期刊文献+
共找到2,999篇文章
< 1 2 150 >
每页显示 20 50 100
Multi-Scale Mixed Attention Tea Shoot Instance Segmentation Model
1
作者 Dongmei Chen Peipei Cao +5 位作者 Lijie Yan Huidong Chen Jia Lin Xin Li Lin Yuan Kaihua Wu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期261-275,共15页
Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often... Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales. 展开更多
关键词 Tea shoots attention mechanism multi-scale feature extraction instance segmentation deep learning
下载PDF
Two Stages Segmentation Algorithm of Breast Tumor in DCE-MRI Based on Multi-Scale Feature and Boundary Attention Mechanism
2
作者 Bing Li Liangyu Wang +3 位作者 Xia Liu Hongbin Fan Bo Wang Shoudi Tong 《Computers, Materials & Continua》 SCIE EI 2024年第7期1543-1561,共19页
Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low a... Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation.Thus,we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms.Initially,the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs.Subsequently,we devise a fusion network incorporatingmulti-scale features and boundary attentionmechanisms for breast tumor segmentation.We incorporate multi-scale parallel dilated convolution modules into the network,enhancing its capability to segment tumors of various sizes through multi-scale convolution and novel fusion techniques.Additionally,attention and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing nonlocal dependencies in both spatial and channel domains.Furthermore,a hybrid loss function with boundary weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance capability through additional loss.Themethod was evaluated using breast data from 207 patients at RuijinHospital,resulting in a 6.64%increase in Dice similarity coefficient compared to the benchmarkU-Net.Experimental results demonstrate the superiority of the method over other segmentation techniques,with fewer model parameters. 展开更多
关键词 Dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) breast tumor segmentation multi-scale dilated convolution boundary attention the hybrid loss function with boundary weight
下载PDF
Nonlinear Flap-Wise Vibration Characteristics ofWind Turbine Blades Based onMulti-Scale AnalysisMethod
3
作者 Qifa Lang Yuqiao Zheng +2 位作者 Tiancai Cui Chenglong Shi Heyu Zhang 《Energy Engineering》 EI 2024年第2期483-498,共16页
This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NR... This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NREL),to research the effects of the nonlinear flap-wise vibration characteristics.The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam,and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first.Then,the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the centrifugal force.Lastly,it is truncated by the Galerkin method and analyzed semi-analytically using the multi-scale analysis method,and numerical simulations are carried out to compare the simulation results of finite elements with the numerical simulation results using Campbell diagram analysis of blade vibration.The results indicated that the rotational speed of the impeller has a significant impact on blade vibration.When the wheel speed of 12.1 rpm and excitation amplitude of 1.23 the maximum displacement amplitude of the blade has increased from 0.72 to 3.16.From the amplitude-frequency curve,it can be seen that the multi-peak characteristic of blade amplitude frequency is under centrifugal nonlinearity.Closed phase trajectories in blade nonlinear vibration,exhibiting periodic motion characteristics,are found through phase diagrams and Poincare section diagrams. 展开更多
关键词 Wind turbine blades nonlinear vibration Galerkin method multi-scales method
下载PDF
Cascading multi-segment rupture process of the 2023 Turkish earthquake doublet on a complex fault system revealed by teleseismic P wave back projection method 被引量:1
4
作者 Bonan Cao Zengxi Ge 《Earthquake Science》 2024年第2期158-173,共16页
In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back proj... In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks. 展开更多
关键词 2023 Turkish earthquake doublet back projection method cascading segmented rupture process coseismic triggering super-shear ruptures
下载PDF
Colorectal Cancer Segmentation Algorithm Based on Deep Features from Enhanced CT Images
5
作者 Shi Qiu Hongbing Lu +2 位作者 Jun Shu Ting Liang Tao Zhou 《Computers, Materials & Continua》 SCIE EI 2024年第8期2495-2510,共16页
