A new method is presented to generate two-directional (2D) grid multi-scroll chaotic attractors via a specific form of the sine function and sign function series, which are applied to increase saddle points of index 2...A new method is presented to generate two-directional (2D) grid multi-scroll chaotic attractors via a specific form of the sine function and sign function series, which are applied to increase saddle points of index 2. The scroll number in the x-direction is modified easily through changing the thresholds of the specific form of the sine function, while the scroll number in the y-direction is controlled by the sign function series. Some basic dynamical properties, such as equilibrium points, bifurcation diagram, phase portraits, and Lyapunov exponents spectrum are studied. Furthermore, the electronic circuit of the system is designed and its simulation results are given by Multisim 10.展开更多
This paper proposed a method of generating two attractors in a novel grid multi-scroll chaotic system. Based on a newly generated three-dimensional system, a two-attractor grid multi-scroll attractor system can be gen...This paper proposed a method of generating two attractors in a novel grid multi-scroll chaotic system. Based on a newly generated three-dimensional system, a two-attractor grid multi-scroll attractor system can be generated by adding two triangular waves and a sign function. Some basic dynamical properties, such as equilibrium points, bifurcations, and phase diagrams, were studied. Furthermore, the system was experimentally confirmed by an electronic circuit. The circuit simulation results and numerical simulation results verified the feasibility of this method.展开更多
This paper proposes a novel approach for generating a multi-scroll chaotic system. Together with the theoretical design and numerical simulations, three different types of attractor are available, governed by construc...This paper proposes a novel approach for generating a multi-scroll chaotic system. Together with the theoretical design and numerical simulations, three different types of attractor are available, governed by constructing triangular wave, sawtooth wave and hysteresis sequence. The presented new multi-scroll chaotic system is different from the classical multi-scroll chaotic Chua system in dimensionless state equations, nonlinear functions and maximum Lyapunov exponents. In addition, the basic dynamical behaviours, including equilibrium points, eigenvalues, eigenvectors, eigenplanes, bifurcation diagrams and Lyapunov exponents, are further investigated. The success of the design is illustrated by both numerical simulations and circuit experiments.展开更多
In this paper a new simple multi-scroll chaotic generator is studied. The characteristic of this new multi-scroll chaotic generator is that it is easy to generate different number of scroll chaotic attractors through ...In this paper a new simple multi-scroll chaotic generator is studied. The characteristic of this new multi-scroll chaotic generator is that it is easy to generate different number of scroll chaotic attractors through modifying the nature number n after fixing the suitable system parameters and it does not need complex mathematical derivation. Various number of scroll chaotic attractors are illustrated not only by computer simulation but also by the realization of an electronic circuit experiment on Electronic Workbench (EWB).展开更多
Based on Lyapunov theory, the adaptive generalized synchronization between Chen system and a multi-scroll chaotic system is investigated. According to the form of target function a proper adaptive controller is design...Based on Lyapunov theory, the adaptive generalized synchronization between Chen system and a multi-scroll chaotic system is investigated. According to the form of target function a proper adaptive controller is designed, by which the controlled Chen system can be synchronized with a multi-scroll chaotic system including unknown parameters. The Lyapunov direct method is exploited to prove that the synchronization error and parameter identification error both converge to zero. Numerical simulation results verify the feasibility of the proposed method further.展开更多
Based on a new three-dimensional autonomous linear system and designing a specific form of saturated function series and a sign function with two variables of system, which are employed to increase saddle-focus equili...Based on a new three-dimensional autonomous linear system and designing a specific form of saturated function series and a sign function with two variables of system, which are employed to increase saddle-focus equilibrium points with index 2, a novel multi-scroll chaotic system is proposed and its typical dynamical characteristics including bifurcation diagram, Poincare map, and the stability of equilibrium points are analyzed. The hardware circuit is designed and the experimental results are presented for confirmation.展开更多
