dense-kUNet Segmentation for Arterial Calcifications in Mammograms
5
作者 Afnan M.Alhassan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2207-2223,共17页
Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)method... Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)methods have been introduced for automatic BAC detection and quantification with increased accuracy.Previously,classification with deep learning had reached higher efficiency,but designing the structure of DL proved to be an extremely challenging task due to overfitting models.It also is not able to capture the patterns and irregularities presented in the images.To solve the overfitting problem,an optimal feature set has been formed by Enhanced Wolf Pack Algorithm(EWPA),and their irregularities are identified by Dense-kUNet segmentation.In this paper,Dense-kUNet for segmentation and optimal feature has been introduced for classification(severe,mild,light)that integrates DenseUNet and kU-Net.Longer bound links exist among adjacent modules,allowing relatively rough data to be sent to the following component and assisting the system in finding higher qualities.The major contribution of the work is to design the best features selected by Enhanced Wolf Pack Algorithm(EWPA),and Modified Support Vector Machine(MSVM)based learning for classification.k-Dense-UNet is introduced which combines the procedure of Dense-UNet and kU-Net for image segmentation.Longer bound associations occur among nearby sections,allowing relatively granular data to be sent to the next subsystem and benefiting the system in recognizing smaller characteristics.The proposed techniques and the performance are tested using several types of analysis techniques 826 filled digitized mammography.The proposed method achieved the highest precision,recall,F-measure,and accuracy of 84.4333%,84.5333%,84.4833%,and 86.8667%when compared to other methods on the Digital Database for Screening Mammography(DDSM). 展开更多
关键词 Breast arterial calcification cardiovascular disease semantic segmentation transfer learning enhanced wolf pack algorithm and modified support vector machine
下载PDF
An algorithm for segmentation of lung ROI by mean-shift clustering combined with multi-scale HESSIAN matrix dot filtering 被引量:7
6
作者 魏颖 李锐 +1 位作者 杨金柱 赵大哲 《Journal of Central South University》 SCIE EI CAS 2012年第12期3500-3509,共10页
A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN ... A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN matrix dot filters,round suspected nodular lesions in the image were enhanced,and linear shape regions of the trachea and vascular were suppressed.Then,three types of information,such as,shape filtering value of HESSIAN matrix,gray value,and spatial location,were introduced to feature space.The kernel function of mean-shift clustering was divided into product form of three kinds of kernel functions corresponding to the three feature information.Finally,bandwidths were calculated adaptively to determine the bandwidth of each suspected area,and they were used in mean-shift clustering segmentation.Experimental results show that by the introduction of HESSIAN matrix of dot filtering information to mean-shift clustering,nodular regions can be segmented from blood vessels,trachea,or cross regions connected to the nodule,non-nodular areas can be removed from ROIs properly,and ground glass object(GGO)nodular areas can also be segmented.For the experimental data set of 127 different forms of nodules,the average accuracy of the proposed algorithm is more than 90%. 展开更多
关键词 HESSIAN matrix multi-scale dot filtering mean-shift clustering segmentation of suspected areas lung computer-aideddetection/diagnosis
下载PDF
Attention Guided Multi Scale Feature Fusion Network for Automatic Prostate Segmentation
7
作者 Yuchun Li Mengxing Huang +1 位作者 Yu Zhang Zhiming Bai 《Computers, Materials & Continua》 SCIE EI 2024年第2期1649-1668,共20页
The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prosta... The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prostate segmentation,but due to the variability caused by prostate diseases,automatic segmentation of the prostate presents significant challenges.In this paper,we propose an attention-guided multi-scale feature fusion network(AGMSF-Net)to segment prostate MRI images.We propose an attention mechanism for extracting multi-scale features,and introduce a 3D transformer module to enhance global feature representation by adding it during the transition phase from encoder to decoder.In the decoder stage,a feature fusion module is proposed to obtain global context information.We evaluate our model on MRI images of the prostate acquired from a local hospital.The relative volume difference(RVD)and dice similarity coefficient(DSC)between the results of automatic prostate segmentation and ground truth were 1.21%and 93.68%,respectively.To quantitatively evaluate prostate volume on MRI,which is of significant clinical significance,we propose a unique AGMSF-Net.The essential performance evaluation and validation experiments have demonstrated the effectiveness of our method in automatic prostate segmentation. 展开更多