Colorectal cancer,a malignant lesion of the intestines,significantly affects human health and life,emphasizing the necessity of early detection and treatment.Accurate segmentation of colorectal cancer regions directly... Colorectal cancer,a malignant lesion of the intestines,significantly affects human health and life,emphasizing the necessity of early detection and treatment.Accurate segmentation of colorectal cancer regions directly impacts subsequent staging,treatment methods,and prognostic outcomes.While colonoscopy is an effective method for detecting colorectal cancer,its data collection approach can cause patient discomfort.To address this,current research utilizes Computed Tomography(CT)imaging;however,conventional CT images only capture transient states,lacking sufficient representational capability to precisely locate colorectal cancer.This study utilizes enhanced CT images,constructing a deep feature network from the arterial,portal venous,and delay phases to simulate the physician’s diagnostic process and achieve accurate cancer segmentation.The innovations include:1)Utilizing portal venous phase CT images to introduce a context-aware multi-scale aggregation module for preliminary shape extraction of colorectal cancer.2)Building an image sequence based on arterial and delay phases,transforming the cancer segmentation issue into an anomaly detection problem,establishing a pixel-pairing strategy,and proposing a colorectal cancer segmentation algorithm using a Siamese network.Experiments with 84 clinical cases of colorectal cancer enhanced CT data demonstrated an Area Overlap Measure of 0.90,significantly better than Fully Convolutional Networks(FCNs)at 0.20.Future research will explore the relationship between conventional and enhanced CT to further reduce segmentation time and improve accuracy. 展开更多
关键词 Colorectal cancer enhanced CT multi-scale siamese network segmentation
下载PDF
Attention Guided Multi Scale Feature Fusion Network for Automatic Prostate Segmentation
6
作者 Yuchun Li Mengxing Huang +1 位作者 Yu Zhang Zhiming Bai 《Computers, Materials & Continua》 SCIE EI 2024年第2期1649-1668,共20页
The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prosta... The precise and automatic segmentation of prostate magnetic resonance imaging(MRI)images is vital for assisting doctors in diagnosing prostate diseases.In recent years,many advanced methods have been applied to prostate segmentation,but due to the variability caused by prostate diseases,automatic segmentation of the prostate presents significant challenges.In this paper,we propose an attention-guided multi-scale feature fusion network(AGMSF-Net)to segment prostate MRI images.We propose an attention mechanism for extracting multi-scale features,and introduce a 3D transformer module to enhance global feature representation by adding it during the transition phase from encoder to decoder.In the decoder stage,a feature fusion module is proposed to obtain global context information.We evaluate our model on MRI images of the prostate acquired from a local hospital.The relative volume difference(RVD)and dice similarity coefficient(DSC)between the results of automatic prostate segmentation and ground truth were 1.21%and 93.68%,respectively.To quantitatively evaluate prostate volume on MRI,which is of significant clinical significance,we propose a unique AGMSF-Net.The essential performance evaluation and validation experiments have demonstrated the effectiveness of our method in automatic prostate segmentation. 展开更多
关键词 Prostate segmentation multi-scale attention 3D Transformer feature fusion MRI
下载PDF
Integrated multi-scale approach combining global homogenization and local refinement for multi-field analysis of high-temperature superconducting composite magnets
7
作者 Hanxiao GUO Peifeng GAO Xingzhe WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期747-762,共16页
Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting app... Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets. 展开更多
关键词 epoxy-impregnated high-temperature superconducting(HTS)magnet multi-scale method global homogenization(GH) local refinement(LR) multi-field analysis
下载PDF
An Efficient Smoothing and Thresholding Image Segmentation Framework with Weighted Anisotropic-Isotropic Total Variation
8
作者 Kevin Bui Yifei Lou +1 位作者 Fredrick Park Jack Xin 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1369-1405,共37页
In this paper,we design an efficient,multi-stage image segmentation framework that incorporates a weighted difference of anisotropic and isotropic total variation(AITV).The segmentation framework generally consists of... In this paper,we design an efficient,multi-stage image segmentation framework that incorporates a weighted difference of anisotropic and isotropic total variation(AITV).The segmentation framework generally consists of two stages:smoothing and thresholding,thus referred to as smoothing-and-thresholding(SaT).In the first stage,a smoothed image is obtained by an AITV-regularized Mumford-Shah(MS)model,which can be solved efficiently by the alternating direction method of multipliers(ADMMs)with a closed-form solution of a proximal operator of the l_(1)-αl_(2) regularizer.The convergence of the ADMM algorithm is analyzed.In the second stage,we threshold the smoothed image by K-means clustering to obtain the final segmentation result.Numerical experiments demonstrate that the proposed segmentation framework is versatile for both grayscale and color images,effcient in producing high-quality segmentation results within a few seconds,and robust to input images that are corrupted with noise,blur,or both.We compare the AITV method with its original convex TV and nonconvex TVP(O<p<1)counterparts,showcasing the qualitative and quantitative advantages of our proposed method. 展开更多