A novel 5-dimensional(5D) memristive chaotic system is proposed, in which multi-scroll hidden attractors and multiwing hidden attractors can be observed on different phase planes. The dynamical system has multiple l...A novel 5-dimensional(5D) memristive chaotic system is proposed, in which multi-scroll hidden attractors and multiwing hidden attractors can be observed on different phase planes. The dynamical system has multiple lines of equilibria or no equilibrium when the system parameters are appropriately selected, and the multi-scroll hidden attractors and multi-wing hidden attractors have nothing to do with the system equilibria. Particularly, the numbers of multi-scroll hidden attractors and multi-wing hidden attractors are sensitive to the transient simulation time and the initial values. Dynamical properties of the system, such as phase plane, time series, frequency spectra, Lyapunov exponent, and Poincar′e map, are studied in detail. In addition, a state feedback controller is designed to select multiple hidden attractors within a long enough simulation time. Finally, an electronic circuit is realized in Pspice, and the experimental results are in agreement with the numerical ones.展开更多
This paper proposes a new simple autonomous chaotic system which can generate multi-scroll chaotic attractors. The characteristic of this new multi-scroll chaotic system is that the 4n + 2rn + 4-scroll chaotic attra...This paper proposes a new simple autonomous chaotic system which can generate multi-scroll chaotic attractors. The characteristic of this new multi-scroll chaotic system is that the 4n + 2rn + 4-scroll chaotic attractors are generated easily with n and m vaxying under n ≤ m. Various number of scroll chaotic attractors are illustrated not only by computer simulation but also by the realization of an electronic circuit experiment on EWB (Electronics Workbench).展开更多
A novel memristor-based multi-scroll hyperchaotic system is proposed.Based on a voltage-controlled memristor and a modulating sine nonlinear function,a novel method is proposed to generate the multi-scroll hyperchaoti...A novel memristor-based multi-scroll hyperchaotic system is proposed.Based on a voltage-controlled memristor and a modulating sine nonlinear function,a novel method is proposed to generate the multi-scroll hyperchaotic attractors.Firstly,a multi-scroll chaotic system is constructed from a three-dimensional chaotic system by designing a modulating sine nonlinear function.Then,a voltage-controlled memristor is introduced into the above-designed multi-scroll chaotic system.Thus,a memristor-based multi-scroll hyperchaotic system is generated,and this hyperchaotic system can produce various coexisting hyperchaotic attractors with different topological structures.Moreover,different number of scrolls and different topological attractors can be obtained by varying the initial conditions of this system without changing the system parameters.The Lyapunov exponents,bifurcation diagrams and basins of attraction are given to analyze the dynamical characteristics of the multi-scroll hyperchaotic system.Besides,the field programmable gate array(FPGA)based digital implementation of the memristor-based multi-scroll hyperchaotic system is carried out.The experimental results of the FPGA-based digital circuit are displayed on the oscilloscope.展开更多
A new four-dimensional quadratic smooth autonomous chaotic system is presented in this paper, which can exhibit periodic orbit and chaos under the conditions on the system parameters. Importantly, the system can gener...A new four-dimensional quadratic smooth autonomous chaotic system is presented in this paper, which can exhibit periodic orbit and chaos under the conditions on the system parameters. Importantly, the system can generate one-, two-, three- and four-scroll chaotic attractors with appropriate choices of parameters. Interestingly, all the attractors are generated only by changing a single parameter. The dynamic analysis approach in the paper involves time series, phase portraits, Poincare maps, a bifurcation diagram, and Lyapunov exponents, to investigate some basic dynamical behaviours of the proposed four-dimensional system.展开更多
This paper presents a new 3D quadratic autonomous chaotic system which contains five system parameters and three quadratic cross-product terms,and the system can generate a single four-wing chaotic attractor with wide...This paper presents a new 3D quadratic autonomous chaotic system which contains five system parameters and three quadratic cross-product terms,and the system can generate a single four-wing chaotic attractor with wide parameter ranges. Through theoretical analysis,the Hopf bifurcation processes are proved to arise at certain equilibrium points.Numerical bifurcation analysis shows that the system has many interesting complex dynamical behaviours;the system trajectory can evolve to a chaotic attractor from a periodic orbit or a fixed point as the proper parameter varies. Finally,an analog electronic circuit is designed to physically realize the chaotic system;the existence of four-wing chaotic attractor is verified by the analog circuit realization.展开更多
This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz s...This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz system, where the two wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four wings (eight wings) of these novel attractors axe located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues.展开更多