关键词 Prostate segmentation multi-scale attention 3D Transformer feature fusion MRI
下载PDF
An Improved Lung Cancer Segmentation Based on Nature-Inspired Optimization Approaches
8
作者 Shazia Shamas Surya Narayan Panda +4 位作者 Ishu Sharma Kalpna Guleria Aman Singh Ahmad Ali AlZubi Mallak Ahmad AlZubi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1051-1075,共25页
The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical image... The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical imageprocessing while focusing on lung cancer Computed Tomography (CT) images. In this context, the paper proposesan improved lung cancer segmentation technique based on the strengths of nature-inspired approaches. Thebetter resolution of CT is exploited to distinguish healthy subjects from those who have lung cancer. In thisprocess, the visual challenges of the K-means are addressed with the integration of four nature-inspired swarmintelligent techniques. The techniques experimented in this paper are K-means with Artificial Bee Colony (ABC),K-means with Cuckoo Search Algorithm (CSA), K-means with Particle Swarm Optimization (PSO), and Kmeanswith Firefly Algorithm (FFA). The testing and evaluation are performed on Early Lung Cancer ActionProgram (ELCAP) database. The simulation analysis is performed using lung cancer images set against metrics:precision, sensitivity, specificity, f-measure, accuracy,Matthews Correlation Coefficient (MCC), Jaccard, and Dice.The detailed evaluation shows that the K-means with Cuckoo Search Algorithm (CSA) significantly improved thequality of lung cancer segmentation in comparison to the other optimization approaches utilized for lung cancerimages. The results exhibit that the proposed approach (K-means with CSA) achieves precision, sensitivity, and Fmeasureof 0.942, 0.964, and 0.953, respectively, and an average accuracy of 93%. The experimental results prove thatK-meanswithABC,K-meanswith PSO,K-meanswith FFA, andK-meanswithCSAhave achieved an improvementof 10.8%, 13.38%, 13.93%, and 15.7%, respectively, for accuracy measure in comparison to K-means segmentationfor lung cancer images. Further, it is highlighted that the proposed K-means with CSA have achieved a significantimprovement in accuracy, hence can be utilized by researchers for improved segmentation processes of medicalimage datasets for identifying the targeted region of interest. 展开更多
关键词 LESION lung cancer segmentation medical imaging META-HEURISTIC Artificial Bee Colony(ABC) Cuckoo Search algorithm(CSA) Particle Swarm Optimization(PSO) Firefly algorithm(FFA) segmentation
下载PDF
Electrical Tree Image Segmentation Using Hybrid Multi Scale Line Tracking Algorithm
9
作者 Mohd Annuar Isa Mohamad Nur Khairul Hafizi Rohani +7 位作者 Baharuddin Ismail Mohamad Kamarol Jamil Muzamir Isa Afifah Shuhada Rosmi Mohd Aminudin Jamlos Wan Azani Mustafa Nurulbariah Idris Abdullahi Abubakar Mas’ud 《Computers, Materials & Continua》 SCIE EI 2023年第4期741-760,共20页
Electrical trees are an aging mechanismmost associated with partial discharge(PD)activities in crosslinked polyethylene(XLPE)insulation of high-voltage(HV)cables.Characterization of electrical tree structures gained c... Electrical trees are an aging mechanismmost associated with partial discharge(PD)activities in crosslinked polyethylene(XLPE)insulation of high-voltage(HV)cables.Characterization of electrical tree structures gained considerable attention from researchers since a deep understanding of the tree morphology is required to develop new insulation material.Two-dimensional(2D)optical microscopy is primarily used to examine tree structures and propagation shapes with image segmentation methods.However,since electrical trees can emerge in different shapes such as bush-type or branch-type,treeing images are complicated to segment due to manifestation of convoluted tree branches,leading to a high misclassification rate during segmentation.Therefore,this study proposed a new method for segmenting 2D electrical tree images