关键词 Image segmentation Non-convex optimization Mumford-Shah(MS)model Alternating direction method of multipliers(ADMMs) Proximal operator
下载PDF
Adaptive Boundary and Semantic Composite Segmentation Method for Individual Objects in Aerial Images
9
作者 Ying Li Guanghong Gong +1 位作者 Dan Wang Ni Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2237-2265,共29页
There are two types of methods for image segmentation.One is traditional image processing methods,which are sensitive to details and boundaries,yet fail to recognize semantic information.The other is deep learning met... There are two types of methods for image segmentation.One is traditional image processing methods,which are sensitive to details and boundaries,yet fail to recognize semantic information.The other is deep learning methods,which can locate and identify different objects,but boundary identifications are not accurate enough.Both of them cannot generate entire segmentation information.In order to obtain accurate edge detection and semantic information,an Adaptive Boundary and Semantic Composite Segmentation method(ABSCS)is proposed.This method can precisely semantic segment individual objects in large-size aerial images with limited GPU performances.It includes adaptively dividing and modifying the aerial images with the proposed principles and methods,using the deep learning method to semantic segment and preprocess the small divided pieces,using three traditional methods to segment and preprocess original-size aerial images,adaptively selecting traditional results tomodify the boundaries of individual objects in deep learning results,and combining the results of different objects.Individual object semantic segmentation experiments are conducted by using the AeroScapes dataset,and their results are analyzed qualitatively and quantitatively.The experimental results demonstrate that the proposed method can achieve more promising object boundaries than the original deep learning method.This work also demonstrates the advantages of the proposed method in applications of point cloud semantic segmentation and image inpainting. 展开更多
关键词 Semantic segmentation aerial images composite method traditional image processing deep learning
下载PDF
An algorithm for segmentation of lung ROI by mean-shift clustering combined with multi-scale HESSIAN matrix dot filtering 被引量:7
10
作者 魏颖 李锐 +1 位作者 杨金柱 赵大哲 《Journal of Central South University》 SCIE EI CAS 2012年第12期3500-3509,共10页
A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN ... A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN matrix dot filters,round suspected nodular lesions in the image were enhanced,and linear shape regions of the trachea and vascular were suppressed.Then,three types of information,such as,shape filtering value of HESSIAN matrix,gray value,and spatial location,were introduced to feature space.The kernel function of mean-shift clustering was divided into product form of three kinds of kernel functions corresponding to the three feature information.Finally,bandwidths were calculated adaptively to determine the bandwidth of each suspected area,and they were used in mean-shift clustering segmentation.Experimental results show that by the introduction of HESSIAN matrix of dot filtering information to mean-shift clustering,nodular regions can be segmented from blood vessels,trachea,or cross regions connected to the nodule,non-nodular areas can be removed from ROIs properly,and ground glass object(GGO)nodular areas can also be segmented.For the experimental data set of 127 different forms of nodules,the average accuracy of the proposed algorithm is more than 90%. 展开更多
关键词 HESSIAN matrix multi-scale dot filtering mean-shift clustering segmentation of suspected areas lung computer-aideddetection/diagnosis
下载PDF
Watershed segmentation based on hierarchical multi-scale modification of morphological gradient 被引量:1
11
作者 WANG Xiao-peng ZHAO Jun-jun +1 位作者 MA Peng YAO Li-juan 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2017年第1期60-67,共8页