Due to uncertain push-pull action across boundaries between different attractive domains by random excitations, attractors of a dynamical system will drift in the phase space, which readily leads to colliding and mixi...Due to uncertain push-pull action across boundaries between different attractive domains by random excitations, attractors of a dynamical system will drift in the phase space, which readily leads to colliding and mixing with each other, so it is very difficult to identify irregular signals evolving from arbitrary initial states. Here, periodic attractors from the simple cell mapping method are further iterated by a specific Poincare map in order to observe more elaborate structures and drifts as well as possible dynamical bifurcations. The panorama of a chaotic attractor can also be displayed to a great extent by this newly developed procedure. From the positions and the variations of attractors in the phase space, the action mechanism of bounded noise excitation is studied in detail. Several numerical examples are employed to illustrate the present procedure. It is seen that the dynamical identification and the bifurcation analysis can be effectively performed by this procedure.展开更多
In this paper, we propose a novel four-dimensional autonomous chaotic system. Of particular interest is that this novel system can generate one-, two, three- and four-wing chaotic attractors with the variation of a si...In this paper, we propose a novel four-dimensional autonomous chaotic system. Of particular interest is that this novel system can generate one-, two, three- and four-wing chaotic attractors with the variation of a single parameter, and the multi-wing type of the chaotic attractors can be displayed in all directions. The system is simple with a large positive Lyapunov exponent and can exhibit some interesting and complicated dynamical behaviours. Basic dynamical properties of the four-dimensional chaotic system, such as equilibrium points, the Poincare map, the bifurcation diagram and the Lyapunov exponents are investigated by using either theoretical analysis or numerical method. Finally, a circuit is designed for the implementation of the multi-wing chaotic attractors. The electronic workbench observations axe in good agreement with the numerical simulation results.展开更多
A new three-dimensional (3D) continuous autonomous system with one parameter and three quadratic terms is presented firstly in this paper. Countless embedded trumpet-shaped chaotic attractors in two opposite directi...A new three-dimensional (3D) continuous autonomous system with one parameter and three quadratic terms is presented firstly in this paper. Countless embedded trumpet-shaped chaotic attractors in two opposite directions are generated from the system as time goes on. The basic dynamical behaviors of the strange chaotic system are investigated. Another more complex 3D system with the same capability of generating countless embedded trumpet-shaped chaotic attractors is also put forward.展开更多
Complex chaotic sequences are widely employed in real world, so obtaining more complex sequences have received highly interest. For enhancing the complexity of chaotic sequences, a common approach is increasing the sc...Complex chaotic sequences are widely employed in real world, so obtaining more complex sequences have received highly interest. For enhancing the complexity of chaotic sequences, a common approach is increasing the scroll-number of attractors. In this paper, a novel method to control system for generating multi-layer nested chaotic attractors is proposed.At first, a piecewise(PW) function, namely quadratic staircase function, is designed. Unlike pulse signals, each level-logic of this function is square constant, and it is easy to realize. Then, by introducing the PW functions to a modified Chua's system with cubic nonlinear terms, the system can generate multi-layer nested Chua's attractors. The dynamical properties of the system are numerically investigated. Finally, the hardware implementation of the chaotic system is used FPGA chip.Experimental results show that theoretical analysis and numerical simulation are right. This chaotic oscillator consuming low power and utilization less resources is suitable for real applications.展开更多
A five-value memristor model is proposed,it is proved that the model has a typical hysteresis loop by analyzing the relationship between voltage and current.Then,based on the classical Liu-Chen system,a new memristor-...A five-value memristor model is proposed,it is proved that the model has a typical hysteresis loop by analyzing the relationship between voltage and current.Then,based on the classical Liu-Chen system,a new memristor-based fourdimensional(4D)chaotic system is designed by using the five-value memristor.The trajectory phase diagram,Poincare mapping,bifurcation diagram,and Lyapunov exponent spectrum are drawn by numerical simulation.It is found that,in addition to the general chaos characteristics,the system has some special phenomena,such as hidden homogenous multistabilities,hidden heterogeneous multistabilities,and hidden super-multistabilities.Finally,according to the dimensionless equation of the system,the circuit model of the system is built and simulated.The results are consistent with the numerical simulation results,which proves the physical realizability of the five-value memristor-based chaotic system proposed in this paper.展开更多