based on the multi-scale line tracking algorithm(MSLTA)by integrating batch processing method.The proposed method,h-MSLTA aims to provide accurate segmentation of electrical tree images obtained over a period of tree propagation observation under optical microscopy.The initial phase involves XLPE sample preparation and treeing image acquisition under real-time microscopy observation.The treeing images are then sampled and binarized in pre-processing.In the next phase,segmentation of tree structures is performed using the h-MSLTA by utilizing batch processing in multiple instances of treeing duration.Finally,the comparative investigation has been conducted using standard performance assessment metrics,including accuracy,sensitivity,specificity,Dice coefficient and Matthew’s correlation coefficient(MCC).Based on segmentation performance evaluation against several established segmentation methods,h-MSLTA achieved better results of 95.43%accuracy,97.28%specificity,69.43%sensitivity rate with 23.38%and 24.16%average improvement in Dice coefficient and MCC score respectively over the original algorithm.In addition,h-MSLTA produced accurate measurement results of global tree parameters of length and width in comparison with the ground truth image.These results indicated that the proposed method had a solid performance in terms of segmenting electrical tree branches in 2D treeing images compared to other established techniques. 展开更多
关键词 Image segmentation multi-scale line tracking electrical tree partial discharge high-voltage cable
下载PDF
A Lightweight Road Scene Semantic Segmentation Algorithm
10
作者 Jiansheng Peng Qing Yang Yaru Hou 《Computers, Materials & Continua》 SCIE EI 2023年第11期1929-1948,共20页
In recent years,with the continuous deepening of smart city construction,there have been significant changes and improvements in the field of intelligent transportation.The semantic segmentation of road scenes has imp... In recent years,with the continuous deepening of smart city construction,there have been significant changes and improvements in the field of intelligent transportation.The semantic segmentation of road scenes has important practical significance in the fields of automatic driving,transportation planning,and intelligent transportation systems.However,the current mainstream lightweight semantic segmentation models in road scene segmentation face problems such as poor segmentation performance of small targets and insufficient refinement of segmentation edges.Therefore,this article proposes a lightweight semantic segmentation model based on the LiteSeg model improvement to address these issues.The model uses the lightweight backbone network MobileNet instead of the LiteSeg backbone network to reduce the network parameters and computation,and combines the Coordinate Attention(CA)mechanism to help the network capture long-distance dependencies.At the same time,by combining the dependencies of spatial information and channel information,the Spatial and Channel Network(SCNet)attention mechanism is proposed to improve the feature extraction ability of the model.Finally,a multiscale transposed attention encoding(MTAE)module was proposed to obtain features of different resolutions and perform feature fusion.In this paper,the proposed model is verified on the Cityscapes dataset.The experimental results show that the addition of SCNet and MTAE modules increases the mean Intersection over Union(mIoU)of the original LiteSeg model by 4.69%.On this basis,the backbone network is replaced with MobileNet,and the CA model is added at the same time.At the cost of increasing the minimum model parameters and computing costs,the mIoU of the original LiteSeg model is increased by 2.46%.This article also compares the proposed model with some current lightweight semantic segmentation models,and experiments show that the comprehensive performance of the proposed model is the best,especially in achieving excellent results in small object segmentation.Finally,this article will conduct generalization testing on the KITTI dataset for the proposed model,and the experimental results show that the proposed algorithm has a certain degree of generalization. 展开更多
关键词 Semantic segmentation LIGHTWEIGHT road scenes multi-scale transposition attention encoding(MTAE)
下载PDF
An Improved Soft Subspace Clustering Algorithm for Brain MR Image Segmentation
11
作者 Lei Ling Lijun Huang +4 位作者 Jie Wang Li Zhang Yue Wu Yizhang Jiang Kaijian Xia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2353-2379,共27页
