期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Study on the Multi-Sensing System Based on the Tin Oxide pH Electrode
1
作者 Gin-Chou Yang Jung-Chuan Chou +1 位作者 Tai-Ping Sun Shen-Kan Hsiung 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期221-224,共4页
In this study,the multi-sensing system based on the tin oxide pH electrode for the ion-determination was presented. With the advantages of the real-time supervisory control apparatus,the measured values could be displ... In this study,the multi-sensing system based on the tin oxide pH electrode for the ion-determination was presented. With the advantages of the real-time supervisory control apparatus,the measured values could be displayed on the liquid crystal display (LCD) immediately.In this study,the basic sensor was the tin oxide pH electrode,which was fabricated by radio frequency (r.f.) sputtering system on the indium tin oxide (ITO)/glass substrate.Moreover,the major blocks of the system consist of the tin oxide electrode-based ion selective electrodes (ISEs),an analog front-ended readout circuit,a microcontroller with built-in analog to digital (A/D) converter.In addition,by the embedded system design,the measurement results can be transmitted to a portable system or computer through the Universal Serial Bus (USB) and Universal Asynchronous Receiver Transmitter (UART) interface immediately.According to the experimental results,the multi-sensing system has high performance and reliability for pH,K^+,and Na^+ detection. 展开更多
关键词 multi-sensing system tin oxide pH electrode liquid crystal display(LCD) tin oxide electrode-based ion selective electrodes(ISEs) universal serial bus(USB) universal asynchronous receiver transmitter(UART)
下载PDF
Nanocellulose-Graphene Hybrids: Advanced Functional Materials as Multifunctional Sensing Platform 被引量:7
2
作者 Abdelrahman Brakat Hongwei Zhu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第6期231-267,共37页
Naturally derived nanocellulose with unique physiochemical properties and giant potentials as renewable smart nanomaterials opens up endless novel advanced functional materials for multi-sensing applications.However,i... Naturally derived nanocellulose with unique physiochemical properties and giant potentials as renewable smart nanomaterials opens up endless novel advanced functional materials for multi-sensing applications.However,integrating inorganic functional two-dimensional carbon materials such as graphene has realized hybrid organic-inorganic nanocomposite materials with precisely tailored properties and multi-sensing abilities.Altogether,the affinity,stability,dispersibility,modification,and functionalization are some of the key merits permitting their synergistic interfacial interactions,which exhibited highly advanced multifunctional hybrid nanocomposites with desirable properties.Moreover,the high performance of such hybrids could be achievable through green and straightforward approaches.In this context,the review covered the most advanced nanocellulose-graphene hybrids,focusing on their synthetization,functionalization,fabrication,and multi-sensing applications.These hybrid films exhibited great potentials as a multifunctional sensing platform for numerous mechanical,environmental,and human bio-signals detections,mimicking,and in-situ monitoring. 展开更多
关键词 NANOCELLULOSE GRAPHENE NANOCOMPOSITES Hybrid materials multi-sensing
下载PDF
Fundamental problems in rehabilitation robots based on neuro-machine interaction 被引量:8
3
作者 SONG Aiguo ZENG Hong +1 位作者 YANG Renhuan XU Baoguo 《Instrumentation》 2014年第3期1-16,共16页
Study results in the last decades show that amount and quality of physical exercises,then the active participation,and now the cognitive involvement of patient in rehabilitation training are crucial to enhance recover... Study results in the last decades show that amount and quality of physical exercises,then the active participation,and now the cognitive involvement of patient in rehabilitation training are crucial to enhance recovery outcome of motor dysfunction patients after stroke.Rehabilitation robots mainly have been developed along this direction to satisfy requirements of recovery therapy,or focused on one or more of the above three points.Therefore,rehabilitation robot based on neuro-machine interaction has been proposed for the paralyzed limb training of post-stroke patient,which utilizes motor related EEG,UCSDI(Ultrasound Current Source Density Imaging),EMG for the robot control and feeds back the multi-sensory interaction information such as visual,auditory,force,haptic sensation to the patient simultaneously.This neuro-controlled and perceptual rehabilitation robot will bring great benefits to post-stroke patients.In order to develop such a kind of rehabilitation robot,some key technologies,such as non-invasive precise measurement and decoding of neural signals,realistic sensation feedback,coordinated control for both the rehabilitation robot and the patient,need to be solved.In this paper,some fundamental problems in developing and optimizing such a kind of rehabilitation robot based on neuro-machine interaction are proposed and discussed. 展开更多
关键词 Rehabilitation robot neuro-machine interaction active rehabilitation therapy multi-sensation feedback
下载PDF
Facile and Low-Cost Fabrication of a Thread/Paper-Based Wearable System for Simultaneous Detection of Lactate and pH in Human Sweat 被引量:2
4
作者 Gang Xiao Jing He +6 位作者 Yan Qiao Feng Wang Qingyou Xia Xin Wang Ling Yu Zhisong Lu Chang-Ming Li 《Advanced Fiber Materials》 CAS 2020年第5期265-278,共14页
Wearable devices have received tremendous interests in human sweat analysis in the past few years.However,the widely used polymeric substrates and the layer-by-layer stacking structures greatly influence the cost-effi... Wearable devices have received tremendous interests in human sweat analysis in the past few years.However,the widely used polymeric substrates and the layer-by-layer stacking structures greatly influence the cost-efficiency,conformability and breathability of the devices,further hindering their practical applications.Herein,we report a facile and low-cost strategy for the fabrication of a skin-friendly thread/paper-based wearable system consisting of a sweat reservoir and a multi-sensing component for simultaneous in situ analysis of sweat pH and lactate.In the system,hydrophilic silk thread serves as the micro-channel to guide the liquid flow.Filter papers were functionalized to prepare colorimetric sensors for lactate and pH.The smartphone-based quantitative analysis shows that the sensors are sensitive and reliable.Although pH may interfere the lactate detection,the pH detected simultaneously could be employed to correct the measured data for the achievement of a precise lactate level.After being integrated with a hydrophobic arm guard,the system was successfully used for the on-body measurement of pH and lactate in the sweats secreted from the volunteers.This low-cost,easy-to-fabricate,light-weight and flexible thread/paper-based microfluidic sensing device may hold great potentials as a wearable system in human sweat analysis and point-of-care diagnostics. 展开更多
关键词 Wearable sensors Thread/paper-based microfluidics Sweat analysis Point-of-care diagnostics multi-sensing system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部