The aim of this work is to employ a modified cell-based smoothed finite element method(S-FEM)for topology optimization with the domain discretized with arbitrary polygons.In the present work,the linear polynomial basi...The aim of this work is to employ a modified cell-based smoothed finite element method(S-FEM)for topology optimization with the domain discretized with arbitrary polygons.In the present work,the linear polynomial basis function is used as the weight function instead of the constant weight function used in the standard S-FEM.This improves the accuracy and yields an optimal convergence rate.The gradients are smoothed over each smoothing domain,then used to compute the stiffness matrix.Within the proposed scheme,an optimum topology procedure is conducted over the smoothing domains.Structural materials are distributed over each smoothing domain and the filtering scheme relies on the smoothing domain.Numerical tests are carried out to pursue the performance of the proposed optimization by comparing convergence,efficiency and accuracy.展开更多
In this paper, we prove that any polygon P in R^2 containing a fixed smooth, strictly convex and origin-symmetric body Γ whose boundary is real analytic in its interior, can be determined by its Γ-section functions ...In this paper, we prove that any polygon P in R^2 containing a fixed smooth, strictly convex and origin-symmetric body Γ whose boundary is real analytic in its interior, can be determined by its Γ-section functions among the polygons.展开更多
In this work,we extend the recently proposed adaptive phase field method to model fracture in orthotropic functionally graded materials(FGMs).A recovery type error indicator combined with quadtree decomposition is emp...In this work,we extend the recently proposed adaptive phase field method to model fracture in orthotropic functionally graded materials(FGMs).A recovery type error indicator combined with quadtree decomposition is employed for adaptive mesh refinement.The proposed approach is capable of capturing the fracture process with a localized mesh refinement that provides notable gains in computational efficiency.The implementation is validated against experimental data and other numerical experiments on orthotropic materials with different material orientations.The results reveal an increase in the stiffness and the maximum force with increasing material orientation angle.The study is then extended to the analysis of orthotropic FGMs.It is observed that,if the gradation in fracture properties is neglected,the material gradient plays a secondary role,with the fracture behaviour being dominated by the orthotropy of the material.However,when the toughness increases along the crack propagation path,a substantial gain in fracture resistance is observed.展开更多
This paper constructs a new two-dimensional arbitrary polygonal stress hybrid dynamic(APSHD)element for structural dynamic response analysis.Firstly,the energy function is established based on Hamilton's principle...This paper constructs a new two-dimensional arbitrary polygonal stress hybrid dynamic(APSHD)element for structural dynamic response analysis.Firstly,the energy function is established based on Hamilton's principle.Then,the finite element time-space discrete format is constructed using the generalized variational principle and the direct integration method.Finally,an explicit polynomial form of the combined stress solution is give,and its derivation process is shown in detail.After completing the theoretical construction,the numerical calculation program of the APSHD element is written in Fortran,and samples are verified.Models show that the APSHD element performs well in accuracy and convergence.Furthermore,it is insensitive to mesh distortion and has low dependence on selecting time steps.展开更多
基金support by Basic Science Research Program through the National Research Foundation(NRF)funded by Korea Ministry of Education(No.2016R1A6A1A0312812).
文摘The aim of this work is to employ a modified cell-based smoothed finite element method(S-FEM)for topology optimization with the domain discretized with arbitrary polygons.In the present work,the linear polynomial basis function is used as the weight function instead of the constant weight function used in the standard S-FEM.This improves the accuracy and yields an optimal convergence rate.The gradients are smoothed over each smoothing domain,then used to compute the stiffness matrix.Within the proposed scheme,an optimum topology procedure is conducted over the smoothing domains.Structural materials are distributed over each smoothing domain and the filtering scheme relies on the smoothing domain.Numerical tests are carried out to pursue the performance of the proposed optimization by comparing convergence,efficiency and accuracy.
基金Project supported by the Youth Science Foundation of Shanghai Municipal Commission of Education (Grant No.214511), and in part by the Research Grants Council of the Hong Kong SAR, China (Grant No.HKU7016/07P)
文摘In this paper, we prove that any polygon P in R^2 containing a fixed smooth, strictly convex and origin-symmetric body Γ whose boundary is real analytic in its interior, can be determined by its Γ-section functions among the polygons.
基金E.Martínez-Paneda acknowledges financial support from the Royal Commission for the 1851 Exhibition through their Research Fellowship programme(RF496/2018).
文摘In this work,we extend the recently proposed adaptive phase field method to model fracture in orthotropic functionally graded materials(FGMs).A recovery type error indicator combined with quadtree decomposition is employed for adaptive mesh refinement.The proposed approach is capable of capturing the fracture process with a localized mesh refinement that provides notable gains in computational efficiency.The implementation is validated against experimental data and other numerical experiments on orthotropic materials with different material orientations.The results reveal an increase in the stiffness and the maximum force with increasing material orientation angle.The study is then extended to the analysis of orthotropic FGMs.It is observed that,if the gradation in fracture properties is neglected,the material gradient plays a secondary role,with the fracture behaviour being dominated by the orthotropy of the material.However,when the toughness increases along the crack propagation path,a substantial gain in fracture resistance is observed.
基金funded by the National Natural Science Foundation of China(Grant No.12072135).
文摘This paper constructs a new two-dimensional arbitrary polygonal stress hybrid dynamic(APSHD)element for structural dynamic response analysis.Firstly,the energy function is established based on Hamilton's principle.Then,the finite element time-space discrete format is constructed using the generalized variational principle and the direct integration method.Finally,an explicit polynomial form of the combined stress solution is give,and its derivation process is shown in detail.After completing the theoretical construction,the numerical calculation program of the APSHD element is written in Fortran,and samples are verified.Models show that the APSHD element performs well in accuracy and convergence.Furthermore,it is insensitive to mesh distortion and has low dependence on selecting time steps.