In recent years,the soft subspace clustering algorithm has shown good results for high-dimensional data,which can assign different weights to each cluster class and use weights to measure the contribution of each dime... In recent years,the soft subspace clustering algorithm has shown good results for high-dimensional data,which can assign different weights to each cluster class and use weights to measure the contribution of each dimension in various features.The enhanced soft subspace clustering algorithm combines interclass separation and intraclass tightness information,which has strong results for image segmentation,but the clustering algorithm is vulnerable to noisy data and dependence on the initialized clustering center.However,the clustering algorithmis susceptible to the influence of noisydata and reliance on initializedclustering centers andfalls into a local optimum;the clustering effect is poor for brain MR images with unclear boundaries and noise effects.To address these problems,a soft subspace clustering algorithm for brain MR images based on genetic algorithm optimization is proposed,which combines the generalized noise technique,relaxes the equational weight constraint in the objective function as the boundary constraint,and uses a genetic algorithm as a method to optimize the initialized clustering center.The genetic algorithm finds the best clustering center and reduces the algorithm’s dependence on the initial clustering center.The experiment verifies the robustness of the algorithm,as well as the noise immunity in various ways and shows good results on the common dataset and the brain MR images provided by the Changshu First People’s Hospital with specific high accuracy for clinical medicine. 展开更多
关键词 Soft subspace clustering image segmentation genetic algorithm generalized noise brain MR images
下载PDF
Watershed segmentation based on hierarchical multi-scale modification of morphological gradient 被引量:1
12
作者 WANG Xiao-peng ZHAO Jun-jun +1 位作者 MA Peng YAO Li-juan 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2017年第1期60-67,共8页
Watershed segmentation is sensitive to noises and irregular details within the image,which frequently leads to a serious over-segmentation Linear filtering before watershed segmentation can reduce over-segmentation to... Watershed segmentation is sensitive to noises and irregular details within the image,which frequently leads to a serious over-segmentation Linear filtering before watershed segmentation can reduce over-segmentation to some extent,however,it often causes the position offset of object contours.For the purpose of reducing over-segmentation to preserve the location of object contours,the watershed segmentation based on the hierarchical multi-scale modification of morphological gradient is proposed.Firstly,multi-scale morphological filtering was employed to smooth the original image.Then,the gradient image was divided into multi-levels by the volume of three-dimension topographic relief,where the lower gradient layers were further modifiedby morphological closing with larger-sized structuring-elements,and the higher layers with the smaller one.In this way,most local minimums caused by irregular details and noises can be removed,while region contour positions corresponding to the target area were largely preserved.Finally,morphological watershed algorithm was employed to implement segmentation on the modified gradient image.The experimental results show that the proposed method can greatly reduce the over-segmentation of the watershed and avoid the position offset of the object contours. 展开更多
关键词 watershed segmentation gradient modification hierarchical multi-scale morphological filtering structuring element
下载PDF
A Multi-Scale Network with the Encoder-Decoder Structure for CMR Segmentation 被引量:1
13
作者 Chaoyang Xia Jing Peng +1 位作者 Zongqing Ma Xiaojie Li 《Journal of Information Hiding and Privacy Protection》 2019年第3期109-117,共9页