Watershed segmentation is sensitive to noises and irregular details within the image,which frequently leads to a serious over-segmentation Linear filtering before watershed segmentation can reduce over-segmentation to... Watershed segmentation is sensitive to noises and irregular details within the image,which frequently leads to a serious over-segmentation Linear filtering before watershed segmentation can reduce over-segmentation to some extent,however,it often causes the position offset of object contours.For the purpose of reducing over-segmentation to preserve the location of object contours,the watershed segmentation based on the hierarchical multi-scale modification of morphological gradient is proposed.Firstly,multi-scale morphological filtering was employed to smooth the original image.Then,the gradient image was divided into multi-levels by the volume of three-dimension topographic relief,where the lower gradient layers were further modifiedby morphological closing with larger-sized structuring-elements,and the higher layers with the smaller one.In this way,most local minimums caused by irregular details and noises can be removed,while region contour positions corresponding to the target area were largely preserved.Finally,morphological watershed algorithm was employed to implement segmentation on the modified gradient image.The experimental results show that the proposed method can greatly reduce the over-segmentation of the watershed and avoid the position offset of the object contours. 展开更多
关键词 watershed segmentation gradient modification hierarchical multi-scale morphological filtering structuring element
下载PDF
A Multi-Scale Network with the Encoder-Decoder Structure for CMR Segmentation 被引量:1
12
作者 Chaoyang Xia Jing Peng +1 位作者 Zongqing Ma Xiaojie Li 《Journal of Information Hiding and Privacy Protection》 2019年第3期109-117,共9页
Cardiomyopathy is one of the most serious public health threats.The precise structural and functional cardiac measurement is an essential step for clinical diagnosis and follow-up treatment planning.Cardiologists are ... Cardiomyopathy is one of the most serious public health threats.The precise structural and functional cardiac measurement is an essential step for clinical diagnosis and follow-up treatment planning.Cardiologists are often required to draw endocardial and epicardial contours of the left ventricle(LV)manually in routine clinical diagnosis or treatment planning period.This task is time-consuming and error-prone.Therefore,it is necessary to develop a fully automated end-to-end semantic segmentation method on cardiac magnetic resonance(CMR)imaging datasets.However,due to the low image quality and the deformation caused by heartbeat,there is no effective tool for fully automated end-to-end cardiac segmentation task.In this work,we propose a multi-scale segmentation network(MSSN)for left ventricle segmentation.It can effectively learn myocardium and blood pool structure representations from 2D short-axis CMR image slices in a multi-scale way.Specifically,our method employs both parallel and serial of dilated convolution layers with different dilation rates to capture multi-scale semantic features.Moreover,we design graduated up-sampling layers with subpixel layers as the decoder to reconstruct lost spatial information and produce accurate segmentation masks.We validated our method using 164 T1 Mapping CMR images and showed that it outperforms the advanced convolutional neural network(CNN)models.In validation metrics,we archived the Dice Similarity Coefficient(DSC)metric of 78.96%. 展开更多
关键词 Cardiac magnetic resonance imaging multi-scale semantic segmentation convolutional neural networks
下载PDF
2D multi-scale hybrid optimization method for geophysical inversion and its application 被引量:2
13
作者 潘纪顺 王新建 +4 位作者 张先康 徐朝繁 Zhao Ping 田晓峰 潘素珍 《Applied Geophysics》 SCIE CSCD 2009年第4期337-348,394,共13页
Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. ... Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. Based on the simulated annealing genetic algorithm (SAGA) and the simplex algorithm, an efficient and robust 2-D nonlinear method for seismic travel-time inversion is presented in this paper. First we do a global search over a large range by SAGA and then do a rapid local search using the simplex method. A multi-scale tomography method is adopted in order to reduce non-uniqueness. The velocity field is divided into different spatial scales and velocities at the grid nodes are taken as unknown parameters. The model is parameterized by a bi-cubic spline function. The finite-difference method is used to solve the forward problem while the hybrid method combining multi-scale SAGA and simplex algorithms is applied to the inverse problem. The algorithm has been applied to a numerical test and a travel-time perturbation test using an anomalous low-velocity body. For a practical example, it is used in the study of upper crustal velocity structure of the A'nyemaqen suture zone at the north-east edge of the Qinghai-Tibet Plateau. The model test and practical application both prove that the method is effective and robust. 展开更多