We study a novel class of two-dimensional maps with infinitely many coexisting attractors.Firstly,the mathematical model of these maps is formulated by introducing a sinusoidal function.The existence and the stability...We study a novel class of two-dimensional maps with infinitely many coexisting attractors.Firstly,the mathematical model of these maps is formulated by introducing a sinusoidal function.The existence and the stability of the fixed points in the model are studied indicating that they are infinitely many and all unstable.In particular,a computer searching program is employed to explore the chaotic attractors in these maps,and a simple map is exemplified to show their complex dynamics.Interestingly,this map contains infinitely many coexisting attractors which has been rarely reported in the literature.Further studies on these coexisting attractors are carried out by investigating their time histories,phase trajectories,basins of attraction,Lyapunov exponents spectrum,and Lyapunov(Kaplan–Yorke)dimension.Bifurcation analysis reveals that the map has periodic and chaotic solutions,and more importantly,exhibits extreme multi-stability.展开更多
Based on the study from both domestic and abroad, an impulsive control scheme on chaotic attractors in one kind of chaotic system is presented.By applying impulsive control theory of the universal equation, the asympt...Based on the study from both domestic and abroad, an impulsive control scheme on chaotic attractors in one kind of chaotic system is presented.By applying impulsive control theory of the universal equation, the asymptotically stable condition of impulsive control on chaotic attractors in such kind of nonlinear chaotic system has been deduced, and with it, the upper bond of the impulse interval for asymptotically stable control was given. Numerical results are presented, which are considered with important reference value for control of chaotic attractors.展开更多
A new three-dimensional (3D) system is constructed and a novel spherical chaotic attractor is generated from the system. Basic dynamical behaviors of the chaotic system are investigated respectively. Novel spherical...A new three-dimensional (3D) system is constructed and a novel spherical chaotic attractor is generated from the system. Basic dynamical behaviors of the chaotic system are investigated respectively. Novel spherical chaotic attractors can be generated from the system within a wide range of parameter values. The shapes of spherical chaotic attractors can be impacted by the variation of parameters. Finally, a simpler 3D system and a more complex 3D system with the same capability of generating spherical chaotic attractors are put forward respectively.展开更多
文摘A new method is presented to generate two-directional (2D) grid multi-scroll chaotic attractors via a specific form of the sine function and sign function series, which are applied to increase saddle points of index 2. The scroll number in the x-direction is modified easily through changing the thresholds of the specific form of the sine function, while the scroll number in the y-direction is controlled by the sign function series. Some basic dynamical properties, such as equilibrium points, bifurcation diagram, phase portraits, and Lyapunov exponents spectrum are studied. Furthermore, the electronic circuit of the system is designed and its simulation results are given by Multisim 10.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60972069)the Science and Technology Foundation of the Education Department of Chongqing (Grant No. KJ090513)
文摘This paper proposed a method of generating two attractors in a novel grid multi-scroll chaotic system. Based on a newly generated three-dimensional system, a two-attractor grid multi-scroll attractor system can be generated by adding two triangular waves and a sign function. Some basic dynamical properties, such as equilibrium points, bifurcations, and phase diagrams, were studied. Furthermore, the system was experimentally confirmed by an electronic circuit. The circuit simulation results and numerical simulation results verified the feasibility of this method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60572073 and 60871025)the Natural Science Foundation of Guangdong Province,China (Grant Nos 8151009001000060,5001818 and 8351009001000002)
文摘This paper proposes a novel approach for generating a multi-scroll chaotic system. Together with the theoretical design and numerical simulations, three different types of attractor are available, governed by constructing triangular wave, sawtooth wave and hysteresis sequence. The presented new multi-scroll chaotic system is different from the classical multi-scroll chaotic Chua system in dimensionless state equations, nonlinear functions and maximum Lyapunov exponents. In addition, the basic dynamical behaviours, including equilibrium points, eigenvalues, eigenvectors, eigenplanes, bifurcation diagrams and Lyapunov exponents, are further investigated. The success of the design is illustrated by both numerical simulations and circuit experiments.