Cardiomyopathy is one of the most serious public health threats.The precise structural and functional cardiac measurement is an essential step for clinical diagnosis and follow-up treatment planning.Cardiologists are ... Cardiomyopathy is one of the most serious public health threats.The precise structural and functional cardiac measurement is an essential step for clinical diagnosis and follow-up treatment planning.Cardiologists are often required to draw endocardial and epicardial contours of the left ventricle(LV)manually in routine clinical diagnosis or treatment planning period.This task is time-consuming and error-prone.Therefore,it is necessary to develop a fully automated end-to-end semantic segmentation method on cardiac magnetic resonance(CMR)imaging datasets.However,due to the low image quality and the deformation caused by heartbeat,there is no effective tool for fully automated end-to-end cardiac segmentation task.In this work,we propose a multi-scale segmentation network(MSSN)for left ventricle segmentation.It can effectively learn myocardium and blood pool structure representations from 2D short-axis CMR image slices in a multi-scale way.Specifically,our method employs both parallel and serial of dilated convolution layers with different dilation rates to capture multi-scale semantic features.Moreover,we design graduated up-sampling layers with subpixel layers as the decoder to reconstruct lost spatial information and produce accurate segmentation masks.We validated our method using 164 T1 Mapping CMR images and showed that it outperforms the advanced convolutional neural network(CNN)models.In validation metrics,we archived the Dice Similarity Coefficient(DSC)metric of 78.96%. 展开更多
关键词 Cardiac magnetic resonance imaging multi-scale semantic segmentation convolutional neural networks
下载PDF
Application of U-Net and Optimized Clustering in Medical Image Segmentation:A Review 被引量:2
14
作者 Jiaqi Shao Shuwen Chen +3 位作者 Jin Zhou Huisheng Zhu Ziyi Wang Mackenzie Brown 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2173-2219,共47页
As a mainstream research direction in the field of image segmentation,medical image segmentation plays a key role in the quantification of lesions,three-dimensional reconstruction,region of interest extraction and so ... As a mainstream research direction in the field of image segmentation,medical image segmentation plays a key role in the quantification of lesions,three-dimensional reconstruction,region of interest extraction and so on.Compared with natural images,medical images have a variety of modes.Besides,the emphasis of information which is conveyed by images of different modes is quite different.Because it is time-consuming and inefficient to manually segment medical images only by professional and experienced doctors.Therefore,large quantities of automated medical image segmentation methods have been developed.However,until now,researchers have not developed a universal method for all types of medical image segmentation.This paper reviews the literature on segmentation techniques that have produced major breakthroughs in recent years.Among the large quantities of medical image segmentation methods,this paper mainly discusses two categories of medical image segmentation methods.One is the improved strategies based on traditional clustering method.The other is the research progress of the improved image segmentation network structure model based on U-Net.The power of technology proves that the performance of the deep learning-based method is significantly better than that of the traditional method.This paper discussed both advantages and disadvantages of different algorithms and detailed how these methods can be used for the segmentation of lesions or other organs and tissues,as well as possible technical trends for future work. 展开更多
关键词 Medical image segmentation clustering algorithm U-Net
下载PDF
Segmentation algorithm of complex ore images based on templates transformation and reconstruction 被引量:6
15
作者 Guo-ying Zhang Guan-zhou Liu Hong Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第4期385-389,共5页
Lots of noises and heterogeneous objects with various sizes coexist in a complex image,such as an ore image;the classical image thresholding method cannot effectively distinguish between ores.To segment ore objects wi... Lots of noises and heterogeneous objects with various sizes coexist in a complex image,such as an ore image;the classical image thresholding method cannot effectively distinguish between ores.To segment ore objects with various sizes simultaneously,two adaptive windows in the image were chosen for each pixel;the gray value of windows was calculated by Otsu's threshold method.To extract the object skeleton,the definition principle of distance transformation templates was proposed.The ores linked together in a binary image were separated by distance transformation and gray reconstruction.The seed region of each object was picked up from the local maximum gray region of the reconstruction image.Starting from these seed regions,the watershed method was used to segment ore object effectively.The proposed algorithm marks and segments most objects from complex images precisely. 展开更多