关键词 multi-scale seismic travel-time tomography hybrid optimization method INVERSION A'nyemaqen suture zone
下载PDF
Approximate analytical solution in slow-fast system based on modified multi-scale method 被引量:4
14
作者 Xianghong LI Jianhua TANG +1 位作者 Yanli WANG Yongjun SHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第4期605-622,共18页
A simple,yet accurate modi?ed multi-scale method(MMSM)for an approximately analytical solution in nonlinear oscillators with two time scales under forced harmonic excitation is proposed.This method depends on the clas... A simple,yet accurate modi?ed multi-scale method(MMSM)for an approximately analytical solution in nonlinear oscillators with two time scales under forced harmonic excitation is proposed.This method depends on the classical multi-scale method(MSM)and the method of variation of parameters.Assuming that the forced excitation is a constant,one could easily obtain the approximate analytical solution of the simpli?ed system based on the traditional MSM.Then,this solution for the oscillator under forced harmonic excitation could be established after replacing the harmonic excitation by the constant excitation.To certify the correctness and precision of the proposed analytical method,the van der Pol system with two scales subject to slowly periodic excitation is investigated;this system presents rich dynamical phenomena such as spiking(SP),spiking-quiescence(SP-QS),and quiescence(QS)responses.The approximate analytical expressions of the three types of responses are given by the MMSM,and it can be found that the precision of the new analytical method is higher than that of the classical MSM and better than that of the harmonic balance method(HBM).The results obtained by the present method are considerably better than those obtained by traditional methods,quantitatively and qualitatively,particularly when the excitation frequency is far less than the natural frequency of the system. 展开更多
关键词 modified multi-scale method(MMSM) slow-fast system multi-scale method(MSM) van der Pol system
下载PDF
DT-Net:Joint Dual-Input Transformer and CNN for Retinal Vessel Segmentation
15
作者 Wenran Jia Simin Ma +1 位作者 Peng Geng Yan Sun 《Computers, Materials & Continua》 SCIE EI 2023年第9期3393-3411,共19页
Retinal vessel segmentation in fundus images plays an essential role in the screening,diagnosis,and treatment of many diseases.The acquired fundus images generally have the following problems:uneven illumination,high ... Retinal vessel segmentation in fundus images plays an essential role in the screening,diagnosis,and treatment of many diseases.The acquired fundus images generally have the following problems:uneven illumination,high noise,and complex structure.It makes vessel segmentation very challenging.Previous methods of retinal vascular segmentation mainly use convolutional neural networks on U Network(U-Net)models,and they have many limitations and shortcomings,such as the loss of microvascular details at the end of the vessels.We address the limitations of convolution by introducing the transformer into retinal vessel segmentation.Therefore,we propose a hybrid method for retinal vessel segmentation based on modulated deformable convolution and the transformer,named DT-Net.Firstly,multi-scale image features are extracted by deformable convolution and multi-head selfattention(MHSA).Secondly,image information is recovered,and vessel morphology is refined by the proposed transformer decoder block.Finally,the local prediction results are obtained by the side output layer.The accuracy of the vessel segmentation is improved by the hybrid loss function.Experimental results show that our method obtains good segmentation performance on Specificity(SP),Sensitivity(SE),Accuracy(ACC),Curve(AUC),and F1-score on three publicly available fundus datasets such as DRIVE,STARE,and CHASE_DB1. 展开更多
关键词 Retinal vessel segmentation deformable convolution multi-scale TRANSFORMER hybrid loss function
下载PDF
Electrical Tree Image Segmentation Using Hybrid Multi Scale Line Tracking Algorithm
16
作者 Mohd Annuar Isa Mohamad Nur Khairul Hafizi Rohani +7 位作者 Baharuddin Ismail Mohamad Kamarol Jamil Muzamir Isa Afifah Shuhada Rosmi Mohd Aminudin Jamlos Wan Azani Mustafa Nurulbariah Idris Abdullahi Abubakar Mas’ud 《Computers, Materials & Continua》 SCIE EI 2023年第4期741-760,共20页