文摘In this paper a new simple multi-scroll chaotic generator is studied. The characteristic of this new multi-scroll chaotic generator is that it is easy to generate different number of scroll chaotic attractors through modifying the nature number n after fixing the suitable system parameters and it does not need complex mathematical derivation. Various number of scroll chaotic attractors are illustrated not only by computer simulation but also by the realization of an electronic circuit experiment on Electronic Workbench (EWB).
基金Project supported by the National Natural Science Foundation of China (Grant No. 50875259)
文摘Based on Lyapunov theory, the adaptive generalized synchronization between Chen system and a multi-scroll chaotic system is investigated. According to the form of target function a proper adaptive controller is designed, by which the controlled Chen system can be synchronized with a multi-scroll chaotic system including unknown parameters. The Lyapunov direct method is exploited to prove that the synchronization error and parameter identification error both converge to zero. Numerical simulation results verify the feasibility of the proposed method further.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51377124 and 51521065)the Foundation for the Author of National Excellent Doctoral Dissertation,China(Grant No.201337)the New Star of Youth Science and Technology of Shaanxi Province,China(Grant No.2016KJXX-40)
文摘Based on a new three-dimensional autonomous linear system and designing a specific form of saturated function series and a sign function with two variables of system, which are employed to increase saddle-focus equilibrium points with index 2, a novel multi-scroll chaotic system is proposed and its typical dynamical characteristics including bifurcation diagram, Poincare map, and the stability of equilibrium points are analyzed. The hardware circuit is designed and the experimental results are presented for confirmation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51177117 and 51307130)
文摘A novel 5-dimensional(5D) memristive chaotic system is proposed, in which multi-scroll hidden attractors and multiwing hidden attractors can be observed on different phase planes. The dynamical system has multiple lines of equilibria or no equilibrium when the system parameters are appropriately selected, and the multi-scroll hidden attractors and multi-wing hidden attractors have nothing to do with the system equilibria. Particularly, the numbers of multi-scroll hidden attractors and multi-wing hidden attractors are sensitive to the transient simulation time and the initial values. Dynamical properties of the system, such as phase plane, time series, frequency spectra, Lyapunov exponent, and Poincar′e map, are studied in detail. In addition, a state feedback controller is designed to select multiple hidden attractors within a long enough simulation time. Finally, an electronic circuit is realized in Pspice, and the experimental results are in agreement with the numerical ones.
文摘This paper proposes a new simple autonomous chaotic system which can generate multi-scroll chaotic attractors. The characteristic of this new multi-scroll chaotic system is that the 4n + 2rn + 4-scroll chaotic attractors are generated easily with n and m vaxying under n ≤ m. Various number of scroll chaotic attractors are illustrated not only by computer simulation but also by the realization of an electronic circuit experiment on EWB (Electronics Workbench).
基金the National Natural Sciene Foundation of China(Grant Nos.61973199 and 61973200)the Taishan Scholar Project of Shandong Province of China。
文摘A novel memristor-based multi-scroll hyperchaotic system is proposed.Based on a voltage-controlled memristor and a modulating sine nonlinear function,a novel method is proposed to generate the multi-scroll hyperchaotic attractors.Firstly,a multi-scroll chaotic system is constructed from a three-dimensional chaotic system by designing a modulating sine nonlinear function.Then,a voltage-controlled memristor is introduced into the above-designed multi-scroll chaotic system.Thus,a memristor-based multi-scroll hyperchaotic system is generated,and this hyperchaotic system can produce various coexisting hyperchaotic attractors with different topological structures.Moreover,different number of scrolls and different topological attractors can be obtained by varying the initial conditions of this system without changing the system parameters.The Lyapunov exponents,bifurcation diagrams and basins of attraction are given to analyze the dynamical characteristics of the multi-scroll hyperchaotic system.Besides,the field programmable gate array(FPGA)based digital implementation of the memristor-based multi-scroll hyperchaotic system is carried out.The experimental results of the FPGA-based digital circuit are displayed on the oscilloscope.