关键词 ORES image analysis image segmentation morphological transformation algorithmS
下载PDF
DT-Net:Joint Dual-Input Transformer and CNN for Retinal Vessel Segmentation
16
作者 Wenran Jia Simin Ma +1 位作者 Peng Geng Yan Sun 《Computers, Materials & Continua》 SCIE EI 2023年第9期3393-3411,共19页
Retinal vessel segmentation in fundus images plays an essential role in the screening,diagnosis,and treatment of many diseases.The acquired fundus images generally have the following problems:uneven illumination,high ... Retinal vessel segmentation in fundus images plays an essential role in the screening,diagnosis,and treatment of many diseases.The acquired fundus images generally have the following problems:uneven illumination,high noise,and complex structure.It makes vessel segmentation very challenging.Previous methods of retinal vascular segmentation mainly use convolutional neural networks on U Network(U-Net)models,and they have many limitations and shortcomings,such as the loss of microvascular details at the end of the vessels.We address the limitations of convolution by introducing the transformer into retinal vessel segmentation.Therefore,we propose a hybrid method for retinal vessel segmentation based on modulated deformable convolution and the transformer,named DT-Net.Firstly,multi-scale image features are extracted by deformable convolution and multi-head selfattention(MHSA).Secondly,image information is recovered,and vessel morphology is refined by the proposed transformer decoder block.Finally,the local prediction results are obtained by the side output layer.The accuracy of the vessel segmentation is improved by the hybrid loss function.Experimental results show that our method obtains good segmentation performance on Specificity(SP),Sensitivity(SE),Accuracy(ACC),Curve(AUC),and F1-score on three publicly available fundus datasets such as DRIVE,STARE,and CHASE_DB1. 展开更多
关键词 Retinal vessel segmentation deformable convolution multi-scale TRANSFORMER hybrid loss function
下载PDF
Image Segmentation of Brain MR Images Using Otsu’s Based Hybrid WCMFO Algorithm 被引量:6
17
作者 A.Renugambal K.Selva Bhuvaneswari 《Computers, Materials & Continua》 SCIE EI 2020年第8期681-700,共20页
In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid betwee... In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid between the two techniques,comprising the water cycle and moth-flame optimization algorithms.The optimal thresholds are obtained by maximizing the between class variance(Otsu’s function)of the image.To test the performance of threshold searching process,the proposed algorithm has been evaluated on standard benchmark of ten axial T2-weighted brain MR images for image segmentation.The experimental outcomes infer that it produces better optimal threshold values at a greater and quicker convergence rate.In contrast to other state-of-the-art methods,namely Adaptive Wind Driven Optimization(AWDO),Adaptive Bacterial Foraging(ABF)and Particle Swarm Optimization(PSO),the proposed algorithm has been found to be better at producing the best objective function,Peak Signal-to-Noise Ratio(PSNR),Standard Deviation(STD)and lower computational time values.Further,it was observed thatthe segmented image gives greater detail when the threshold level increases.Moreover,the statistical test result confirms that the best and mean values are almost zero and the average difference between best and mean value 1.86 is obtained through the 30 executions of the proposed algorithm.Thus,these images will lead to better segments of gray,white and cerebrospinal fluid that enable better clinical choices and diagnoses using a proposed algorithm. 展开更多
关键词 Hybrid WCMFO algorithm Otsu’s function multilevel thresholding image segmentation brain MR image
下载PDF
Foreign Fiber Image Segmentation Based on Maximum Entropy and Genetic Algorithm 被引量:3
18
作者 Liping Chen Xiangyang Chen +2 位作者 Sile Wang Wenzhu Yang Sukui Lu 《Journal of Computer and Communications》 2015年第11期1-7,共7页
In machine-vision-based systems for detecting foreign fibers, due to the background of the cotton layer has the absolute advantage in the whole image, while the foreign fiber only account for a very small part, and w... In machine-vision-based systems for detecting foreign fibers, due to the background of the cotton layer has the absolute advantage in the whole image, while the foreign fiber only account for a very small part, and what’s more, the brightness and contrast of the image are all poor. Using the traditional image segmentation method, the segmentation results are very poor. By adopting the maximum entropy and genetic algorithm, the maximum entropy function was used as the fitness function of genetic algorithm. Through continuous optimization, the optimal segmentation threshold is determined. Experimental results prove that the image segmentation of this paper not only fast and accurate, but also has strong adaptability. 展开更多