Electrical trees are an aging mechanismmost associated with partial discharge(PD)activities in crosslinked polyethylene(XLPE)insulation of high-voltage(HV)cables.Characterization of electrical tree structures gained c... Electrical trees are an aging mechanismmost associated with partial discharge(PD)activities in crosslinked polyethylene(XLPE)insulation of high-voltage(HV)cables.Characterization of electrical tree structures gained considerable attention from researchers since a deep understanding of the tree morphology is required to develop new insulation material.Two-dimensional(2D)optical microscopy is primarily used to examine tree structures and propagation shapes with image segmentation methods.However,since electrical trees can emerge in different shapes such as bush-type or branch-type,treeing images are complicated to segment due to manifestation of convoluted tree branches,leading to a high misclassification rate during segmentation.Therefore,this study proposed a new method for segmenting 2D electrical tree images based on the multi-scale line tracking algorithm(MSLTA)by integrating batch processing method.The proposed method,h-MSLTA aims to provide accurate segmentation of electrical tree images obtained over a period of tree propagation observation under optical microscopy.The initial phase involves XLPE sample preparation and treeing image acquisition under real-time microscopy observation.The treeing images are then sampled and binarized in pre-processing.In the next phase,segmentation of tree structures is performed using the h-MSLTA by utilizing batch processing in multiple instances of treeing duration.Finally,the comparative investigation has been conducted using standard performance assessment metrics,including accuracy,sensitivity,specificity,Dice coefficient and Matthew’s correlation coefficient(MCC).Based on segmentation performance evaluation against several established segmentation methods,h-MSLTA achieved better results of 95.43%accuracy,97.28%specificity,69.43%sensitivity rate with 23.38%and 24.16%average improvement in Dice coefficient and MCC score respectively over the original algorithm.In addition,h-MSLTA produced accurate measurement results of global tree parameters of length and width in comparison with the ground truth image.These results indicated that the proposed method had a solid performance in terms of segmenting electrical tree branches in 2D treeing images compared to other established techniques. 展开更多
关键词 Image segmentation multi-scale line tracking electrical tree partial discharge high-voltage cable
下载PDF
A Lightweight Road Scene Semantic Segmentation Algorithm
17
作者 Jiansheng Peng Qing Yang Yaru Hou 《Computers, Materials & Continua》 SCIE EI 2023年第11期1929-1948,共20页
In recent years,with the continuous deepening of smart city construction,there have been significant changes and improvements in the field of intelligent transportation.The semantic segmentation of road scenes has imp... In recent years,with the continuous deepening of smart city construction,there have been significant changes and improvements in the field of intelligent transportation.The semantic segmentation of road scenes has important practical significance in the fields of automatic driving,transportation planning,and intelligent transportation systems.However,the current mainstream lightweight semantic segmentation models in road scene segmentation face problems such as poor segmentation performance of small targets and insufficient refinement of segmentation edges.Therefore,this article proposes a lightweight semantic segmentation model based on the LiteSeg model improvement to address these issues.The model uses the lightweight backbone network MobileNet instead of the LiteSeg backbone network to reduce the network parameters and computation,and combines the Coordinate Attention(CA)mechanism to help the network capture long-distance dependencies.At the same time,by combining the dependencies of spatial information and channel information,the Spatial and Channel Network(SCNet)attention mechanism is proposed to improve the feature extraction ability of the model.Finally,a multiscale transposed attention encoding(MTAE)module was proposed to obtain features of different resolutions and perform feature fusion.In this paper,the proposed model is verified on the Cityscapes dataset.The experimental results show that the addition of SCNet and MTAE modules increases the mean Intersection over Union(mIoU)of the original LiteSeg model by 4.69%.On this basis,the backbone network is replaced with MobileNet,and the CA model is added at the same time.At the cost of increasing the minimum model parameters and computing costs,the mIoU of the original LiteSeg model is increased by 2.46%.This article also compares the proposed model with some current lightweight semantic segmentation models,and experiments show that the comprehensive performance of the proposed model is the best,especially in achieving excellent results in small object segmentation.Finally,this article will conduct generalization testing on the KITTI dataset for the proposed model,and the experimental results show that the proposed algorithm has a certain degree of generalization. 展开更多