文摘A new four-dimensional quadratic smooth autonomous chaotic system is presented in this paper, which can exhibit periodic orbit and chaos under the conditions on the system parameters. Importantly, the system can generate one-, two-, three- and four-scroll chaotic attractors with appropriate choices of parameters. Interestingly, all the attractors are generated only by changing a single parameter. The dynamic analysis approach in the paper involves time series, phase portraits, Poincare maps, a bifurcation diagram, and Lyapunov exponents, to investigate some basic dynamical behaviours of the proposed four-dimensional system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos 60774088 and 10772135)the Foundation of the Application Base and Frontier Technology Research Project of Tianjin,China (Grant Nos 07JCZDJC09600,08JCZDJC21900 and 08JCZDJC18600)the Tianjin Key Laboratory for Control Theory & Applications in Complicated Industry Systems of China
文摘This paper presents a new 3D quadratic autonomous chaotic system which contains five system parameters and three quadratic cross-product terms,and the system can generate a single four-wing chaotic attractor with wide parameter ranges. Through theoretical analysis,the Hopf bifurcation processes are proved to arise at certain equilibrium points.Numerical bifurcation analysis shows that the system has many interesting complex dynamical behaviours;the system trajectory can evolve to a chaotic attractor from a periodic orbit or a fixed point as the proper parameter varies. Finally,an analog electronic circuit is designed to physically realize the chaotic system;the existence of four-wing chaotic attractor is verified by the analog circuit realization.
文摘This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz system, where the two wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four wings (eight wings) of these novel attractors axe located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues.
基金supported by the National Natural Science Foundation of China (10672140,11072213)
文摘Due to uncertain push-pull action across boundaries between different attractive domains by random excitations, attractors of a dynamical system will drift in the phase space, which readily leads to colliding and mixing with each other, so it is very difficult to identify irregular signals evolving from arbitrary initial states. Here, periodic attractors from the simple cell mapping method are further iterated by a specific Poincare map in order to observe more elaborate structures and drifts as well as possible dynamical bifurcations. The panorama of a chaotic attractor can also be displayed to a great extent by this newly developed procedure. From the positions and the variations of attractors in the phase space, the action mechanism of bounded noise excitation is studied in detail. Several numerical examples are employed to illustrate the present procedure. It is seen that the dynamical identification and the bifurcation analysis can be effectively performed by this procedure.
文摘In this paper, we propose a novel four-dimensional autonomous chaotic system. Of particular interest is that this novel system can generate one-, two, three- and four-wing chaotic attractors with the variation of a single parameter, and the multi-wing type of the chaotic attractors can be displayed in all directions. The system is simple with a large positive Lyapunov exponent and can exhibit some interesting and complicated dynamical behaviours. Basic dynamical properties of the four-dimensional chaotic system, such as equilibrium points, the Poincare map, the bifurcation diagram and the Lyapunov exponents are investigated by using either theoretical analysis or numerical method. Finally, a circuit is designed for the implementation of the multi-wing chaotic attractors. The electronic workbench observations axe in good agreement with the numerical simulation results.
基金supported by the Science Research Foundation of Liaoning Provincial Education Department,China(Grant No.L2013229)
文摘A new three-dimensional (3D) continuous autonomous system with one parameter and three quadratic terms is presented firstly in this paper. Countless embedded trumpet-shaped chaotic attractors in two opposite directions are generated from the system as time goes on. The basic dynamical behaviors of the strange chaotic system are investigated. Another more complex 3D system with the same capability of generating countless embedded trumpet-shaped chaotic attractors is also put forward.