关键词 FOREIGN Fibers Image segmentation MAXIMUM ENTROPY GENETIC algorithm
下载PDF
Fast interactive segmentation algorithm of image sequences based on relative fuzzy connectedness 被引量:1
19
作者 Tian Chunna Gao Xinbo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期750-755,共6页
A fast interactive segmentation algorithm of image-sequences based on relative fuzzy connectedness is presented. In comparison with the original algorithm, the proposed one, with the same accuracy, accelerates the seg... A fast interactive segmentation algorithm of image-sequences based on relative fuzzy connectedness is presented. In comparison with the original algorithm, the proposed one, with the same accuracy, accelerates the segmentation speed by three times for single image. Meanwhile, this fast segmentation algorithm is extended from single object to multiple objects and from single-image to image-sequences. Thus the segmentation of multiple objects from complex hackground and batch segmentation of image-sequences can be achieved. In addition, a post-processing scheme is incorporated in this algorithm, which extracts smooth edge with one-pixel-width for each segmented object. The experimental results illustrate that the proposed algorithm can obtain the object regions of interest from medical image or image-sequences as well as man-made images quickly and reliably with only a little interaction. 展开更多
关键词 fuzzy connectedness interactive image segmentation image-sequences segmentation multiple objects segmentation fast algorithm.
下载PDF
An Improved Jellyfish Algorithm for Multilevel Thresholding of Magnetic Resonance Brain Image Segmentations 被引量:4
20
作者 Mohamed Abdel-Basset Reda Mohamed +3 位作者 Mohamed Abouhawwash Ripon K.Chakrabortty Michael J.Ryan Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2021年第9期2961-2977,共17页
Image segmentation is vital when analyzing medical images,especially magnetic resonance(MR)images of the brain.Recently,several image segmentation techniques based on multilevel thresholding have been proposed for med... Image segmentation is vital when analyzing medical images,especially magnetic resonance(MR)images of the brain.Recently,several image segmentation techniques based on multilevel thresholding have been proposed for medical image segmentation;however,the algorithms become trapped in local minima and have low convergence speeds,particularly as the number of threshold levels increases.Consequently,in this paper,we develop a new multilevel thresholding image segmentation technique based on the jellyfish search algorithm(JSA)(an optimizer).We modify the JSA to prevent descents into local minima,and we accelerate convergence toward optimal solutions.The improvement is achieved by applying two novel strategies:Rankingbased updating and an adaptive method.Ranking-based updating is used to replace undesirable solutions with other solutions generated by a novel updating scheme that improves the qualities of the removed solutions.We develop a new adaptive strategy to exploit the ability of the JSA to find a best-so-far solution;we allow a small amount of exploration to avoid descents into local minima.The two strategies are integrated with the JSA to produce an improved JSA(IJSA)that optimally thresholds brain MR images.To compare the performances of the IJSA and JSA,seven brain MR images were segmented at threshold levels of 3,4,5,6,7,8,10,15,20,25,and 30.IJSA was compared with several other recent image segmentation algorithms,including the improved and standard marine predator algorithms,the modified salp and standard salp swarm algorithms,the equilibrium optimizer,and the standard JSA in terms of fitness,the Structured Similarity Index Metric(SSIM),the peak signal-to-noise ratio(PSNR),the standard deviation(SD),and the Features Similarity Index Metric(FSIM).The experimental outcomes and the Wilcoxon rank-sum test demonstrate the superiority of the proposed algorithm in terms of the FSIM,the PSNR,the objective values,and the SD;in terms of the SSIM,IJSA was competitive with the others. 展开更多
关键词 Magnetic resonance imaging brain image segmentation artificial jellyfish search algorithm ranking method local minima Otsu method
下载PDF
上一页 1 2 215 下一页 到第
使用帮助 返回顶部