关键词 Semantic segmentation LIGHTWEIGHT road scenes multi-scale transposition attention encoding(MTAE)
下载PDF
New normalized nonlocal hybrid level set method for image segmentation 被引量:1
18
作者 LOU Qiong PENG Jia-lin +1 位作者 KONG De-xing WANG Chun-lin 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2017年第4期407-421,共15页
This article introduces a new normalized nonlocal hybrid level set method for image segmentation.Due to intensity overlapping,blurred edges with complex backgrounds,simple intensity and texture information,such kind o... This article introduces a new normalized nonlocal hybrid level set method for image segmentation.Due to intensity overlapping,blurred edges with complex backgrounds,simple intensity and texture information,such kind of image segmentation is still a challenging task.The proposed method uses both the region and boundary information to achieve accurate segmentation results.The region information can help to identify rough region of interest and prevent the boundary leakage problem.It makes use of normalized nonlocal comparisons between pairs of patches in each region,and a heuristic intensity model is proposed to suppress irrelevant strong edges and constrain the segmentation.The boundary information can help to detect the precise location of the target object,it makes use of the geodesic active contour model to obtain the target boundary.The corresponding variational segmentation problem is implemented by a level set formulation.We use an internal energy term for geometric active contours to penalize the deviation of the level set function from a signed distance function.At last,experimental results on synthetic images and real images are shown in the paper with promising results. 展开更多
关键词 image segmentation level set method nonlocal method intensity information active contours NORMALIZATION
下载PDF
Enhanced Feature Fusion Segmentation for Tumor Detection Using Intelligent Techniques
19
作者 R.Radha R.Gopalakrishnan 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3113-3127,共15页
In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective... In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective cells precisely during the diagnosis phase helps tofight the greatest exterminator of mankind.Early detec-tion of these defective cells requires an accurate computer-aided diagnostic system(CAD)that supports early treatment and promotes survival rates of patients.An ear-lier version of CAD systems relies greatly on the expertise of radiologist and it con-sumed more time to identify the defective region.The manuscript takes the efficacy of coalescing features like intensity,shape,and texture of the magnetic resonance image(MRI).In the Enhanced Feature Fusion Segmentation based classification method(EEFS)the image is enhanced and segmented to extract the prominent fea-tures.To bring out the desired effect the EEFS method uses Enhanced Local Binary Pattern(EnLBP),Partisan Gray Level Co-occurrence Matrix Histogram of Oriented Gradients(PGLCMHOG),and iGrab cut method to segment image.These prominent features along with deep features are coalesced to provide a single-dimensional fea-ture vector that is effectively used for prediction.The coalesced vector is used with the existing classifiers to compare the results of these classifiers with that of the gen-erated vector.The generated vector provides promising results with commendably less computatio nal time for pre-processing and classification of MR medical images. 展开更多
关键词 Enhanced local binary pattern LEVEL iGrab cut method magnetic resonance image computer aided diagnostic system enhanced feature fusion segmentation enhanced local binary pattern
下载PDF
AN AUTOMATIC SEGMENTATION METHOD FOR FAST IMAGING IN PET
20
作者 翁是强 V.Bettinadi 《Nuclear Science and Techniques》 SCIE CAS CSCD 1993年第2期114-119,共6页
A new segmentation method has been developed for PET fast imaging. The technique automatically segments the transmission images into different anatomical regions, it efficiently reduced the PET transmission scan time.... A new segmentation method has been developed for PET fast imaging. The technique automatically segments the transmission images into different anatomical regions, it efficiently reduced the PET transmission scan time. The result shows that this method gives only 3 min-scan time which is perfect for attenuation correction of the PET images instead of the original 15-30 min-scan time. This approach has been successfully tested both on phantom and clinical data. 展开更多
关键词 PET TR IMAGING segmentation Clustered segmentation method PYRAMID Fast IMAGING PYRAMID structure
下载PDF
上一页 1 2 150 下一页 到第
使用帮助 返回顶部