基金supported by the National Natural Science Foundation of China (Grant No. 62071411)。
文摘Complex chaotic sequences are widely employed in real world, so obtaining more complex sequences have received highly interest. For enhancing the complexity of chaotic sequences, a common approach is increasing the scroll-number of attractors. In this paper, a novel method to control system for generating multi-layer nested chaotic attractors is proposed.At first, a piecewise(PW) function, namely quadratic staircase function, is designed. Unlike pulse signals, each level-logic of this function is square constant, and it is easy to realize. Then, by introducing the PW functions to a modified Chua's system with cubic nonlinear terms, the system can generate multi-layer nested Chua's attractors. The dynamical properties of the system are numerically investigated. Finally, the hardware implementation of the chaotic system is used FPGA chip.Experimental results show that theoretical analysis and numerical simulation are right. This chaotic oscillator consuming low power and utilization less resources is suitable for real applications.
基金supported by the National Natural Science Foundation of China(Grant No.61203004)the Natural Science Foundation of Heilongjiang Province,China(Grant No.F201220)the Heilongjiang Provincial Natural Science Foundation of Joint Guidance Project(Grant No.LH2020F022).
文摘A five-value memristor model is proposed,it is proved that the model has a typical hysteresis loop by analyzing the relationship between voltage and current.Then,based on the classical Liu-Chen system,a new memristor-based fourdimensional(4D)chaotic system is designed by using the five-value memristor.The trajectory phase diagram,Poincare mapping,bifurcation diagram,and Lyapunov exponent spectrum are drawn by numerical simulation.It is found that,in addition to the general chaos characteristics,the system has some special phenomena,such as hidden homogenous multistabilities,hidden heterogeneous multistabilities,and hidden super-multistabilities.Finally,according to the dimensionless equation of the system,the circuit model of the system is built and simulated.The results are consistent with the numerical simulation results,which proves the physical realizability of the five-value memristor-based chaotic system proposed in this paper.
基金National Natural Science Foundation of China(Grant Nos.11672257,11632008,11772306,and 11972173)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20161314)+1 种基金the 5th 333 High-level Personnel Training Project of Jiangsu Province of China(Grant No.BRA2018324)the Excellent Scientific and Technological Innovation Team of Jiangsu University.
文摘We study a novel class of two-dimensional maps with infinitely many coexisting attractors.Firstly,the mathematical model of these maps is formulated by introducing a sinusoidal function.The existence and the stability of the fixed points in the model are studied indicating that they are infinitely many and all unstable.In particular,a computer searching program is employed to explore the chaotic attractors in these maps,and a simple map is exemplified to show their complex dynamics.Interestingly,this map contains infinitely many coexisting attractors which has been rarely reported in the literature.Further studies on these coexisting attractors are carried out by investigating their time histories,phase trajectories,basins of attraction,Lyapunov exponents spectrum,and Lyapunov(Kaplan–Yorke)dimension.Bifurcation analysis reveals that the map has periodic and chaotic solutions,and more importantly,exhibits extreme multi-stability.
文摘Based on the study from both domestic and abroad, an impulsive control scheme on chaotic attractors in one kind of chaotic system is presented.By applying impulsive control theory of the universal equation, the asymptotically stable condition of impulsive control on chaotic attractors in such kind of nonlinear chaotic system has been deduced, and with it, the upper bond of the impulse interval for asymptotically stable control was given. Numerical results are presented, which are considered with important reference value for control of chaotic attractors.
基金Project supported by the Science Research Foundation of Liaoning Provincial Education Department,China(Grant No.L2013229)
文摘A new three-dimensional (3D) system is constructed and a novel spherical chaotic attractor is generated from the system. Basic dynamical behaviors of the chaotic system are investigated respectively. Novel spherical chaotic attractors can be generated from the system within a wide range of parameter values. The shapes of spherical chaotic attractors can be impacted by the variation of parameters. Finally, a simpler 3D system and a more complex 3D system with the same capability of generating spherical chaotic attractors are put forward respectively.